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Abstract

This paper aims to improve the analysis of a stochastic SIVR epidemic model with an imperfect
vaccination process, taking into consideration the fact that a fraction of vaccinated individuals becomes
susceptible to infection. The uniqueness of the positive solution is shown. Further, we obtain the
threshold of the stochastic SIVR model which determines whether the epidemic will persist or die
out. In the extinction case, we prove that the solution converges almost surely toward the disease-free
equilibrium of the deterministic SIVR model. Some numerical illustrations are given to confirm our
theoretical results.
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1 Introduction

Mathematical treatment using differential equations is largely used to forecast the spread of
infectious diseases. This approach consists of dividing the total population within which the
diseases spread, into several compartments [1–8]. Most compartmental epidemic models descend
from the works [1–3]. To control the spread of diseases, quarantine and vaccination are commonly
used. Vaccination is considered to be the most effective strategy to mitigate or stop the spread of
infectious diseases and reduce their associated morbidity and mortality rates [9–11].
In deterministic models, the indicator that measures the ability of an infectious disease to spread
within a population is called the "basic reproduction number". It is considered as the average
number of new infections caused by an infected individual in a fully susceptible population at
the onset of contamination [12]. Let R0 = β

µ+γ be the basic reproduction number of model (1)

and Ra,b = R0
µ+b+ac
µ+a+b the basic reproduction number in a population such that a proportion had
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been vaccinated and by Ra,0 the value of Ra,b when b = 0. If Ra,0 < 1, the system (1) has a unique

disease-free equilibrium (w0, x0, y0, z0) =
(

µ
µ+a , 0, a

µ+a , 0
)

which is globally asymptotically stable.
If Ra,0 > 1, model (1) presents a bifurcation leading to the existence of multiple endemic equilibria
[13, 14].
It is known that epidemic models are inevitably affected by random environmental disturbance
(see [15–17]). For this reason, Tornatore et al. [18] formulated and studied various aspects of
stochastic stability related to the stochastic counterpart of system (1), obtained by substituting the
contact rate β in (1) by β + σ

dB(t)
dt , where B(t) is a standard Brownian motion on a stochastic basis

(Ω, F , (Ft)t≥0, P) with intensity σ 2 > 0.
In this paper, we consider the following deterministic epidemic model

dw = [µ − (µ + a)w − βxw + by] dt,

dx = [β(w + cy)x − (µ + γ)x] dt,

dy = [aw − cβxy − (µ + b)y] dt,

dz = [γx − µz] dt,

(1)

where w, x, y and z denote the number of susceptible, infected, vaccinated, and recovered individ-
uals, respectively.
The other parameters involved in system (1) are defined below:
µ : The natural birth and death rate .
γ : The recovery rate of infected individuals.
a : The rate at which susceptible individuals become vaccinated.
b: A fraction of vaccinated individuals becoming susceptibles.
c: A positive parameter satisfying: 0 ≤ c ≤ 1, with c = 0 means that the vaccine is perfectly

effective, and c = 1 implies that the vaccination has no impact.
The concerned stochastic model is defined by the following stochastic differential system

dw = [µ − (µ + a)w − βxw + by] dt − σxwdB(t),

dx = [β(w + cy)x − (µ + γ)x] dt + σ(w + cy)xdB(t),

dy = [aw − cβxy − (µ + b)y] dt − σcxydB(t),

dz = [γx − µz] dt.

(2)

In case b = 0, conditions guaranteeing the persistence and extinction of model (2) are established
in relation with the threshold RS

0 = 1
µ+γ [β µ+ac

µ+a − σ 2

2 (µ+ac
µ+a )

2] (see [19]).
In this paper, we are going to improve the analysis of (2) by taking into consideration the existence
of the parameter b and we will determine conditions ensuring the extinction and persistence of
the disease.

Remark 1 Tornatore et al. [20] have shown the existence of a positive global solution and they have studied
the stochastic stability of the disease-free equilibrium related to the following model

dw = [µ − (µ + a)w − βxw + by + γx] dt − σxwdB(t),

dx = [β(w + cy)x − (µ + γ)x] dt + σ(w + cy)xdB(t),

dy = [aw − cβxy − (µ + b)y] dt − σcxydB(t).

(3)

At first sight, it seems that the two models (2) and (3) are the same, but there exists a systematic difference.
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In model (2), the parameter γ signifies a fraction of infected individuals who come back into the recovered
class, whereas in model (3) it signifies a fraction of infected individuals whose goes back in the susceptible
class.

For simplicity, we define

RS
b =

1
µ + γ

[
β

µ + b + ac
µ + a + b

−
σ 2

2

(µ + b + ac
µ + a + b

)2
]

,

⟨ h⟩ =
1
t

∫ t

0
h(s) ds,

and

R4
+ =

{
(x1, ..., x4) ∈ R4 : xi ⩾ 0, i = 1, ..., 4

}
.

The rest of the paper is organized as follows. In Section 2, we prove the existence of a global
positive solution for system (2). In Section 3, we present several lemmas that will be used in the
following sections. Section 4 is devoted to establishing conditions under which the disease goes
extinct exponentially. Moreover, the solution of system (2) converges almost surely (abbreviated
as a.s.) to the disease-free equilibrium (wb, xb, yb, zb) =

(
µ+b

µ+a+b , 0, a
µ+a+b , 0

)
of the deterministic

system (1), when the extinction conditions are fulfilled. If the condition RS
b > 1 holds, we show

that the disease will be persistent almost surely, in Section 5. In the penultimate section (Section 6),
numerical simulations are given to confirm the theoretical results. The paper ends with a brief
conclusion Section 7.

2 Well-posedness of model (2)

First of all, we define the subset

∆ = { (w, x, y, z) : w ≥ 0, x ≥ 0, y ≥ 0, z ≥ 0, w + x + y + z = 1} .

Since

d(w(t) + x(t) + y(t) + z(t)) = (µ − µ(w(t) + x(t) + y(t) + z(t)))dt,

then

w(t) + x(t) + y(t) + z(t) = 1 + (w(0) + x(0) + y(0) + z(0)− 1)e−µt.

Therefore, ∆ is a positive invariant set for the stochastic model (2).

Theorem 1 Let (w(0), x(0), y(0), z(0)) ∈ ∆, then the system (2) admits a unique positive solution
(w(t), x(t), y(t), z(t)) on t ≥ 0.

Proof Since the coefficients of system (2) satisfy the local Lipschitz property, then for any
(w(0), x(0), y(0), z(0)) ∈ R4

+, there is unique local solution (w(t), x(t), y(t), z(t)) ∈ R4
+ which

may blow up at time τe, such that t ∈ [0, τe) (see [21]). To show this solution is global, we only
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need to prove that τe = ∞ a.s. Let ϵ0 > 0 such that w(0), x(0), y(0), z(0) > ϵ0. For each ϵ ≥ ϵ0,
we define the stopping times

τϵ = inf {t ∈ [0, τϵ) : w(t) ≤ ϵ or x(t) ≤ ϵ or y(t) ≤ ϵ or z(t) ≤ ϵ} ,

τ = lim
ϵ→0

τϵ = inf {t ∈ [0, τϵ) : w(t) ≤ ϵ or x(t) ≤ ϵ or y(t) ≤ ϵ or z(t) ≤ ϵ} .

Let us consider the twice differentiable function π defined, for X = (w, x, y, z) ∈ ∆, by

π(X) = − ln w − ln x − ln y − ln z.

Applying Itô formula to π, we obtain for all t ≥ 0, s ∈ [0, t ∧ τϵ],

dπ(X(s)) =
[
−

µ

w(s)
+ βx(s) + cβx(s)− β(w(s) + cy(s))−

aw(s)
y(s)

−
γx(s)
z(s)

]
ds

+

[
1
2

σ2x2(s) +
1
2

σ2(w(s) + cy(s))2 +
1
2

σ2c2x2(s) + 4µ + a + γ

]
ds

+ σ
[
(1 + c)x(s)− (w(s) + cy(s))

]
dB(s)

≤
[
(1 + c)β +

3
2

σ2 + 4µ + a + γ

]
ds + σ

[
(1 + c)x(s)− (w(s) + cy(s))

]
dB(s)

=D.ds + σ
[
(1 + c)x(s)− (w(s) + cy(s))

]
dB(s).

Integrating both sides of the above inequality from 0 to t ∧ τϵ followed by taking the expectation
E on both sides, one obtains

E(π(X(t ∧ τϵ))) ≤ π(X(0)) + DE(t ∧ τϵ) ≤ π(X(0)) + Dt.

Since π(X(t ∧ τϵ)) > 0, then

E [π(X(t ∧ τϵ))] = E
[
π(X(t ∧ τϵ))1{τϵ≤t}

]
+ E

[
π(X(t ∧ τϵ))1{τϵ>t}

]
≥ E

[
π(X(t ∧ τϵ))1{τϵ≤t}

]
,

where 1A is the indicator function of set A. Note that there are some components of X(τϵ) equal
to ϵ. Therefore, π(X(τϵ)) ≥ − ln ϵ. Thus

E [π(X(t ∧ τϵ))] ≥ E
[
π(X(t ∧ τϵ))1{τϵ≤t}

]
≥ −P(τϵ ≤ t) ln ϵ. (4)

Hence

P(τϵ ≤ t) ≤ −
π(X(0)) + Dt

ln ϵ
.

Letting ϵ to 0, we obtain for all t > 0, P(τ ≤ t) = 0, which means that P(τ = ∞) = 1. As τ ≤ τe,
then τ∞ = τe = ∞ a.s. ■

In the following section, we present two lemmas that will be useful in the upcoming sections.
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3 Toolbox

Lemma 1 Let
(
w(t), x(t), y(t), z(t)

)
be a solution of system (2) with

(
w(0), x(0), y(0), z(0)

)
∈ ∆ .

Then

⟨w + cy⟩ = µ + b + ac
µ + a + b

− ⟨G1⟩ + ⟨φ⟩ − σ (1 − c)K1(t),

where

G1(t) =c x + c γ

∫ t

0
x(s)e−µ (t−s)ds + b (1 − c )

∫ t

0
x(s)e−(µ+a+b)(t−s)ds

+ β(1 − c)
∫ t

0
w(s)x(s)e−(µ+a+b)(t−s)ds + b (1 − c )

∫ t

0
z(s)e−(µ+a+b)(t−s)ds,

φ (t) =−

[
c z(0)e−µ t + (1 − c)(

µ + b
µ + a + b

− w(0) )e−(µ+a+b)t
]

,

and

K1(t) =
1
t

∫ t

0

[ ∫ v

0
w(s)x(s)e−(µ+a+b)(v−s)dB(s)

]
dv.

Proof From Eq. (2), we get

w(t) =
µ + b

µ + a + b
−
( µ + b

µ + a + b
− w(0)

)
e−(µ+a+b)t − c

∫ t

0
(x(s) + z(s))e−(µ+a+b)(t−s)ds

− β

∫ t

0
w(s)x(s)e−(µ+a+b)(t−s)ds − σ

∫ t

0
w(s)x(s)e−(µ+a+b)(t−s)dB(s),

z(t) =z(0)e−µ t + γ

∫ t

0
x(s)e−µ (t−s)ds.

Then

w(t) + c y(t) = c (w(t) + y(t)) + (1 − c)w(t)

=
µ + b + ab
µ + a + b

−

[
c x + c γ

∫ t

0
x(s)e−µ (t−s)ds + b (1 − c)

∫ t

0
x(s)e−(µ+a+b)(t−s)ds

+ β (1 − c)
∫ t

0
w(s)x(s)e−(µ+a+b)(t−s)ds + b (1 − c)

∫ t

0
z(s)e−(µ+a+b)(t−s)ds

]

−

[
c z(0)e−µ t + (1 − c)(

µ + b
µ + a + b

− w(0) )e−(µ+a+b)t
]

− σ (1 − c)
∫ t

0
w(s)x(s)e−(µ+a+b)(t−s)dB(s).

This leads to the desired result. ■

Lemma 2 Let
(
w(t), x(t), y(t), z(t)

)
be a solution of system (2) with

(
w(0), x(0), y(0), z(0)

)
∈ ∆ .
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Then

⟨(w + c y)2⟩ =
(µ + b + ac

µ + a + b

)2
+ ⟨G2⟩ + ψ (t) + K2(t),

where

G2(t) = −
1
µ
(w + c y)(β w + c2 β y)x +

σ 2

2µ
x2(w + c2y)2

+
c (1 − c )a

µ
w(x + z)− (1 − c)

b2a + µab + abc
µ(µ + a + b)2 −

β c 2

µ
xy

−
b (1 − c )

µ
y(w + c y) −

β

µ
xw

+
ac(1 − c )

µ

[
b

µ + a + b
(x + z) +

β

µ + a + b
xw
]

+

[
a (1 − c )

µ
+

a (1 − c )2 (µ + b)
µ (µ + a + b)

] [
b

µ + a + b
(x + z) +

β

µ + a + b
xw
]

−
b (1 − c )

µ

[
a

µ + a + b
x +

a
µ + a + b

z +
β c

µ + a + b
xy
]

+
a (1 − c )2

µ

[
b

µ + a + b
w(x + z) +

β

µ + a + b
w2x −

σ 2

2(µ + a + b)
w2x2

]
,

ψ(t) = −
(w(t) + c y(t))2 − (w(0) + c y(0))2

2µ t
−

(w(t) + c y(t)) − (w(0) + c y(0))
µ t

+

[
a (1 − c 2)

µ
+

a (1 − c )2(µ + b)
µ (µ + a + b)

]
w(t)− w(0)
(µ + a + b)t

−
b (1 − c )

µ

y(t)− y(0)
(µ + a + b)t

+
a (1 − c )2

µ

w2(t)− w2(0)
2(µ + a + b)t

,

and

K2(t) =
σ

µ + a + b

(
a (1 − c )

µ
+

a (1 − c )2(µ + b)
µ (µ + a + b)

)
1
t

∫ t

0
x(s)w(s) dB(s)

−
σ

µ t

∫ t

0
(w(s) + c 2y(s))x(s) dB(s)−

σ b c (1 − c )
µ (µ + a + b )

1
t

∫ t

0
x(s)y(s) dB(s)

+
σ a (1 − c )2

µ (µ + a + b ) t

∫ t

0
w2(s)x(s) dB(s) +

σ a c (1 − c )
µ (µ + a + b )t

∫ t

0
x(s)w(s) dB(s)

−
σ

µ t

∫ t

0
(w(s) + c y(s))(w(s) + c 2y(s))x(s) dB(s).
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Proof Applying Itô formula to system (2), we obtain

⟨w⟩ = −
w(t)− w(0)
(µ + a + b, )t

+
µ + b

µ + a + b
−

b
µ + a + b

⟨x + z⟩ −
β

µ + a + b
⟨xw⟩

−
σ

(µ + a + b )t

∫ t

0
x(s)w(s) dB(s),

⟨y⟩ =−
y(t)− y(0)
(µ + a + b )t

+
a

µ + a + b
−

a
µ + a + b

⟨x + z⟩ −
β c

µ + a + b
⟨xy⟩

−
σ c

(µ + a + b )t

∫ t

0
x(s)y(s) dB(s),

⟨w2⟩ = −
w2(t)− w2(0)
2(µ + a + b )t

+
µ + b

µ + a + b
⟨w⟩ −

b
µ + a + b

⟨w(x + z)⟩

−
β

µ + a + b
⟨w2x⟩ +

σ 2

2(µ + a + b )
⟨x2w2⟩ −

σ

(µ + a + b )t

∫ t

0
x2(s)w(s) dB(s),

⟨w + c y⟩ = −
(w(t) + c y(t)) − (w(0)− c y(0))

µ t
+ 1 −

a (1 − c )
µ

⟨w⟩ −
β

µ
⟨xw⟩− β c 2

µ
⟨xy⟩

+
b (1 − c )

µ
⟨y⟩ −

σ

µ t

∫ t

0
(w(s) + c 2y(s))x(s) dB(s),

and

⟨(w + c y)2⟩ = −
(w(t) + c y(t))2 − (w(0) + c y(0))2

2µ t
+ ⟨w + c y⟩ −

a (1 − c )2

µ
⟨w2⟩

−
1
µ
⟨(w + c y)(β w + c 2β y)x⟩+ σ 2

2µ
⟨x2(w + c 2y)2⟩

−
a c (1 − c )

µ
⟨w⟩+ a c (1 − c )

µ
⟨w(x + z)⟩ −

b (1 − c )
µ

⟨y(w + c y)⟩

−
σ

µ t

∫ t

0
(w(s) + c y(s))(w(s) + c 2y(s))x(s) dB(s).

Injecting the expressions of ⟨w⟩, ⟨y⟩, ⟨w2⟩ and ⟨w + c y⟩ into the expression of ⟨(w + c y)2⟩, we get

⟨(w + c y)2⟩ =
(µ + b + ac

µ + a + b

)2
+ ⟨G2⟩ + ψ (t) + K2(t).

4 Exponential extinction of the disease

Theorem 2 Let (w(t), x(t), y(t), z(t)) be a solution of system (2) with (w(0), x(0), y(0), z(0)) ∈ ∆ .
We consider the two following assumptions

(A)
β 2

2σ 2 < µ + γ;

(B) σ2 µ + b + ac
µ + a + b

− β ≤ 0 and RS
b < 1.
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Then

lim sup
t→∞

1
t

ln x(t) ≤ β 2

2σ 2 − (µ + γ ) < 0 a.s., if (A) holds;

lim sup
t→∞

1
t

ln x(t) ≤ (µ + γ )(RS
b − 1) + (σ 2 µ + b + ac

µ + a + b
− β )⟨ H1⟩ < 0 a.s., if (B) holds.

Proof Applying Itô formula, gives

1
t

ln
x(t)
x(0)

≤ β ⟨w + c y⟩ − (µ + γ ) −
σ 2

2
⟨w + c y⟩2 + σ M(t) (5)

≤ β2

2σ 2 − (µ + γ )−
σ 2

2

[
⟨w + c y⟩− β

σ 2

]2
+ σ M(t)

≤ β2

2σ 2 − (µ + γ ) + σ M(t),

where

M(t) =
σ

t

∫ t

0
(w(r) + cy(r))dB(r).

If the assumption (A) holds, we get

lim sup
t→∞

1
t

ln x(t) < 0 a.s.

Returning to Eq. (5) and applying Lemma 1, one has

1
t

ln
x(t)
x(0)

≤ β
µ + b + ac
µ + a + b

− β ⟨G1⟩+ β ⟨φ⟩ − σ β (1 − c )K1(t)

− (µ + γ ) + σ M(t) −
σ 2

2

[(µ + b + ac,
µ + a + b

− ⟨G1⟩
)2

+
(
⟨φ ⟩ − σ (1 − c )K1(t)

)2

+ 2
( µ + b + ac

µ + a + b
− ⟨G1⟩

)(
⟨φ⟩ − σ (1 − c )K1(t)

)]
.

We define

Ψ(t) =
(
⟨φ ⟩ − σ (1 − c )K1(t)

)2
+ 2
( µ + b + ac

µ + a + b
− ⟨G1⟩

)(
⟨φ ⟩− σ (1 − c )K1(t)

)
.

Since (w(0), x(0), y(0), z(0)) ∈ ∆, then

lim
t→∞ Ψ(t) = 0 a.s.,

lim sup
t→∞

1
t

ln x(t) ≤ β
µ + b + ac
µ + a + b

− (µ + γ ) −
σ 2

2

( µ + b + ac
µ + a + b

)2
+
(

σ 2 µ + b + ac
µ + a + b

− β
)
⟨G1⟩ a.s.
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If assumption (B) is taking into consideration, we obtain

lim sup
t→∞

1
t

ln x(t) < 0 a.s.

■

Theorem 3 If one of the two assumptions in Theorem 2 holds, then

(w(t), x(t), y(t), z(t)) → (wb, xb, yb, zb) a.s. as t → ∞.

Proof Applying Itô formula to the first equation in system (2) leads to

d
( µ + b

µ + a + b
− w

)2
=
[
2β xw(

µ + b
µ + a + b

− w) − 2(µ + a + b)(
µ + b

µ + a + b
− w)2

+ 2b (
µ + b

µ + a + b
− w)(x + z) + σ2x2w2

]
dt

+ 2σ xw
( µ + b

µ + a + b
− w

)
dB(t).

It follows that∫ t

0

( µ + b
µ + a + b

− w(s)
)2

ds ≤ 1
2(µ + a + b)

[
1 + 2(β + b)w0

∫ t

0
x(s)ds + σ2

∫ t

0
x2(s)ds

+ 2b w0

∫ t

0
z(s)ds

]
+ M̂(t),

where

M̂(t) =
σ

µ + a + b

∫ t

0
x(s)w(s)dB(s)

is a continuous local martingale. For the rest of the proof, we use the idea exposed in [19]. ■

5 Persistence in mean

Theorem 4 Let (w(t), x(t), y(t), z(t)) be a solution of system (2) with (w(0), x(0), y(0), z(0)) ∈ ∆ .
If RS

b > 1, then the disease will be persistent in mean, that is,

lim inf
t→∞ ⟨ x ⟩ ⩾

µ + γ

βD1 +
σ2

2 D2
(RS

b − 1) a.s.,

where

D1 = c +
γ (b + c µ + ac )

µ (µ + a + b )
+

(1 − c )(b + β )

µ + a + b
,

D2 =
σ2

2µ
+

c (1 − c )a
µ

(
1 +

γ

µ

)
+

(
a (1 − c )

µ
+

a (1 − c )2(µ + b )
µ (µ + a + b )

+
a (1 − c )2

µ
+

ac (1 − c )
µ

)(
µ β + µ b + γ b
µ (µ + a + b )

)
.
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Furthermore,

lim inf
t→∞ ⟨w ⟩ ⩾

µ

β + µ + a + b
a.s.

lim inf
t→∞ ⟨ y ⟩ ⩾

µ a
(β c + µ + b )(β + µ + a + b )

a.s.

and

lim inf
t→∞ ⟨ z ⟩ =

γ

µ
lim inf

t→∞ ⟨ x ⟩ a.s.

Proof From system (2), one has

1
t

ln
x(t)
x(0)

= β ⟨w + c y⟩ − (µ + γ ) −
σ 2

2
⟨(w + c y)2⟩+ σ M(t),

where

M(t) =
1
t

∫ t

0
(w(s) + c y(s)) dB(s)

is a martingale. According to Lemma 1 and Lemma 2, we obtain

1
t

ln
x(t)
x(0)

= β
µ + b + ac
µ + b + βa

− β ⟨G1⟩ + β ⟨φ ⟩ − β σ (1 − c )K1(t)− (µ + γ )

−
σ 2

2

(
µ + b + ac
µ + b + β a

)2
−

σ 2

2
⟨G2⟩ −

σ 2

2
ψ (t)−

σ 2

2
K2(t) + σ M(t).

One can see that

K1(t) =
1

µ + a + b
1
t

∫ t

0
(1 − e−(µ+a+b )(t−s))x(s)w(s) dB(s).

Since (w(0), x(0), y(0), z(0)) ∈ ∆, then the strong law of large numbers for martingales implies

lim
t→∞ K1(t) = lim

t→∞ K2(t) = lim
t→∞ M(t) = 0 a.s.

Notice that

⟨ G1⟩ ⩽ D1⟨ x⟩ +
b (1 − c )

µ + a + b
z(0)⟨ e−µ t⟩,

and

⟨ G2⟩ ⩽

[
a (1 − c )(c + b + bc )

µ
+

ab (1 − c )2

µ

]
z(0)⟨ e−µ t⟩ + D2⟨ x⟩ .
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Thus

lim inf
t→∞ ⟨ x ⟩ ⩾

µ + γ

β D1 +
σ2

2 D2
(RS

b − 1) > 0 a.s.

Next, to show that system (2) is persistent in mean, it remains to show that w, y and z are persistent.
From system (2), we have

(
1 +

β

µ + a + b

)
⟨w⟩ ≥ −

w(t)− w(0)
(µ + a + b )t

+
µ

µ + a + b
−

σ

(µ + a + b )t

∫ t

0
x(s)w(s) dB(s),

y(t)− y(0)
t

+
σ c

t

∫ t

0
x(s)y(s) dB(s) ≥ a ⟨w⟩ − (β c + µ + b )⟨ y⟩ ,

and

z(t)− z(0)
t

= γ ⟨ x⟩ − µ ⟨ z⟩.

By using the strong law of large numbers for martingales, we obtain the desired results. ■

6 Numerical simulations

In this section, we report three experiments to verify the theoretical results shown in the previous
sections. We denote w(t) = S(t), x(t) = I(t), y(t) = V(t) and z(t) = R(t), for all t ≥ 0.

Example 1 We choose the parameters as follows:

σ = 0.8, µ = 0.1, β = 0.6, a = 0.8, c = 0.5, γ = 0.3 and b = 0.2.

The initial value is (w(0), x(0), y(0), z(0)) = (0.6, 0.2, 0.1, 0.1).
Then

β 2

2σ 2 − (µ + γ) = −0.1188,

which confirms Theorem 2, condition (A) (see Figure 1).

Example 2 Let the noise intensity σ = 0.602, and all the other parameters be the same as in the previous
example. In this case, we have

RS
b = 0.9248 and σ 2 µ + b + ac

µ + a + b
− β = −0.2920.

Then

lim sup
t→∞

1
t

ln x(t) ≤ (µ + γ )(RS
b − 1) + (σ 2 µ + b + ac

µ + a + b
− β )⟨ H1⟩ < 0.

That is, x(t) tends exponentially to zero, according to Theorem 2, condition (B) (see Figure 2).
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Example 3 In model (2), we choose the parameters as follows:

σ = 0.2, µ = 0.2, β = 0.6, a = 0.2, c = 0.4, γ = 0.2099 and b = 0.4.

The initial value is (w(0), x(0), y(0), z(0)) = (0.6, 0.2, 0.1, 0.1).
We compute that

RS
b =

1
µ + γ

[
β

µ + b + ac
µ + a + b

−
σ 2

2
(

µ + b + ac
µ + a + b

)2
]
= 1.2090 > 1.

According to Theorem 4, the solution of model (2) is persistent in mean (see Figure 3).
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Figure 1. Numerical simulations of the populations in model (2) for the given values in Example 1.
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Figure 2. Numerical simulations of the populations in model (2) for the given values in Example 2.
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Figure 3. Numerical simulations of the populations in model (2) for the given values in Example 3.

7 Conclusion

In this paper, we considered a stochastic epidemic model with a variable vaccination rate. First,
we showed the uniqueness of a positive solution for system (2). Second, we gave two conditions
for the disease extinction. Under these two conditions, we proved that the solution of system (2)
converges almost surely toward (wb, xb, yb, zb). Further, we showed that the disease is permanent
in mean when RS

b > 1. We also notice that the large noise suppresses the disease. If the noise is
small enough, the condition RS

θ > 1 is sufficient for guaranteeing the prevalence of the disease.
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