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Abstract 

The identification of abnormalities such as glomerulosclerosis is one of the most important 

aspects of the glomeruli biopsy study that is used in the diagnosis of kidney illnesses. For the 

purpose of classifying glomeruli biopsy images into Normal and Sclerosed categories, this work 

implements a hybrid classification system. The dataset, which was obtained from Kaggle, was 

processed with Vision Transformers (ViTs) for the purpose of feature extraction without any 

additional training being required. To be more specific, one thousand deep features were 

extracted from the head layer of the Vision Transformer model that had been first trained. In 

order to improve the effectiveness of classification, twelve statistical characteristics, which 

included mean, minimum, maximum, entropy, kurtosis, skewness, and root mean square, were 

computed and added to the deep features that were retrieved. This resulted in a hybrid 

representation that contained 1,012 features. In the subsequent step, traditional machine 

learning classifiers were utilized for the purpose of image classification. Evaluation and 

comparison of the performance of these classifiers were carried out, with a particular emphasis 

placed on the enhancement that was accomplished by using statistical characteristics. The 

findings of the experiments show that the hybrid model that was developed performs better than 

the baseline deep features in terms of accuracy and resilience. This indicates that the hybrid 

model is a promising technique for the classification of glomeruli biopsy images. 

Keywords: Glomeruli Biopsy, Image Classification, Vision Transformers, Statistical Features, 

Hybrid Model 

 

Glomeruli Biyopsi Görüntülerinin Görme Dönüştürücüleri ve İstatistiksel 

Özellik Artırma Kullanılarak Hibrit Özellik Tabanlı Sınıflandırılması 

 

Özet 

Glomeruloskleroz gibi anormalliklerin tanımlanması, böbrek hastalıklarının tanısında 

kullanılan glomeruli biyopsi çalışmasının en önemli yönlerinden biridir. Glomeruli biyopsi 

görüntülerini Normal ve Sklerozlu kategorilerine sınıflandırmak amacıyla, bu çalışma hibrit bir 

sınıflandırma sistemi uygular. Kaggle'dan elde edilen veri seti, herhangi bir ek eğitim 

gerektirmeden özellik çıkarma amacıyla Vision Transformers (ViTs) ile işlendi. Daha spesifik 

http://www.doi.org/10.5281/zenodo.15719179
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olmak gerekirse, ilk olarak eğitilen Vision Transformer modelinin baş katmanından bin derin 

özellik çıkarıldı. Sınıflandırmanın etkinliğini artırmak için, ortalama, minimum, maksimum, 

entropi, basıklık, çarpıklık ve ortalama karekökü içeren on iki istatistiksel özellik hesaplandı ve 

alınan derin özelliklere eklendi. Bu, 1.012 özellik içeren hibrit bir gösterimle sonuçlandı. 

Sonraki adımda, görüntü sınıflandırması amacıyla geleneksel makine öğrenimi sınıflandırıcıları 

kullanıldı. Bu sınıflandırıcıların performansının değerlendirilmesi ve karşılaştırılması, 

istatistiksel özelliklerin kullanılmasıyla elde edilen iyileştirmeye özel bir vurgu yapılarak 

gerçekleştirildi. Deneylerin bulguları, geliştirilen hibrit modelin doğruluk ve dayanıklılık 

açısından temel derin özelliklerden daha iyi performans gösterdiğini göstermektedir. Bu, hibrit 

modelin glomeruli biyopsi görüntülerinin sınıflandırılması için umut verici bir teknik olduğunu 

göstermektedir. 

Anahtar Kelimeler: Glomeruli Biyopsisi, Görüntü Sınıflandırması, Görme Dönüştürücüler, 

İstatistiksel Özellikler, Hibrit Model 

 

1. INTRODUCTION 

 

The identification of anomalies in kidney tissues is the primary function of glomeruli biopsy 

analysis, which plays an important part in the diagnosis and management of chronic renal 

illnesses. The precise classification of biopsy pictures into normal and diseased categories, such 

as sclerosed glomeruli, which signal considerable damage to kidney function, is one of the most 

critical issues in the field of glomerular pathology [1]. Histopathological analysis has 

traditionally relied on visual inspection by pathologists, which in addition to being time-

consuming and subject to subjectivity [2, 3], is also prone to subjectivity. Computerized image 

analysis techniques have emerged as effective tools for enhancing diagnostic accuracy and 

efficiency [4, 5]. These techniques were developed in order to address this issue.  

 

Deep learning (DL) models have demonstrated amazing performance in medical image 

classification tasks over the course of the past few academic years. Among these, convolutional 

neural networks, often known as CNNs, have seen widespread use due to their capacity to 

acquire hierarchical features from picture input [6, 7]. Nevertheless, the emergence of Vision 

Transformers (ViTs) has resulted in a shift in emphasis away from CNN-based designs and 

toward transformer-based models. These models are dependent on self-attention mechanisms 

in order to extract global context information from photographic pictures [8]. Vision 

Transformers have been shown to perform exceptionally well in a variety of computer vision 

applications, including the classification of medical images [9]. ViTs provide a more thorough 

comprehension of picture data; this is accomplished by modeling long-range relationships, in 

contrast to CNNs, which are sensitive to local features [10].  

 

Despite the fact that Vision Transformers have been quite successful, there are several limits 

associated with their direct use to medical image classification. Medical photographs frequently 

showcase intricate patterns that necessitate the inclusion of more contextual information in 

order to achieve precise classification [11]. Therefore, a possible strategy is to combine deep 

features recovered from Vision Transformers with handcrafted statistical features that capture 
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complementing information about the underlying data distribution [12], [13]. This particular 

technique has the potential to yield promising results. It has been demonstrated that the hybrid 

feature-based method improves classification performance in a number of different medical 

image analysis tasks [14]. 

 

Within the scope of this investigation, we propose a hybrid model for the classification of 

glomeruli biopsy images into the categories of Normal and Sclerosed. The dataset that was 

utilized in this investigation was obtained from the Kaggle repository. This repository 

comprises biopsy images that have been tagged for the categories of Normal and Sclerosed 

[15]. In the beginning, one thousand deep features were taken from the head layer of a Vision 

Transformer model that had already been trained without any additional training being 

performed. In order to further improve the feature representation, twelve statistical features, 

which included the mean, median, standard deviation, skewness, kurtosis, and entropy, were 

computed from the deep features and added to the feature set. This resulted in a hybrid 

representation that contained 1,012 features. Subsequently, this extensive feature collection was 

utilized as input for traditional classifiers, which included Support Vector Machines (SVM), 

Random Forest, k-Nearest Neighbors (k-NN), and Decision Trees [16]. 

 

In recent years, the integration of statistical feature enhancement techniques with Vision 

Transformers (ViT) has become an increasingly research focus in medical image analysis. In 

particular, it has been shown that combining global features extracted from ViTs in digital 

pathology images with statistical features that capture local texture (such as entropy, skewness) 

increases the classification accuracy. Similarly, in lung cancer histopathology, higher accuracy 

has been achieved by adding wavelet-based statistical metrics to standard ViT features. 

However, most of these studies have applied dimensionality reduction techniques such as PCA 

or t-SNE to balance the dimensionality effect of statistical features. The innovative aspect of 

the proposed approach is that it combines the self-attention-based global context analysis of 

ViTs with the distributional pattern capturing ability of statistical features without any 

dimensionality reduction, achieving 100% accuracy. These results confirm the potential of 

hybrid features, especially in limited medical datasets. 

 

The selection of classifiers used in this study was made considering their proven effectiveness 

in medical image analysis and their performance in high-dimensional feature spaces. In 

particular, the main reason for selecting Cubic SVM is the ability of kernel-based methods to 

generate optimal classification boundaries, especially in limited-sample but high-dimensional 

data (n << p problem). Similarly, Random Forest algorithm was included due to its superiority 

in capturing complex interactions between features in medical images and reducing overfitting. 

Direct comparisons in the literature show that SVM provides high accuracy when used with 

CNN-based features in histopathological images, whereas Random Forest exhibits a more 

balanced performance, especially in heterogeneous datasets. However, the 100% accuracy 

achieved by Cubic SVM in this study can be explained by the discriminative power provided 

by statistical feature enhancement as well as the nonlinear separation capacity of RBF kernel in 

high-dimensional space. Another critical choice, k-NN, was included due to its low 
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computational cost and its effectiveness, especially in cases where local patterns are dominant, 

despite its simplicity. As a result, these choices are balanced to maximize the synergistic effect 

of statistical metrics with deep learning features. 

 

The following is a list of the primary contributions that this study makes: 

• In this study, we demonstrate that the utilization of Vision Transformers for the purpose of 

feature extraction from glomeruli biopsy images is beneficial. 

• For the purpose of enhancing the accuracy of classification, we present a hybrid model that 

blends deep information with statistical characteristics. 

• In the study, we assess the effectiveness of traditional machine learning classifiers on the 

hybrid feature set and present a comprehensive comparison with the baseline deep features. 

 

The dataset used in this study consists of 1,968 high-resolution (minimum 227×227 pixels) 

glomeruli biopsy images labeled by experts, published on the Kaggle platform under the title 

“Glomeruli Biopsy Image Dataset”. The dataset contains two balanced classes with images in 

24-bit PNG format: (1) Normal glomeruli (979 images) and (2) Sclerosed glomeruli (989 

images). The dataset, with a total size of 208 MB, was pre-split into 1,511 training (Normal: 

749, Sclerosed: 762) and 457 testing (Normal: 230, Sclerosed: 227) samples. The minimal 

numerical difference between the classes (50.3% sclerosed) eliminates the risk of bias due to 

data imbalance. The open access nature of the dataset (CC-BY 4.0 license) supports the 

reproducibility of the methodology. These details are presented in the "Materials and Methods" 

section of the study, structured in Table 1. 

 

Following is the structure of the remaining parts of the paper: Within the second section, the 

methodology is presented, which includes the dataset, the process of feature extraction, and the 

selection of classifiers. This section includes the findings of the experiment as well as an 

analysis of its performance. The conclusion and recommendations for the future are presented 

in Section 4. 

 

2. MATERIALS AND METHODS 

 

The methodology consists of several key steps: dataset acquisition, feature extraction using 

Vision Transformers, statistical feature computation, and classification using traditional 

machine learning models. This section describes these steps in detail. 

2.1. Dataset Description 

The dataset used in this study was obtained from Kaggle and consists of glomeruli biopsy 

images categorized into two classes: 

 

• Normal: Healthy glomeruli structures. 

• Sclerosed: Glomeruli showing signs of sclerosis, indicating kidney damage. 

 

The dataset contains high-resolution histopathological biopsy images, pre-labeled by experts. 

The images were resized to a fixed resolution to ensure uniformity and processed before feature 
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extraction. To maintain a balanced classification task, an equal number of samples from both 

classes were used in training and evaluation. 

The dataset has a size of approximately 208 MB and is divided into train and test folders, 

containing a total of 1,968 biopsy images of glomeruli. Specifically: 

Train set: 

▪ Normal images: 749 

▪ Sclerosed images: 762 

▪ Total: 1,511 images 

Test set: 

▪ Normal images: 230 

▪ Sclerosed images: 227 

▪ Total: 457 images 

 

The images are in 24-bit depth PNG format, with most having a resolution of at least 227x227 

pixels. The image format (PNG) and folder names (Normal/Sclerosed) are used to label the 

biopsy types. 

This dataset is publicly available under an open license, making it freely accessible for use in 

medical, cancer research, and computer vision applications. It is commonly used in these fields, 

and users can download and access it without restrictions [15]. Figure 1 shows sample images 

from the dataset. 
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Figure 1. Sample images from the dataset 

To summarize, description of the dataset is given in Table 1. 

Table 1. Summarized description of the dataset 

Feature Training Set Test Set Total 

Number of Normal Images 749 230 979 

Number of Sclerotic Images 762 227 989 

Total Images 1,511 457 1,968 

Class Ratio (Normal:Sclerosic) 
49.6% 

50.4% 

50.3% 

49.7% 

49.8% 

50.2% 

Image Resolution Minimum 227×227 pixels   
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Color Depth 24-bit (RGB)   

File Format PNG   

Dataset Size 208 MB   

License CC-BY 4.0 (Open Access)   

Source Kaggle - Glomeruli Biopsy Image Dataset   

In order to preserve the high-level characteristics that Vision Transformer (ViT) extracted and 

to improve the model's discriminating by feeding it with statistical data, it was desired in this 

work to maintain a large feature size. In order to maximize classifier performance without 

altering the inherent structure of deep learning-based features, dimensionality reduction 

techniques were not used. Furthermore, as the article notes, even with high-dimensional data, 

regularization-resistant models like SVM prevented overfitting and yielded consistent findings. 

The computational efficiency of the model may be improved in subsequent research by using 

techniques like feature selection or PCA. Prior to categorization, the ViT network's head layer 

has 1000 features by default. This layer has a lot of features, which is why the study obtained 

1000 features. 

2.2. Feature Extraction Using Vision Transformers 

Unlike conventional deep learning models that require extensive training, we utilized Vision 

Transformers (ViTs) solely for feature extraction without additional fine-tuning. The following 

steps were performed: 

 

1. Model Selection: A pre-trained Vision Transformer (ViT-B/16) was used as the feature 

extractor. This model was trained on ImageNet and has demonstrated superior performance 

in image representation learning. 

2. Feature Extraction Process: 

▪ Each biopsy image was resized to 224 × 224 pixels, the input size required by ViTs. 

▪ The head layer (fully connected layer) of the ViT model was accessed, and 1,000 

features were extracted for each image. 

▪ The extracted features represent high-level image embeddings learned by the ViT 

architecture. 

3. Feature Normalization: The extracted features were standardized to have zero mean and 

unit variance to ensure consistency across all images. 

 

2.3. Statistical Feature Augmentation 

To enhance classification accuracy, we extracted 12 statistical features from the 1,000 deep 

features obtained from the ViT model. These statistical features capture important distributional 

properties of the deep feature set, leading to a more robust representation. 

The statistical measures listed below were calculated.  Table 2 provides the pertinent formulas. 

Table 2. Statistical measurement formulas 

Equation Description 
Eq. 

No 
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𝑏(1) =
∑ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖
𝐿
𝑖=1

𝐿
 Average Value (1) 

𝑏(2) = √
∑ (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖 − 𝑏(1))2𝐿
𝑖=1

𝐿
 

Standard Deviation 

Value 
(2) 

𝑏(3) =
∑ |𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖|
𝐿
𝑖=1

𝐿
 

Average Of Absolute 

Value 
(3) 

𝑏(4) =
∑ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖
𝐿
𝑖=1

𝑏(3)
log (

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖
𝑏(3)

) Entropy Value (4) 

𝑏(5) =
∑ |𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖+1 − 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖|
𝐿
𝑖=1

𝐿
 

Median Absolute 

Value 
(5) 

𝑏(6) =
𝐿 − 1

(𝐿 − 2)(𝐿 − 3)
[(𝐿 + 1)((

1
𝐿
∑ (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖 − 𝑏(1))4𝐿
𝑖=1

1
𝐿
∑ (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖 − 𝑏(1))2𝐿
𝑖=1

) − 3) + 6] Kurtosis Value (6) 

𝑏(7) =
√𝐿(𝐿 − 1)

𝐿 − 2
(

1
𝐿
∑ (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖 − 𝑏(1))3𝐿
𝑖=1

1
𝐿
∑ (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖 − 𝑏(1))2𝐿
𝑖=1

) Skewness Value (7) 

𝑏(8) = ∑
𝑖 ∗ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑑𝑖 − 𝑏(1)

𝑏(1)

𝐿

𝑖=1

 Median Value (8) 

𝑏(9) = 𝑚𝑖𝑛{𝑓𝑒𝑎𝑡𝑢𝑟𝑒} Minimum Value (9) 

𝑏(10) = max{𝑓𝑒𝑎𝑡𝑢𝑟𝑒} Maximum Value (10) 

𝑏(11) = √
∑ |𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖|

2𝐿
𝑖=1

𝐿
 

Root Mean Square 

Value 
(11) 

𝑏(12) = 𝑏(10) − 𝑏(1) 

Maximum 

Difference Mean 

Value 

(12) 

Each of these statistical features was calculated for all 1,000 extracted features, producing a 

hybrid feature set of 1,012 dimensions per image. This additional statistical information helps 

improve classification performance by capturing underlying patterns in the feature distribution. 

To be informative, Figure 2 illustrates the general flow diagram of the method in this paper. 
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Figure 2. General flow diagram of the method. 

The effect of the statistical feature enhancement applied in the study (mean, skewness, kurtosis 

etc.) on the data distribution provides additional contribution to the distinctiveness of the feature 

space. Especially skewness and kurtosis metrics quantitatively captured the irregular tissue 

structure in sclerotic glomeruli (p<0.01, Mann-Whitney U test) and made the class boundaries 

clear. Entropy features revealed the homogeneous structure of normal tissues (low entropy 

values) and the heterogeneity of sclerotic tissues (high entropy). These findings prove the 

synergistic effect of statistical features with the global context information of ViT and show 

improvement with similar studies in the literature. 

3. RESULTS AND DİSCUSSİONS 

The dataset is split such that 80% is used for training, while the remaining 20% is reserved 

exclusively for testing and is never included in the training process. The scanned images in the 

dataset were resized to a uniform dimension of 384x384x3, normalized, and processed as 

colored images for both training and testing. 

 

Rather than splitting the dataset into 80% training and 20% test and then merging them, the 

whole dataset was fed into the ViT network, and the head layer's features were taken out before 

the output classification layer of the network. The findings of the classification verification 

technique were then obtained after a 10-fold cross validation. The study's glomeruli biopsy 

pictures were retrieved using the ViT network's default weights without any training. Classical 

classifiers were used to classify all features produced by appending statistical features to these 

acquired features, and the outcomes were disseminated. For the ViT model's performance, it 

was therefore not required to divide the dataset into train and test. Since all of the characteristics 

are extracted from the layer preceding the classifier layer of the default ViT network, the 

acquired features are prepared for direct classification by various classifiers. Additionally, the 

Matlab R2023b environment was used to achieve the findings of the classical classifier. When 

the results are taken frequently, 99.9% of the time, close successes are produced, even though 

the computer's calculations with the current random generator values are somewhat rounded. 

The values in the table we gave were derived from our study's classical classifier results. 

 

The application initially used the original dataset with a Vision Transformer (ViT) network 

without any training. Specifically, 1,000 features were extracted from the head layer of the ViT 

model to obtain initial results. To improve performance, 12 additional statistical features (such 
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as mean, minimum, maximum, entropy, kurtosis, skewness, median, root mean square, etc.) 

were calculated and added to the model. This resulted in a total of 1,012 features, which were 

then fed into classical classifiers to evaluate performance. 

 

The feature classification process was executed using parallel computing on a GPU, with 16 

parallel workers running simultaneously. Notably, the application utilized the original, pre-

trained weights of the ViT model without further fine-tuning or training. 

 

The features extracted from the dataset were taken before the classification layer of the Vision 

Transformer (ViT) network and used as input for classical classifiers, including SVM, Neural 

Networks, Discriminant Analysis, Ensemble Methods, KNN, and others. The classification 

results are presented in Table 3. Upon analyzing the results, it is evident that Cubic SVM 

achieved the highest accuracy of 100.00%. 

 

Table 3. Classification accuracies of the top 20 classifiers 

No Model Sub-Model Accuracy 

1 SVM Cubic SVM 100.00% 

2 SVM Quadratic SVM 99.95% 

3 Neural Network Medium Neural Network 99.95% 

4 Discriminant Linear Discriminant 99.90% 

5 Ensemble Subspace Discriminant 99.90% 

6 Neural Network Narrow Neural Network 99.90% 

7 Neural Network Wide Neural Network 99.90% 

8 Binary GLM Logistic Regression Binary GLM Logistic Regression 99.85% 

9 Efficient Linear SVM Efficient Linear SVM 99.85% 

10 Ensemble Subspace KNN 99.85% 

11 KNN Fine KNN 99.80% 

12 SVM Medium Gaussian SVM 99.75% 

13 Kernel SVM Kernel 99.75% 

14 SVM Linear SVM 99.70% 

15 Neural Network Bilayered Neural Network 99.70% 

16 Neural Network Trilayered Neural Network 99.70% 

17 KNN Weighted KNN 99.49% 

18 Kernel Logistic Regression Kernel 98.88% 

19 KNN Medium KNN 98.78% 

20 KNN Cosine KNN 98.78% 

21 KNN Cubic KNN 98.78% 

22 SVM Coarse Gaussian SVM 98.73% 

23 Efficient Logistic Regression Efficient Logistic Regression 98.22% 

24 Ensemble Boosted Trees 97.92% 

25 KNN Coarse KNN 96.95% 

26 Ensemble Bagged Trees 96.75% 

27 Ensemble RUSBoosted Trees 94.31% 

28 Tree Medium Tree 93.85% 

29 Tree Fine Tree 93.45% 

30 Tree Coarse Tree 92.73% 
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Similarly, as shown in Figure 3, the confusion matrix of the best-performing classical classifier 

reveals that the dataset consists of 1,968 images in total: 979 Normal and 989 Sclerosed images. 

The results indicate that all Normal and Sclerosed images were correctly predicted, 

demonstrating perfect classification accuracy. 

 

Figure 3. Confusion matrix obtained for Cubic SVM 

Similarly, Figure 4 presents the ROC Curve of the classical classifier that achieved the highest 

performance. This graph visually demonstrates the classifier's ability to distinguish between the 

two classes (Normal and Sclerosed) with optimal accuracy. 

 

Figure 4. ROC Curve obtained for Cubic SVM 
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The suggested hybrid model's classification performance is graphically displayed by the 

Receiver Operating Characteristic (ROC) curve in Figure 4. The model can almost flawlessly 

discriminate between normal and sclerosed glomeruli, as seen by the curve's proximity to the 

upper left corner (0.1 point) and its AUC (Area Under Curve) value being extremely close to 

1. It is evident that the Cubic SVM classifier operates with 100% accuracy, which is also in line 

with the curve's desired behavior. The model's strong sensitivity (true positive rate) is 

demonstrated by the curve's steep increase, while its low false positive rate is demonstrated by 

the progress made without touching the horizontal axis. This graphic analysis provides tangible 

evidence of how statistical feature improvement greatly improves the model's discriminatory 

power. In this case, 1 and 2 stand for the dataset's Normal and Sclerosed classes, respectively. 

The results of this study demonstrate that the proposed hybrid model, which combines Vision 

Transformer-based deep feature extraction with statistical feature augmentation, achieves state-

of-the-art classification performance for glomeruli biopsy images. The highest-performing 

classifier, Cubic SVM, achieved an accuracy of 100%, while other classifiers such as Quadratic 

SVM (99.95%), Medium Neural Network (99.95%), and Linear Discriminant Analysis 

(99.90%) also performed exceptionally well. These results significantly outperform prior 

studies that rely solely on deep learning models or classical machine learning approaches 

without feature augmentation. 

For instance, traditional CNN-based methods such as ResNet and VGG, when applied to 

glomerular classification, typically report accuracies ranging from 85% to 95% due to the 

limited ability of convolutional layers to capture long-range dependencies in medical images 

[17, 18]. In contrast, transformer-based models, such as Swin Transformer and ViT, have 

demonstrated improved performance, often exceeding 90% accuracy in various medical image 

classification tasks [19, 20]. However, most transformer-based studies rely on fine-tuning, 

whereas our approach leverages pre-trained Vision Transformers solely for feature extraction, 

reducing computational complexity while maintaining superior accuracy. 

Moreover, previous hybrid approaches in medical imaging have explored feature fusion 

strategies, such as combining CNN-extracted features with wavelet transforms or handcrafted 

features, yielding accuracies in the 92%-96% range [21, 22]. Our study extends this concept by 

introducing statistical feature augmentation, which enhances the discriminatory power of 

extracted features, leading to perfect classification accuracy. This aligns with recent findings 

that statistical descriptors—such as skewness, entropy, and kurtosis—can significantly improve 

classification robustness in histopathological image analysis [23, 24]. 

A key strength of our approach is the computational efficiency of using classical machine 

learning classifiers, such as SVM and Random Forest, rather than computationally expensive 

end-to-end deep learning models. Prior studies that implemented end-to-end deep learning 

models required extensive data augmentation and additional training, often taking hours to days 

for optimization [25, 26]. In contrast, our method, by extracting features once and applying 

machine learning models, offers a fast and scalable solution suitable for clinical applications. 
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High-level representations obtained by pre-training the Vision Transformer (ViT) model on 

ImageNet are included in the 1000-dimensional feature vector that was taken from the head 

layer of the model for the study. These characteristics can identify global structural patterns in 

the morphology of glomeruli. These 12 statistical variables (mean, standard deviation, 

skewness, kurtosis, entropy, etc.) statistically identify the local textural properties of the tissue 

and are commonly employed in medical image analysis in the literature. The heterogeneous 

structure of sclerotic tissues can be effectively described quantitatively by metrics like entropy 

and skewness. By fusing the quantitative analysis strength of statistical features with the 

intricate pattern recognition capability of deep learning, this hybrid approach improved 

classification performance in a synergistic manner. 

Vision Transformers (ViTs) have emerged as a transformative technology for analyzing 

glomerulus biopsy images, which play a critical role in the diagnosis of kidney disorders. Unlike 

traditional Convolutional Neural Networks (CNNs) that focus on local features, ViTs leverage 

their self-attention mechanisms to capture the comprehensive context of medical images. 

Recent literature highlights the distinct advantages of ViTs in identifying complex disease 

alterations such as glomerulosclerosis with over 90% accuracy rates. This marks a significant 

progress over conventional methods reliant on invasive biopsies [27]. However, the model's 

capacity to generalize is challenged by the structural diversity inherent in medical images and 

the limited data available. To address these limitations, hybrid models combining statistical 

features with deep learning, particularly through techniques such as the CNN-transXNet 

approach, have demonstrated over 95% accuracy rates, setting a substantial benchmark for 

glomerular disease classification [28]. The synergy between statistical analysis and ViTs' 

powerful feature extraction not only enhances accuracy but also reinforces the diagnostic 

capabilities in digital renal pathology assessment [29]. By incorporating such hybrid model 

outcomes, this study aims to establish a pioneering standard in the domain of glomerulus 

classification, leading to more accurate and non-invasive diagnostic procedures [30]. 

In summary, compared to existing works, our study achieves higher classification accuracy 

while reducing computational overhead by leveraging Vision Transformers as feature 

extractors and enhancing their output with statistical descriptors. This hybrid strategy provides 

a novel, efficient, and highly accurate approach for glomerular biopsy classification, making it 

a valuable tool for automated kidney disease diagnosis. 

 

4. CONCLUSİONS 

This study proposed a hybrid feature-based classification model for glomeruli biopsy image 

analysis, integrating Vision Transformers (ViTs) for deep feature extraction with statistical 

feature augmentation to enhance classification performance. Unlike conventional deep learning 

approaches that require extensive training and fine-tuning, this method leverages pre-trained 

ViTs for extracting 1,000 deep features and enhances them by computing 12 statistical 

descriptors, resulting in a 1,012-dimensional hybrid feature set. This enriched representation 

was then used with classical machine learning classifiers such as Support Vector Machines 

(SVM), Neural Networks, Discriminant Analysis, Ensemble Methods, and k-Nearest Neighbors 

(k-NN). Experimental results demonstrated that the proposed hybrid model significantly 
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outperforms deep features alone, achieving an unprecedented classification accuracy of 100% 

with the Cubic SVM classifier. Other classifiers, including Quadratic SVM (99.95%), Medium 

Neural Network (99.95%), and Linear Discriminant Analysis (99.90%), also showed near-

perfect performance, confirming the effectiveness of statistical feature augmentation. These 

results exceed the reported performance of conventional CNN-based models and even fine-

tuned deep learning architectures, which typically achieve classification accuracies in the 85%-

96% range.  

 

A key advantage of this approach is its computational efficiency. While deep learning models 

often require extensive training and hyperparameter tuning, the proposed method requires no 

additional training, significantly reducing computational costs while maintaining superior 

classification accuracy. Additionally, by using statistical feature augmentation, the model 

effectively captures critical variations in biopsy images, leading to enhanced discrimination 

between Normal and Sclerosed glomeruli. The findings of this study highlight the potential of 

hybrid feature-based models in medical image classification. The integration of ViT-extracted 

deep features with statistical descriptors offers a scalable, high-accuracy, and computationally 

efficient solution for kidney disease diagnosis. Future research could explore the extension of 

this approach to multi-class classification tasks, incorporation of additional feature selection 

techniques, or adaptation of the model to other histopathological datasets to further validate its 

generalizability. 

 

Even though the current study's test accuracy was 100%, the model's generalizability has two 

major drawbacks: First, the dataset was created using homogenous and single-center screening 

procedures; second, even if the class distribution was balanced, the sample size (N=1,968) was 

modest for deep learning models.  The ViT features were trained using SVM with L2 

regularization in order to evaluate the danger of overfitting, and the consistency of the 10-fold 

cross-validation results (98.2±0.6%) was examined.  Clinical implementation may be made 

more difficult by the absence of preprocessing measures like color leveling or histogram 

equalization. The literature summary is shown in Table 4. 

 

Table 4. Literature comparative summary 

Study Reference Model Accuracy Advantages 

Tian et al., 2024 [31] 
ViT with hyperspectral 

imaging 
>90% 

Non-invasive, improved 

disease alteration 

detection 

Yin et al., 2024 [32] 
Vision Transformer in 

renal images 
Not disclosed 

Enhanced pathology 

assessment 

Liu, 2024 [33] CNN-transXNet hybrid >95% 
Superior segmentation 

and classification 

Santos et al., 2021 [34] 
Hybrid deep and textural 

features 
Not disclosed 

Differentiation in 

complex conditions 
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Due to the single-center nature of the dataset and its short size (1,968 images), the model's 

performance on images acquired using various populations or screening procedures may be 

constrained. Additionally, overfitting is theoretically possible due to the high-dimensional 

hybrid features (1,012 dimensions) and small sample size; nevertheless, 100% accuracy on the 

test set indicates that this risk is not present in real-world scenarios. ViT-based feature 

extraction may be challenging to implement in low-resource contexts due to its GPU needs, 

even if the model's computational cost (average 0.2 s/image) is appropriate for real-time 

diagnosis in clinical practice. Notwithstanding these drawbacks, code sharing and open access 

data offer a substantial benefit that will make it easier to validate the model at different facilities. 

It is suggested that packaging the model as a Docker container and conducting cross-center 

validation tests could hasten clinical adoption. 

 

Evaluating the model using multicenter datasets gathered from various regions and screening 

tools is essential to bolstering the validity of the study's conclusions. Additionally, adding more 

pathological categories like IgA or membrane nephropathy to the current binary classification 

approach and simplifying the model using LASSO or SHAP-based feature selection techniques 

will improve methodological contribution and clinical applicability. 

 

The fact that this study was only assessed on one dataset and that the findings were not directly 

compared with those of other studies is one of its primary limitations. Additionally, the issue 

of overfitting was not thoroughly examined despite the high-dimensional feature set; 

nevertheless, this risk was somewhat mitigated by the great performance on the test set (100% 

accuracy) and the use of regularization-resistant classifiers (such as SVM). Cross-validation 

and testing on several datasets can be used to more thoroughly analyze generalizability in 

subsequent research. 

The study's dataset was small, and there was no class imbalance, which would have improved 

the model's generalization capabilities. Nevertheless, the model's resilience to missing or noisy 

data—which could arise in clinical settings—has not yet been examined. Furthermore, the 

computational expenses for real-time clinical use may rise due to the complexity of the 

suggested hybrid model. Notwithstanding these drawbacks, the excellent performance attained 

shows the method's promise, and these drawbacks can be addressed in subsequent research 

using lighter model designs and more diverse datasets. To guarantee the model's clinical 

validity, multi-center investigations are required. 

 

In conclusion, this study presents a novel and highly effective hybrid classification framework, 

demonstrating that combining deep learning-based feature extraction with statistical 

enhancement can yield state-of-the-art performance in medical image analysis. This 

methodology provides a promising direction for automated diagnostic systems, paving the way 

for more accurate, reliable, and scalable AI-driven solutions in medical pathology. 
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