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ON STAKHOV FUNCTIONS AND NEW HYPERBOLOID

SURFACES

Abstract. This paper presents an investigation into the generalization of

hyperbolic Fibonacci sine and cosine functions, as well as Fibonacci spirals.
Initially, we establish the main definitions and theoretically model them, listing

several special cases. We then uncover fundamental results, including the

De Moivre and Pythagorean formulas. Based on these new definitions, we
introduce new classes of three-dimensional hyperboloid surfaces and compute

their Gauss and mean curvatures. Notably, we demonstrate that these surfaces

are geodesic.

1. Introduction

The usual Fibonacci numbers are defined by the following recurrence relation:
for n ⩾ 0

Fn+2 = Fn+1 + Fn, (1.1)

where F0 = 0 and F1 = 1. These numbers can also be produced by using the
Binet’s formula in the form of

Fn =
αn − βn

√
5

, (1.2)

where α and β are the positive and negative roots of the equation x2 − x− 1 = 0,
respectively.

In the literature, many interesting properties and applications of the recurrence
sequences have been studied by many authors; see for example, [1], [2], [3]. In
1993, the Ukrainian mathematicians Stakhov and Tkachenko put forth a new idea
to describe hyperbolic geometry [4]. Inspired by the Binet’s formula in Eq. (1.2),
the authors introduced a new class of hyperbolic functions, which are called the
Hyperbolic Fibonacci and Lucas functions. In [5], Stakhov provided detailed in-
formation with applications to the available literature. In [6], Stakhov and Rozin
further developed the ideas of the hyperbolic Fibonacci and Lucas functions, and
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defined the symmetric hyperbolic Fibonacci and Lucas functions as follows:

sFs (x) =
αx − α−x

√
5

, cFs (x) =
αx + α−x

√
5

, sLs (x) = αx − α−x,

and cLs (x) = αx + α−x,

(1.3)

where x is any real numbers. To be clear, for k ∈ Z, sFs (2k) = F2k, cLs (2k) = L2k,
cFs (2k + 1) = F2k+1, and sLs (2k + 1) = L2k+1. In [7], Stakhov and Rozin defined
the quasi-sine Fibonacci functions and Fibonacci spirals to eliminate the discrete
case in Eq. (1.3) as follows:

FF (x) =
αx − cos (πx)α−x

√
5

andCFF (x) =
αx − cos (πx)α−x

√
5

+ i
sin (πx)α−x

√
5

,

(1.4)
where i is the complex unit. Note that in [8], Stakhov and Rozin presented a brief
description of these hyperbolic phenomenons in the world.

According to these developments, in [9], Falcón and Plaza defined a new class of
hyperbolic sine&cosine, quasi-sine, and spiral-like functions using the k-Fibonacci
sequence as follows:

sFkh (x) =
σx − σ−x

σ + σ−1
, cFkh (x) =

σx + σ−x

σ + σ−1
, FFkh (x) =

σx − cos (πx)σ−x

σ + σ−1
,

andCFFk (x) =
σx − cos (πx)σ−x

σ + σ−1
+ i

sin (πx)σ−x

σ + σ−1
, (1.5)

where σ is the positive root of σ2 = kσ + 1 and k is any positive real number.
Motivated by the definitions of Stakhov and Rozin [6,7], and Falcón and Plaza [9],
Daşdemir et al. gave a generalized version of the functions in Eqs. (1.3)-(1.4) as
follows [10]:

Hs (x) =
Aαx −Bα−x

∆
, Hc (x) =

Aαx +Bα−x

∆
, H (x) =

Aαx − cos (πx)Bα−x

∆
,

and CH (x) =
Aαx − cos (πx)Bα−x

∆
+ i

sin (πx)Bα−x

∆
,

(1.6)
which are called the Horadam hyperbolic sine function, the Horadam hyperbolic
cosine function, the quasi-sine Horadam function, and Horadam spiral, respectively.
Here, α is the positive root of λ2 = f (x)λ + 1, ∆ =

√
f2 (x) + 4, A = b (x) +

a (x)α−1, B = b (x) − a (x)α, and a (x) and b (x) are any continue real-valued
function.

As the above literature survey reveals, the functions in (1.3)-(1.5) only vary
on the real variable x, while other parameters are constant. In Eq. (1.6), the
parameters α and β depend on a continuous function of x. Consequently, it would
be interesting to consider the mentioned functions in a more general form such that
the roots of the algebraic equation depend on two real-valued functions. To be
clear, this consideration is due to the generalized second-order sequence designated
by Horadam [11]. This motivates us to revise the mentioned functions. For this
purpose, presented herein is to generalize the definitions introduced by Stakhov
and Tkachenko [4], Stakhov and Rozin [5], Falcón and Plaza [9], and Daşdemir et.
al [10]. This is the main focus of the present paper, and a particular concern will
be paid to some elementary results and geometrical considerations.
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2. Main Results

In this section, we will present the outcomes of the paper, including some defi-
nitions, fundamental considerations, and elementary properties.

2.1. Fundamental definitions. Let f (x) and g (x) be an arbitrary non-zero con-
tinuous functions of real number x. Consider the second-order equation

λ2 − f (x)λ− g (x) = 0. (2.1)

Hence, Eq. (2.1) has the following distinct two roots

λ1 = α (x) =
f (x) +

√
f2 (x) + 4g (x)

2
and λ2 = β (x) =

f (x)−
√

f2 (x) + 4g (x)

2
.

To ensure that the solution is real, we assume that condition f2 (x) + 4g (x) > 0 is
met. Here, we can write

α (x) + β (x) = f (x) , α (x)β (x) = −g (x) , α (x)− β (x) = ∆ (x) , (2.2)

where = ∆ (x) =
√

f2 (x) + 4g (x). In consequence, we obtained two distinct solu-
tions. Therefore, their linear combination, i.e., c1 {α (x)}x + c2 {β (x)}x, is also a
solution of Eq. (2.1). Solving the system of equations for x = 0 and x = 1, we find

c1 =
b (x)− a (x)β (x)

α (x)− β (x)
and c2 = −b (x)− a (x)α (x)

α (x)− β (x)
.

As a result, we can give the following definition.

Definition 2.1. Let a (x) and b (x) be an arbitrary continuous function. Then, the
Horadam functions are defined as

H (a, b, f, g, x) = H (x) =
Ã (x) [α (x)]

x − B̃ (x) [β (x)]
x

α (x)− β (x)
, (2.3)

where Ã (x) = b (x) + a (x) [α (x)]
−1

and B̃ (x) = b (x)− a (x)α (x).

This is a similar form to the generalized second-order sequence given by Ho-
radam [11]. We can, therefore, call Eq. (2.3) the Horadam functions due to Aus-
tralian mathematician Alwyn Francis Horadam’s great contributions to the avail-
able literature. Note that, for the sake of presentation simplicity, all the functions
will be represented in the non-parentheses form.

Substituting αβ = −g into Eq. (2.3), we can write

H (x) =
Ãαx − B̃

(
−gα−1

)x
∆

=
Ãαx − (−1)

x
B̃gxα−x

∆
,

Here, we run into the problem of what the real power of -1 will be. To address
this issue, from the famous Euler’s formula, we can write e∓iπ = cosπ∓i sinπ = −1,
where e is Euler’s constant and i is the imaginary unit. As a result, we can give
the following definition.

Definition 2.2. Let a and b be any continuous function. Then, the Stakhov spiral
is defined as

SR (a, b, f, g, x) = SR (x) =
Aαx − cos (πx)Bα−x

∆
+ i

sin (πx)Bα−x

∆
, (2.4)

where A = b+ aα−1 and B = gx (b− aα).
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Table 1. Special cases for the Stakhov spiral functions

Stakhov spiral functions
Symbols

a b f gSR (x)

Horadam spiral [10] H (x) 1
Fibonacci spiral [6] CFF(x) 0 1 1 1
Lucas spiral CLL(x) 2 1 1 1
k-Fibonacci spiral [9] CFFk (x) 0 1 k 1
Pell spiral CPP(x) 0 1 2 1
Modified Pell spiral CRR(x) 1 1 2 1
Pell-Lucas spiral CQQ(x) 2 2 2 1
Jacobsthal spiral CJJ(x) 0 1 1 2
Jacobsthal-Lucas spiral CJJL(x) 2 1 1 2
Fermat spiral CFFR(x) 1 3 3 2

This looks like a three-dimensional spiral-like curve and is the most general form
of Eq. (1.4) given by Stakhov and Rozin [7]. Table 1 indicates the special cases
that can be obtained depending on the particular choice of a, b, f , and g. For
integer values of x, the imaginary part of the function SR (x) vanishes. The reason
for the name “Stakhov spiral function” is that the great Ukrainian mathematician
Stakhov has attributed an indescribable contribution both to the subject of this
paper and to the literature on Fibonacci numbers.

For the concrete examples, we consider the following cases:

Case I : a (x) = sinx, b (x) = cosx, f (x) = ln
(
1 + x2

)
, and g (x) = cosh (x)

Case II : a (x) = 3
√
x, b (x) = x, f (x) = arcsinh

(
1 + x2

)
, and g (x) = e−x

Fig. 1 displays the three-dimensional graphs of the Stakhov spirals for Case I
(Fig. 1.a) and Case II (Fig. 1.b), respectively. As seen, the distributions are a spiral-
like curve.

Under the assumption that the Oy− and Oz−axes are real and imaginary direc-
tions, respectively, we can build up the following system of equations: y − Aαx

∆ = − cos(πx)Bα−x

∆

z = sin(πx)Bα−x

∆

Thus, after some operations, we get the following equation:(
y − Aαx

∆

)2

+ z2 =

(
Bα−x

∆

)2

(2.5)

or in the re-organized form

z2 =

(
Aαx +Bα−x

∆
− y

)(
y − Aαx −Bα−x

∆

)
. (2.6)

Note that Eq. (2.4) is a complex-valued function. However, we are usually not
concerned with what is going on in the imaginary axis, as we generally work in
real space. This idea coincides also with the approaches by the references [6], [9],
and [10]. Thus, considering the real part of the Stakhov spiral functions, we can
express the following definition.
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(a) Case I (b) Case II

Figure 1. Distributions of the Stakhov spirals for Cases I and II

Definition 2.3. For the functions a and b, the quasi-sine Stakhov function is
defined by

Sq (a, b, f, g, x) = QS (x) =
Aαx − cos (πx)Bα−x

∆
. (2.7)

Meanwhile, Eqs. (2.6) and (2.7) are whispering some new definitions. In Eq.
(2.6), each function in parentheses has a hyperbolic structure. Besides, combining
these functions utilizing the character of cos (πx) yields Eq. (2.7). Based on this
idea, we can then discretize the function Sq (x) as follows.

Definition 2.4. Let a and b be any continuous function. Then, the hyperbolic
Stakhov sine and cosine functions are defined by

Ss (a, b, f, g, x) = Ss (x) =
Aαx −Bα−x

∆
(2.8)

and

Sc (a, b, f, g, x) = Sc (x) =
Aαx +Bα−x

∆
, (2.9)

respectively.

From the last definitions, we can give the following additional definitions.

Definition 2.5. Let a and b be continuous. Then, the hyperbolic Stakhov tangent
and cotangent functions are defined by

St (a, b, f, g, x) =
Ss (x)

Sc (x)
=

Aαx −Bα−x

Aαx +Bα−x
= 1− 2B

B +Aα2x
, (2.10)

and

Sct (a, b, f, g, x) =
Sc (x)

Ss (x)
=

Aαx +Bα−x

Aαx −Bα−x
= 1− 2B

B −Aα2x
, (2.11)

respectively.

In working with the above-stated functions, it is useful to consider the following
special cases:

• Generalized Stakhov-Fibonacci spirals

SR (0, 1, f, g, x) = Su (x) =
αx − cos (πx) gxα−x

∆
+ i

sin (πx) gxα−x

∆
(2.12)
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• Generalized Stakhov-Lucas spirals

SR (2, f, f, g, x) = Sv (x) = αx + cos (πx) gxα−x − i sin (πx) gxα−x
(2.13)

• Generalized quasi-sine Fibonacci functions

Sq (0, 1, f, g, x) = Re (Su (x)) = Uq (x) =
αx − cos (πx) gxα−x

∆
(2.14)

• Generalized quasi-sine Lucas functions

Sq (2, f, f, g, x) = Re (Sv (x)) = Vq (x) = αx + cos (πx) gxα−x
(2.15)

• Generalized hyperbolic Fibonacci sine and cosine functions

Ss (0, 1, f, g, x) = Fs (x) =
αx − gxα−x

∆
, Sc (0, 1, f, g, x) = Fc (x) =

αx + gxα−x

∆
(2.16)

• Generalized hyperbolic Lucas cosine and sine functions

Ss (2, f, f, g, x) = Lc (x) = αx + gxα−x, Sc (2, f, f, g, x) = Ls (x) = αx − gxα−x

(2.17)

• Generalized hyperbolic Lucas tangent and cotangent functions

St (0, 1, f, g, x) = Ft (x) =
αx − gxα−x

αx + gxα−x
, Sct (0, 1, f, g, x) = Fct (x) =

αx + gxα−x

αx − gxα−x

(2.18)

2.2. Some features. In this section, some elementary formulas regarding the hy-
perbolic Stakhov functions will bw developed. We can thus start with the following
results.

Theorem 2.1. The following non-homogeneous recurrence relations hold for any
real number x:

Ss (x+ 2) = fSc (x+ 1) + gSs (x) (2.19)

and

Sc (x+ 2) = fSs (x+ 1) + gSc (x) . (2.20)

Proof. Substituting Eqs. (2.10) and (2.11) into Eq. (2.19) yields

fSs (x+ 1) + gSc (x) = f
Aα(x+1) −Bα−(x+1)

∆
+ g

Aαx +Bα−x

∆

=
Aαx (fα+ g) +Bα−x

(
1− f

α

)
∆

.

Considering Eqs. (2.1) and (2.2), we can write

α2 = fα+ g and 1− f

α
=

g

α2
,

which completes the proof. □

Remark. Theorem 2.1 indicates that symmetric exchange between the functions
Ss (x) and Sc (x) is possible in all linear relations of the hyperbolic Stakhov func-
tions.
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The recurrence relations in Eqs. (2.19) and (2.20) can be homogenized as follows.
Subtracting the resultant equations after multiplying the values of these functions
for the real numbers x and x+ 2 with appropriate factors, we obtain

Ss (x+ 2) =
(
f2 + 2g

)
Ss (x)− g2Ss (x− 2) (2.21)

and

Sc (x+ 2) =
(
f2 + 2g

)
Sc (x)− g2Sc (x− 2) . (2.22)

Note that the new recurrence relations have a forth-order homogeneous form.
The next theorem presents the inverse hyperbolic functions.

Theorem 2.2. The hyperbolic Stakhov sine and cosine functions have an inverse
in the form of

Ss
−1 (x) = logα (x̃) and Sc

−1 (x) = logα (x̃) , (2.23)

where x̃ = ∆x+
√
∆2x2+4AB
2A .

Proof. From the definition of the hyperbolic Stakhov functions, we can write

x =
Aαy −Bα−y

∆
⇒ ∆xαy = Aα2y −B ⇒ A(αy)

2 −∆xαy −B = 0,

which is second-order equation. Since αy > 0, there is a unique solution, namely

αy = ∆x+
√
∆2x2+4AB
2A . As a result, the first equation is obtained. The latter can

also be proved after a similar process. □

We give the Pythagorean formula for hyperbolic Stakhov functions.

Theorem 2.3 (Pythagorean formula). For any real number x, we have

[Sc (x)]
2 − [Ss (x)]

2
=

4AB

∆2
. (2.24)

Proof. Subtracting the resultant equations after substituting Eqs. (2.8) and (2.9)
into the left-hand side of Eq. (2.24) yields the claimed result. □

The next theorem presents a similar result to the famous De Moivre’s formula.

Theorem 2.4 (De Moivre-type formula). Let x be any real number. Then the
following identities hold for any positive integer n:

[Sc (x) + Ss (x)]
n
=

(
2A

∆

)n−1

[Sc (nx) + Ss (nx)] (2.25)

and

[Sc (x)− Ss (x)]
n
=

(
2B

∆

)n−1

[Sc (nx)− Ss (nx)] . (2.26)

Proof. We use the induction method to show the validity of theorem. It is clear
that Eq. (2.25) holds for n = 1. Based on the assumption such that this equation
is valid for any positive integer n, we can write

[Sc (x) + Ss (x)]
n+1

= [Sc (x) + Ss (x)]
n
[Sc (x) + Ss (x)]

=

(
2A

∆

)n−1

[Sc (nx) + Ss (nx)]

[
Aαx +Bα−x

∆
− Aαx −Bα−x

∆

]
=

(
2A

∆

)n [
Aαnx +Bα−nx

∆
+

Aαnx −Bα−nx

∆

]
αx
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=

(
2A

∆

)n [
2Aα(n+1)x +Bα−(n+1)x −Bα−(n+1)x

∆

]
=

(
2A

∆

)n

[Sc ((n+ 1)x) + Ss ((n+ 1)x)] ,

which completes the proof process. Repeating the same procedure, the other can
be demonstrated. □

Up to now, we only make our investigation for real values of x. So, what proper-
ties will the hyperbolic Stakhov functions have in the complex space? The answer
is presented in the following.

Theorem 2.5. For complex variable z = x+ iy, we have

Ss (z) =
1

2AB
[u cos (y lnα) + iv sin (y lnα)] (2.27)

and

Sc (z) =
1

2AB
[v cos (y lnα) + iu sin (y lnα)] , (2.28)

where u = (A+B)Ss (x)−(A−B)Sc (x) and v = (A+B)Sc (x)−(A−B)Ss (x).

Proof. Considering

Ss (z) =
Aαz −Bα−z

∆
and Sc (z) =

Aαz +Bα−z

∆
,

we can write

Aαz = Aαx+iy = Aαxαiy =
∆

2A
(Sc (x) + Ss (x))α

iy

=
∆

2A
(Ss (x) + Sc (x)) [cos (y lnα) + i sin (y lnα)]

and

Bα−z = Bα−x−iy = Bα−xα−iy =
∆

2B
(Sc (x)− Ss (x))α

−iy

=
∆

2B
(Sc (x)− Ss (x)) [cos (y lnα)− i sin (y lnα)] .

Here, we used the well-known Euler’s formula. As a result, combining the last two
equations, the proof is completed. □

As an example, we give the following special case.

Example 2.1. Consider z = iπ
lnα . Let us compute Ss (z) and Sc (z). In this case,

x = 0 and y = π
lnα . Inserting these values into Eqs. (2.32) and (2.35), we can

readily obtain Ss (z) = 0 and Sc (z) = − 2
∆ .

2.3. Geometrical considerations. In this section, some geometrical approaches
will be developed. For this purpose, we first introduce the following equations:

x = ∓Aαt −Bα−t

∆
and y =

Aαt +Bα−t

∆
, (2.29)

where the parameter t is the hyperbolic angle. From this, we can write

y2 − x2 =
4AB

∆2
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or
y2(

2
√
AB
∆

)2 − x2(
2
√
AB
∆

)2 = 1, (2.30)

which is a rectangular hyperbola equation, with center at the origin, and with a
horizontal real axis. We may call Eq. (2.30) the Stakhov hyperbola. Note that the
exchange of preferences in Eq. (2.29) yields to obtain the equation of the conjugate
hyperbola.

According to Eq. (2.30), the foci, vertices, and co-vertices of the hyperbola

lie in
(
∓ 2

√
2AB
∆ , 0

)
,
(
∓ 2

√
AB
∆ , 0

)
, and

(
0,∓ 2

√
AB
∆

)
, respectively. In addition, the

equations of asymptotes and directrices are y = ∓x and x = ∓
√
2AB
∆ . In particular,

the Modified Pell hyperbola is unit. This means that since the Pseudo Euclidean
plane is represented by a unit hyperbola that also describes Minkowski space-time,
the Modified Pell hyperbola can be used.

On the other hand, rotating the Stakhov hyperbola completely around the ver-
tical axis generates a hyperboloid of one sheet. In this case, we have the equation

x2(
2
√
AB
∆

)2 +
y2(

2
√
AB
∆

)2 − z2(
2
√
AB
∆

)2 = 1 (2.31)

and its parametric representation is
x = 2

√
AB
∆ Sc (t) cos θ

y = 2
√
AB
∆ Sc (t) sin θ

z = 2
√
AB
∆ Ss (t)

(2.32)

where θ is azimuth angle and t ∈ [0,∞). By the way, this may be called the
hyperbolic Stakhov hyperboloid. Further, for z ∈ [0,∞), the projection of the
hyperbolic Stakhov hyperboloid on xy-plane is a planar spiral that looks like an
Archimedean spiral.

If rotation is made along the horizantal axis, an hyperboloid of two sheets occurs.
So, we have the hyperboloid equation as follows:

x2(
2
√
AB
∆

)2 +
y2(

2
√
AB
∆

)2 − z2(
2
√
AB
∆

)2 = −1 (2.33)

and its parametric representation is
x = 2

√
AB
∆ Ss (t) cos θ

y = 2
√
AB
∆ Ss (t) sin θ

z = 2
√
AB
∆ Sc (t)

(2.34)

Similarly, the last surface may be called the elliptic Stakhov hyperboloid. Since
the denominators are equal, there is a hyperboloid of revolution in both cases. It
should be noted that there are no umbilics on a hyperboloid of one sheet, but two
on each sheet of the two-sheeted variety.

Fig. 2 displays special forms of the hyperbolic and elliptic Stakhov hyperboloids
for cases where the hyperbolic and elliptic Fibonacci (Fig. 2. a& b), the hyperbolic
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Some special surfaces: (a) Hyperbolic Fibonacci, (b) Elliptic
Fibonacci, (c) Hyperbolic Lucas, (d) Elliptic Lucas, (e) Hyperbolic Pell,
(f) Elliptic Pell, (g) Hyperbolic Modified Pell, and (h) Elliptic Modified
Pell

and elliptic Lucas (Fig. 2. c& d), the hyperbolic and elliptic Pell (Fig. 2. e& f), and
the hyperbolic and elliptic Modified Pell (Fig. 2. g&h) hyperboloids according to
Table 1. Fig. 2 reveals that oscillating characters of the Fibonacci and Pell surface
symmetrically exchange with the ones of Lucas and Modified Pell.

Theorem 2.6. The Gaussian and mean curvatures of the hyperbolic Stakhov hy-
perboloid are given by

Kh = − 1[
{Ss (t)}2 + {Sc (t)}2

]2 andHh =
∆[Ss (t)]

2

2
√
AB

[
{Ss (t)}2 + {Sc (t)}2

] 3
2

. (2.35)

Proof. It is clear that the hyperbolic Stakhov hyperboloid is a regular surface
with a differentiable field of unit normal vectors N . Let us compute the coeffi-
cients of the first and second fundamental forms of hyperboloid so that the Gauss-
ian and mean curvatures can be obtained in terms of whose coefficients. To do
this, we shall express dN as a matrix in terms of the natural basis Xu, Xv, where

X (t, θ) = 2
√
AB
∆ (Sc (t) cos θ, Sc (t) sin θ, Ss (t)). In this case, the coefficients of the
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first fundamental form are given by

E = ⟨Xt, Xt⟩ =
{

2
√
AB lnα
∆

}2 [
{Ss (t)}2 + {Sc (t)}2

]
,

F = ⟨Xt, Xθ⟩ = 0, and G = ⟨Xθ, Xθ⟩ =
{

2
√
AB
∆

}2

{Sc (t)}2.

Besides, we can write down

N =
Xt ×Xθ

∥Xt ×Xθ∥
=

−iSc (t) cos θ − jSc (t) sin θ + kSs (t){
{Sc (t)}2 + {Ss (t)}2

} 1
2

,

and from this, the coefficients of the second fundamental form can be computed as

e = ⟨N,Xtt⟩ = − 8AB
√
AB(lnα)2

∆3{{Sc(t)}2+{Ss(t)}2}
1
2
, f = ⟨N,Xtθ⟩ = 0,

and g = ⟨N,Xθθ⟩ = 2
√
AB{Sc(t)}2

∆{{Sc(t)}2+{Ss(t)}2}
1
2
.

Considering

K =
eg − f2

EG− F 2
and H =

1

2

eG− 2fF + gE

EG− F 2
,

the results follows after some mathematical operations. □

Since K < 0, the principal curvatures κ1 and κ2 are of opposite sign at any point
P . So the surface near P is a hyperboloid. We can call P a hyperbolic point of the
surface.

Theorem 2.7. The Gaussian and mean curvatures of the elliptic Stakhov hyper-
boloid are given by

Ke =
1[

{Ss (t)}2 + {Sc (t)}2
]2 and He =

∆[Sc (t)]
2

2
√
AB

[
{Ss (t)}2 + {Sc (t)}2

] 3
2

. (2.36)

Proof. Repeating the same procedure in the previous theorem, the proof can easily
be done. □

Since K > 0, the sings of the principal curvatures κ1 and κ2 are the same. The
normal curvature κ in any tangent direction t is equal to κ = κ1 cos θ + κ2 sin θ,
where θ is the angle between t and the principal vector corresponding to κ1. So the
sign of κ is the same as that of κ1 and κ2. The surface is bending away from its
tangent plane in all tangent directions at any point P . The quadratic approximation
of the surface near P is the paraboloid z2 = κ1x

2+κ2y
2. In addition, the Gaussian

curvatures K of two surfaces are invariant by local isometries.

Theorem 2.8. Both hyperbolic and elliptic Stakhov hyperboloids are geodesic. To
be clear, we have

κh = 0 and κe = 0. (2.37)

Proof. We only present proof for the hyperbolic Stakhov hyperboloid here. Other
can be proved similarly. Let χ be cut out of the hyperbolic Stakhov hyperboloid

by the form z = c. In this case, 2
√
AB
∆ Ss (t) is constant and so t is also constant.

Then a unit-speed parameterization of χ can be defined as

χ (s) =
2
√
AB

∆
(Sc (s̃) cos t0, Sc (s̃) sin t0, Ss (s̃)) , s̃ =

s
2
√
AB
∆ Ss (t0)

.
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Then we can compute the Frenet frame as follow:

t (s) =

(
Ss

(
s

2
√

AB
∆ Ss(t0)

)
cos t0, Ss

(
s

2
√

AB
∆ Ss(t0)

)
sin t0, Sc

(
s

2
√

AB
∆ Ss(t0)

))
√{

Sc

(
s

2
√

AB
∆ Ss(t0)

)}2

+

{
Ss

(
s

2
√

AB
∆ Ss(t0)

)}2

n (s) =

(
Sc

(
s

2
√

AB
∆ Ss(t0)

)
cos t0, Sc

(
s

2
√

AB
∆ Ss(t0)

)
sin t0, Ss

(
s

2
√

AB
∆ Ss(t0)

))
√{

Sc

(
s

2
√

AB
∆ Ss(t0)

)}2

+

{
Ss

(
s

2
√

AB
∆ Ss(t0)

)}2

b (s) =
4AB
∆2 (− sin t0, cos t0, 0){

Sc

(
s

2
√

AB
∆ Ss(t0)

)}2

+

{
Ss

(
s

2
√

AB
∆ Ss(t0)

)}2

From κh = ⟨χ′′ (s) ,b (s)⟩, the result follows. □
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