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Abstract

The immense disease burden of tuberculosis (TB) infection is well-documented, particularly among
those co-infected with HIV and TB. To better understand the transmission dynamics of HIV-TB co-
infection in the absence of readily available HIV treatment, we develop a deterministic compartmental
co-infection model. Our model helps to identify the effects of TB infection on the co-infection dynamics
of the two diseases, especially when treatment for TB is readily available. We find that susceptibility to
TB reinfection after a previous infection leads to backward bifurcation in the TB-only model when the
associated reproduction number (R0) is less than unity. However, when we make the susceptibility to
TB re-infection insignificant in the model, the disease-free equilibrium of the TB-only model is locally
asymptotically stable when the associated R0 is less than unity. We conduct sensitivity and uncertainty
analyses to identify the key parameters driving TB infection dynamics, using the R0 as the response
function. We discover that the transmission rate for TB, the modification parameters accounting for
the infectiousness of infected individuals with TB-only, and the treatment rates for singly infected
individuals with latently infected TB are the top drivers of TB infection in the given population.
Our numerical simulations suggest that concentrating treatment on TB-infected individuals in the
diagnosed latently infected stage (singly or dually infected with HIV) could effectively reduce the
co-infection disease burden and HIV incidence in the population under study.
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1 Introduction

HIV, the Human Immunodeficiency Syndrome, is a virus that attacks cells aiding human resistance
to infections, thus increasing vulnerability to numerous other infections and diseases [1–3]. When
a person is infected with the virus, it targets and destroys CD4 cells of the immune system. As
the HIV infection progresses within the human system, the viral load increases, weakening the
immune system. Without antiretroviral treatment, the infection advances to Acquired Immune
Deficiency Syndrome (AIDS), the advanced stage of HIV infection, where the immune system
becomes severely compromised. The virus was initially identified among homosexuals in the
United States of America in 1983, though other reports claim its discovery among apes in 1982 in
Kenya [4]. Causes of HIV include vaginal intercourse with an HIV-positive individual without
using a condom or pre-exposure prophylaxis (PrEP), as well as sharing equipment for injectable
illicit drugs, hormones, and steroids with someone infected with HIV [5]. The virus can be
transmitted through blood, semen, pre-seminal fluid, vaginal fluids, rectal fluids, and breast milk
[4]. HIV can be prevented by avoiding risky behaviors, using condoms during sex, and receiving
regular vaccinations for potential opportunistic infections. An individual with an undetectable
level of HIV cannot transmit the virus to another individual [5].
Tuberculosis, also known as TB, is a bacterial infection caused by Mycobacterium tuberculosis
bacteria [6]. It primarily affects the lungs but can also affect other parts of the body. Transmission
occurs through the air when a person inhales droplet nuclei containing the bacteria. Active TB
manifests with symptoms such as coughing up mucus or blood, chest pain, fever, night sweats,
loss of appetite, fatigue, and persistent coughing for three or more weeks [3, 7]. The disease can
be prevented and treated with medication. TB/HIV co-infection presents special diagnostic and
therapeutic challenges and places a significant burden on healthcare systems in many countries
[8–10]. TB remains one of the leading causes of death worldwide in the era of HIV, with both
diseases collectively responsible for the deaths of 4 million people annually [8]. Studies indicate
that while not all HIV patients develop TB disease, those co-infected with both HIV and TB have
a higher risk of progressing from TB infection to TB disease due to weakened immune systems.
Unlike HIV, TB is entirely preventable, treatable, and curable. While treatment is a fraction of
the cost of medications used for HIV, TB co-infection accelerates HIV progression to AIDS [11].
Infected HIV patients are at a heightened risk of contracting tuberculosis [8]. Therefore, adequate
attention to the prevention and control of TB/HIV co-infections in a population is crucial.
Several studies have investigated the co-infection of HIV and TB, developing models to under-
stand their epidemics’ dynamics. These studies emphasize the importance of incorporating each
disease’s effects and formulating models for their transmission mechanisms. Wang et al. [12]
proposed a dynamic epidemiological model of HIV-TB co-infection incorporating latent age, em-
phasizing the significance of assessing each disease’s effects on co-infection dynamics. Kaur et al.
[13] formulated a simple compartmental deterministic model for HIV-TB co-infection, highlighting
the existence of an unstable co-infection equilibrium point under certain parameter restrictions.
Azeez et al. [1] developed a deterministic compartmental epidemiological model to study the
transmission mechanism of HIV-TB co-interaction, revealing that individuals with HIV infection
are at greater risk of TB co-infection compared to those without HIV infection. Fatmawati et al.
[14] formulated an optimal control co-infection model of HIV-TB, demonstrating that combining
anti-TB and antiretroviral treatment is optimal for reducing the burden of co-infection. Omale et al.
[15] developed a deterministic co-infection model incorporating control measures to study the sce-
nario where both HIV and tuberculosis infect the same individual, finding that the infectiousness
of one disease increases the risk of infectiousness of the other and that the implemented control
measures significantly reduce tuberculosis infection, ultimately reducing co-infection rates.
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In general, epidemiological models, such as those in [16–25], are valuable tools for studying the
transmission dynamics of infectious diseases. Therefore, this research study aims to develop and
analyze a mathematical model for HIV/TB co-infection in the presence of treatment. The study
has six specific objectives, including:

• Demonstrating the stability of the disease-free equilibrium.
• Analyzing the reproduction number to identify parameters that can reduce the spread of the

disease.
• Conducting sensitivity analysis to identify key parameters that drive infectiousness.
• Validating theoretical results with numerical simulations.
• Creating contour plots involving key parameters and the reproduction numbers for the diseases

with the aim of determining the threshold for control measures that can help eradicate the
diseases from the human population.

• Providing qualitative and empirically-based recommendations to policymakers in the health
sector to assist them in controlling the spread of the two diseases and obtaining necessary and
sufficient conditions for their eradication in the human population.

In general, from this study, it is anticipated that its findings will significantly contribute to the
body of knowledge that informs health policymakers, planners, project implementers, and future
researchers by providing strategies for the prevention and control of HIV/TB co-infections through
the dynamic analysis of our model.
The manuscript is organized into six sections, including a description of the model formulation,
theoretical analysis, sensitivity analysis, numerical simulations, discussion of the plots, and
conclusion.

2 Model formulation

The total human population N(t), at any time t is divided into 13 compartments, as listed in
Table 1, to obtain:

N(t) = S(t) + E(t) + EL(t) + EUL(t) + IUA(t) + T(t) + R(t) + IH(t) + ETH(t) + IHU(t)
+IHUA(t) + IHDA(t) + THT(t).

It is assumed that individuals who are dually infected can only transmit one of the diseases at a
time. The equations for the new co-infection model are formulated as follows.

Transmissions by singly infected individuals

Individuals acquire HIV infection IH(t), from effective contact with those infected with HIV only,
at a rate given by:

λ̇H = βH
IH(t)

N
, (1)

where βH represents the transmission rate for HIV.
Likewise, the acquisition of TB infection by individuals from those in IUA, and T, compartments,
at a rate λT, is given as:

λT = βT
(IUA + η1T)

N
. (2)

Here, the rate of TB transmission is βT, where the modification parameter η1 ≥ 1, accounts for the
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relative infectiousness of individuals with diagnosed actively infected TB compared to those with
undiagnosed actively infected TB infection. The assumption is that those individuals diagnosed
as actively infected with TB are more infectious than those undiagnosed [9].

Transmissions by dually infected individuals

TB is transmitted by dually infected individuals at a rate given by:

λTH =
βT(η2 IHUA + η3 IHDA)

N
. (3)

The transmission rate for TB is modified by the parameters η2, while η3, accounts for the increased
infectiousness of dually infected individuals with HIV and undiagnosed active TB infection
compared to those with dually infected HIV diagnosed TB only. It is assumed that η3 ≥ η2 > 1.
HIV transmission by those infected with both diseases occurs at the following rate:

λHT =
βH(EHT + ϕ1 IHU + ϕ2 IHUA + ϕ3 IHDA + ϕ4 IHT)

N
. (4)

Here, the relative infectiousness of HIV-infected individuals with primary, secondary, early latent,
and late latent TB, respectively, compared to HIV-only infected individuals is accounted for by
parameters ϕ1, ϕ2, ϕ3, and ϕ4.

Description of model equation formation

The rate of recruitment for susceptible individuals to the two diseases occurs at the rate π. Those
that acquire HIV and TB infection do so at the rates λH, and λT, respectively. Likewise, HIV and
TB are transmitted by dually infected individuals at rates given by λTH, and λHT (where λH, λT,
λTH, and λHT, are as initially defined in Section 2. The natural death rate for individuals in all
compartments occurs at the uniform rate µ. The contact rates for HIV and tuberculosis are given
by βH, and βT, respectively. Singly infected individuals with latently infected TB, undiagnosed
latently infected TB, undiagnosed actively infected, and diagnosed actively infected individuals
with TB on prompt treatment are treated at rates σ1, σ2, σ3, and σ4, respectively.
On the other hand, treatment rates for dually infected individuals with HIV and latently infected
TB, HIV and undiagnosed latently infected TB, HIV and undiagnosed actively infected TB, and
HIV and diagnosed actively infected individuals with TB are σT1, σT2, σT3, and σT4 respectively,
while the modification parameters that account for the infectiousness of dually infected individuals
are ϕ1, ϕ2, ϕ3, and ϕ4. Individuals who are singly infected progress from exposed class, diagnosed
latently infected class, undiagnosed latently infected class, undiagnosed actively infected class,
diagnosed actively infected with TB on prompt treatment class to classes EL, EUL, IUA, T, and R,
at the rates ψ1, ψ2, ψ3, and ψ4, respectively. Likewise, individuals that are infected with the two
diseases in the classes EHT, IHU , IHUA, IHDA, and THT, progress to classes IHU, IHUA, IHDA, and
THT, at the rates ψHU , ψHUA, ψHDA, and ψHT, respectively.
The modification parameters accounting for variability in the susceptibility of recovered indi-
viduals to TB infection are given by ε1, and ε2, while those accounting for the susceptibility of
recovered individuals to TB infection are represented by γ1, and γ2. Similarly, the modification
parameters accounting for the susceptibility of TB-infected individuals to HIV infection are given
as θ1, θ2, θ3, θ4, θ5, θ6, θ7, and θ8, respectively, while those accounting for the infectiousness of
infected individuals with TB only, HIV and undiagnosed actively infected TB, HIV and diagnosed
actively infected TB are η1, η2, and η3, respectively. It should be noted that the disease-induced
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death rate in each of the disease-infected compartments occurs at uniform rates δ1, δ2, δ3, δ4, δ5,
and δ6, respectively.

Table 1. Description of the model variables and parameters

Variable Description
Sh Group of individuals that are susceptible to the two infections
E Group of exposed individuals to TB
EL Group of diagnosed latently infected individuals to TB
EUL Group of undiagnosed latently infected individuals to TB
IUA Group of undiagnosed actively infected individuals to TB
T Group of diagnosed actively infected individuals to TB on prompt treatment
R Group of recovered individuals
IH Group of HIV infected individuals
EHT Group of dually infected individuals with diagnosed latent HIV and TB
IHU Group of dually infected individuals with HIV and undiagnosed latently infected

TB
IHUA Group of dually infected individuals with HIV and undiagnosed active TB
IHDA Group of dually infected individuals with HIV and diagnosed active TB
THT Group of dually infected individuals with HIV and TB on prompt treatment for

both diseases
Parameter Description
π Recruitment rate into the susceptible class
µ Rate at which individuals die naturally
βT (βH) Contact rates for tuberculosis (HIV)
σ1, σ2, σ3, σ4 Treatment rates for singly infected individuals with latently-infected TB, undiag-

nosed latently-infected TB, undiagnosed actively-infected and diagnosed actively-
infected individuals with TB on prompt treatment

σT1, σT2, σT3, σT4 Treatment rates for dually infected individuals with HIV and latently-infected TB,
HIV and undiagnosed latently-infected with TB, HIV and undiagnosed actively-
infected with TB, HIV and diagnosed actively-infected individuals with TB

ψ1, ψ2, ψ3, ψ4 Rate of progression for singly infected individuals from exposed, diagnosed latently-
infected, undiagnosed latently-infected, undiagnosed actively infected, diagnosed
actively infected with TB on prompt treatment to classes EL, EUL, IUA, T, and R,
respectively

ε1, ε2 Modification parameters accounting for variability in susceptibility of recovered
individuals to TB infection

ψHU , ψHUA, ψHDA,
ψHT

Rate of progression for dually infected individuals from classes EHT , IHU , IHUA,
IHDA, and THT , to classes IHU , IHUA, IHDA, and THT , respectively

γ1, γ2 Modification parameters accounting for the susceptibility of recovered individuals
to TB infection

θ1, θ2, θ3, θ4, θ5, θ6,
θ7, θ8

Modification parameters accounting for the susceptibility of TB-infected individuals
to HIV infection

η1, η2, η3 Modification parameters accounting for the infectiousness of infected individuals
with TB only, HIV, and undiagnosed actively infected TB, HIV, and diagnosed
actively-infected TB respectively

ϕ1, ϕ2, ϕ3, ϕ4 Modification parameters accounting for the infectiousness of dually infected indi-
viduals

δ1, δ2, δ3, δ4, δ5, δ6 Disease-induced death rates due to HIV with TB co-infection

Based on the description above, the model assumptions, and the schematic diagram below, we
formulate the following system of non-linear differential equations as that which captures the
transmission dynamics of HIV-TB co-infection in a given population:



26 | Bulletin of Biomathematics, 2024, Vol. 2, No. 1, 21–56

dS
dt

= π − λTS − λHS − λTHS − λHTS − µS,

dE
dt

= λTS + λTHS + ε1λTR + ε2λTHR − λHE − λHTE − (ψ1 + µ)E,

dEL
dt

= ψ1E − θ1λHEL − θ2λHTEL − (ψ2 + σ1 + µ)EL,

dEUL
dt

= ψ2EL − θ3λHEUL − θ4λHEUL − (ψ3 + σ2 + µ)EUL,

dIUA
dt

= ψ3EUL − θ5λH IUA − θ6λHT IUA − (ψ4 + σ3 + µ)IUA,

dT
dt

= ψ4 IUA − θ7λHT − θ8λHTT − (ψ5 + σ4 + µ)T,

dR
dt

= σ1EL + σ2EUL + σ3 IUA + σ4T − ε1λTR − λHR − ε2λTHR − λHTR − µR,

dIH
dt

= λHS + λHTS + λHR + λHTR − γ1λT IH − γ2λTH IH + σT1EHT + σT2 IHU

+ σT3 IHUA + σT4 IHDA + σT5THT − (µ + δ1)IH,
dEHT

dt
= σ1λT IH + σ2λTH IH + λHTE − (ψHU + σT1 + δ2 + µ)EHT,

dIHU
dt

= ψHUEHT + θ1λHEL + θ2λHTEL − (ψHUA + δ3 + σT2 + µ)IHU ,

dIHUA
dt

= ψHUA IHU + θ3λHEUL + θ4λHTEUL − (ψHDA + σT3 + δ4 + µ)IHUA,

dIHDA
dt

= ψHDA IHUA + θ5λH IUA + θ6λHT IUA − (ψHT + σT4 + δ5 + µ)IHDA,

dTHT
dt

= ψHU IHDA + θ7λHT + θ8λHTT − (σT5 + δ6 + µ)THT,

(5)

where

λH =
βH IH

N
, λT =

βT(IUA + η1T)
N

, λTH =
βT(η2 IHUA + η3 IHDA)

N
,

and

λHT =
βH(EHT + ϕ1 IHU + ϕ2 IHUA + ϕ3 IHDA + ϕ4 IHT)

N
.

It is pertinent to note that due to the fact that model (5) is monitoring the human population,
consequently, we assumed that all variables and parameters in the model are non-negative.
Therefore, we shall carry out the analysis of model (5) in the invariant region given as follows:

Ω1 =
{
(S(t), E(t), EL(t), EUL(t), IUA(t), T(t), R(t), IH(t), ETH(t), IHU(t), IHUA(t),

IHDA(t), THT(t)) ∈ ℜ13
+ : N ≤ π

µ

}
.

Model assumptions

In formulating our model, some assumptions have been considered which are listed as follows:
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• Individuals infected with tuberculosis can recover through treatment, but there is no treatment-
induced recovery for those infected with HIV [14, 19].

• Natural death occurs uniformly for all individuals in each class of the model at a constant rate
µ.

• The disease-induced death rate in all the infected compartments is uniform.
• We have not included in the model those individuals who progress from being infected with

HIV to being infected with AIDS after some time.
• In cognizance of the fact that findings show that 80% of individuals afflicted with HIV infection

are practically bound to suffer from TB infection [19], we assume that only those suffering from
TB affliction are infected with HIV infection.

Figure 1. Flow chart of co-infection model (5) where λH , λT , λHT , and λTH , are as defined in Eqs. (2) and (3),
respectively
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Invariance region

Lemma 1 The solution of the model equations is feasible for all t > 0, if they are contained in the invariant
region:

Ω1 = {S(t) + E(t) + EL(t) + EUL(t) + IUA(t) + T(t) + R(t) + IH(t) + ETH(t) + IHU(t)

+ IHUA(t) + IHDA(t) + THT(t)} ∈ ℜ13
+ }.

(6)

Proof Suppose

Ω1 = {S(t) + E(t) + EL(t) + EUL(t) + IUA(t) + T(t) + R(t) + IH(t) + ETH(t) + IHU(t)

+ IHUA(t) + IHDA(t) + THT(t)} ∈ ℜ13
+ },

be any solution of model Eq. (5) with non-negative initial conditions.

In the absence of disease-induced death rate, dN
dt becomes:

dN
dt

≤ π − µN,

we have

dN
dt

+ µN ≤ π.

Solving the equation above by multiplying both sides by eµt, the integrating factor

dN
dt

(eµt) + µN(eµt) ≤ π(eµt).

From the above equation, we obtain

d(Neµt) ≤ πeµtdt,

by integrating both sides of the above equation, we have that

Neµt ≤ πeµt

µ
+ k0.

Dividing all through by eµt, we have

N(t) ≤ π

µ
+ k0e−µt. (7)

Applying the initial conditions t(0) = N(0), we have

N(0) ≤ π

µ
+ k0,
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N(0)−
π

µ
≤ k0.

Eq. (7) becomes

N(t) ≤ π

µ
+

(
N(0)−

π

µ

)
e−µt. (8)

Therefore, the human population approaches the carrying capacity π
µ , as t → ∞. Obviously, the

feasible solution set of the model Eq. (5) enters the invariant region:

Ω1 = {(S(t) + E(t) + EL(t) + EUL(t) + IUA(t) + T(t) + R(t) + IH(t) + ETH(t) + IHU(t)

+ IHUA(t) + IHDA(t) + THT(t)) ∈ ℜ13
+ : N <

π

µ
},

where S(0) > 0, E(0) > 0, EL(0) > 0, EUL(0) > 0, IUA(0) > 0, T(0) > 0, R(0) > 0, IH(0) >
0, ETH(0) > 0, IHU(0) > 0, IHUA(0) > 0, IHDA(0) > 0, THT(0) > 0. Therefore, model (5) is
biologically and mathematically feasible. Hence whenever N > π

µ , then N < 0, which means
that the population reduces asymptotically to the carrying capacity. Whenever N ≤ π

µ , every
solution with an initial condition in Ω1, remains positive for all t > 0, and the model is said to be
mathematically well-posed and biologically meaningful.

Lemma 2 Let the initial condition be:

{S(0) > 0, E(0) > 0, EL(0) > 0, EUL(0) > 0, IUA(0) > 0, T(0) > 0, R(0) > 0, IH(0) > 0,

ETH(0) > 0, IHU(0) > 0, IHUA(0) > 0, IHDA(0) > 0, THT(0) > 0}.
(9)

Consequently, the solution set:

{S(t), E(t), EL(t), EUL(t), IUA(t), T(t), R(t), IH(t), ETH(t), IHU(t), IHUA(t), IHDA(t), THT(t)},

of the system of model Eq. (5) is positive for all t > 0.

Proof From the first equation of the model system (5), we have

dS
dt

= π − (λT + λH + λTH + λHT + µ) S,

dS
dt

= π − (λT + λH + λTH + λHT + µ) S ≥ − (λT + λH + λTH + λHT + µ) S.

Which can be re-written as

dS
S

≥ − (λT + λH + λTH + λHT + µ) dt.

Integrating the equation above, we have

ln S ≥ − (λT + λH + λTH + λHT + µ) t + k1,
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S(t) ≥ e−(λT+λH+λTH+λHT+µ)t+k1 ,

S(t) ≥ k1e−(λT+λH+λTH+λHT+µ)t.

Applying the initial conditions t = 0, S(0) = k1 gives

S(t) ≥ S(0)e−(λT+λH+λTH+λHT+µ)t, and (λT + λH + λTH + λHT + µ) > 0.

Similarly, the above integration can be shown for other state variables, for E(t) > 0, EL(t) > 0,
EUL(t) > 0, IUA(t) > 0, T(t) > 0, R(0) > 0, IH(t) > 0, ETH(t) > 0, IHU(t) > 0, IHUA(t) > 0,
IHDA(t) > 0, and THT(t) > 0.

3 Theoretical analysis of the model

To conduct the analysis of the model, we first analyze the singly infected system before proceeding
to analyze the dually infected system.

HIV-only model

To obtain the HIV-only model, we set all the TB components to zero as follows:

E = 0, EL = 0, EUL = 0, IHU = 0, T = 0, EHT = 0, IH = 0, IHUA = 0, IHDA = 0, IHT = 0.

Therefore, the HIV-only model is given by:

dS
dt

= π − (λH + µ)S,

dIH
dt

= λHS − (µ + δ1)IH,
(10)

where

λH =
βH IH

N
, and N(t) = S(t) + IH(t).

HIV-only disease-free equilibrium (DFE)
The DFE of the HIV-only model (10) is:

(S+, I+H ) = (
π

µ
, 0). (11)

Existence of endemic equilibrium point (EEP) of HIV-only model
The endemic equilibrium

(
S++, I++

H
)
, of the model Eq. (10) is given by:

(S++, I++
H ) = (

π

λ++
H + µ

,
πλ++

H
(λ++

H + µ)(µ + δ1)
).

The basic reproduction number
The threat posed by any infectious disease on humans depends on the rate at which it invades
a population. The measure of the potential for disease to spread in a population is the basic
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reproduction number (R0). It represents the average number of secondary cases of infection
that will be generated by the influx of just one infected person into a healthy population [18]. If
the reproduction number of the disease is less than unity (R0 < 1), when there is an influx of
at least one infected individual into a healthy population, then it means that, on average, each
infected individual produces less than one newly infected individual throughout an infection
period. In this case, the disease might gradually die out over time. On the other hand, if R0 > 1,
each infected individual produces, on average, more than one new infection, and the infection
will continue to spread rapidly in the given population. The basic reproduction number of the
HIV-only model (10) follows from [20] and is given by:

R0H = ρ(
βH

µ + δ1
).

Local stability of disease-free equilibrium of HIV-only model

Theorem 1 If ω1, ω2, . . . , ωn are the eigenvalues of the Jacobian matrix of the HIV-only model (10), its
disease-free equilibrium is locally asymptotically stable (LAS) whenever ω1, ω2, ..., ωn < 0.

Proof Let A = π − (λH + µ)S, and B = λHS − (µ + δ1)IH, we have that

∂A
∂S

= (λH + µ),
∂A
∂IH

= 0,

∂B
∂S

= λH,
∂B
∂IH

= −(µ + δ1).

The Jacobian matrix is given as:

J(ε f ) =

∣∣∣∣∣∣∣
∂A
∂S

∂A
∂IH

∂B
∂S

∂B
∂IH

∣∣∣∣∣∣∣ .

So that

J(ε f ) =
∣∣∣∣ −(λH + µ) 0

λH −(µ + δ1)

∣∣∣∣ ,

J(ε f − λI) =
∣∣∣∣ −(λH + µ)− λ 0

λH −(µ + δ1)− λ

∣∣∣∣ .

The characteristic equation of the matrix J(ε f − λI) is given by:

P(λ) = (−(λH + µ)− λ)(−(µ + δ1)− λ) = 0.

The eigenvalues of the characteristic equation P(λ), are

ω1 = λ1 = −(λH + µ), and ω2 = λ2 = −(µ + δ1).
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Observe that the eigenvalues ω1 < 0, and ω2 < 0. Hence, arising from Theorem 1, the disease-free
equilibrium of the model is locally asymptotically stable.

Local stability of endemic equilibrium point (EEP) of HIV-only model

The endemic equilibrium of the HIV-only model (10) is obtained by solving for the force of
infection (λ++

H ), at steady-state, giving:

(S++, I++
H ) =

(
π

λ++
H + µ

,
πλ++

H
(λ++

H + µ)(µ + δ1)

)
. (12)

In terms of the total subpopulation, we have:

N++ =
π(µ + δ1 + λ++

H )

(λ++
H + µ)(µ + δ1)

.

Substituting N++, and I++
H , into:

λ++
H = βH

I++
H

N++
,

we have:

λ++
H + (µ + δ1)(1 −R0H) = 0.

It implies that λ++
H = (µ + δ1)(R0H − 1). Hence, if R0H > 1, then λ++

H > 0. Therefore, the
HIV-only model (10) has a unique endemic equilibrium if R0H > 1. Next is to investigate the local
asymptotic stability (LAS) of the HIV-only model (10). We evaluate the Jacobian matrix of model
(10) at the EEP as follows:

J/EEP =

∣∣∣∣∣∣∣∣
−βH

I++2
H

N++2 −βH
S++2

N++2

βH
I++2
H

N++2 βH
S++2

N++2 − µ − σ1

∣∣∣∣∣∣∣∣ .

Evaluating the determinant, we have:

Det(J/EEP) = βH
I++2
H

N++2 (µ + σ1) +
µβHS++2

R0H
(1 −

1
R0H

).

The trace of the Jacobian matrix is given as:

Tr(J/EEP) = −µ −
βH
R0H

(R0H − 1).

It is clear that Det(J/EEP) > 0, and Tr(J/EEP) > 0, if R0H > 1. Using the Routh-Hurwitz criterion,
the conditions derived in the previous section indicate that the endemic equilibrium of the HIV-
only model (10) is locally and asymptotically stable if R0H > 1, provided that all the model
parameters remain positive. This means that HIV infection will invade the subpopulation.
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Global asymptotic stability of DFE of HIV-only model
To demonstrate that the model Eq. (10) do not undergo a backward bifurcation at R0H = 1, we
need to prove the global asymptotic stability (GAS) of the disease-free equilibrium (DFE) of the
model (10).

Theorem 2 The disease-free equilibrium (DFE) of model (10) is globally asymptotically stable (GAS) if
R0H ≤ 1, and it is unstable if R0H ≥ 1.

Proof We construct a linear Lyapunov function as follows:

L1 = IH. (13)

Differentiating (13) with respect to time (t) (where the dot represents derivative with respect to
time) we have:

L̇1 = İH = IH

(
βH

S
N

− (µ − δ1)

)
. (14)

Recall that S ≤ N, and N ≤ π
µ , for all t > 0, Eq. (14) becomes

L̇1 ≤ IH (µ − δ1) (R0H − 1) . (15)

Therefore L̇1 = 0, if R0H ≤ 1, with L̇1 = 0, if and only if IH = 0. Hence, it follows from Driessche
and Watmough in [20] that every solution to the HIV-only model (10) with non-negative initial
conditions converges to DFE as t → 0. At point IH = 0, in the first Eq. (10) yields S(t) → π

µ , as

t → ∞. Thus (S, IH) → (
π
µ , 0
)

. As t → ∞ for RH ≤ 1. Therefore, the disease-free equilibrium of
HIV-only model (10) is globally asymptotically stable in the region R0H ≤ 1.

Implication of Theorem 1 and Theorem 2:
Theorem 1 and Theorem 2, which center on the local stability of the disease-free equilibrium, form
the basis by which we obtained the threshold for disease control and are able to confirm that
the conditions for disease control have been met. As shown in the two theorems, the threshold
for disease control is that the reproduction number of the disease must be less than one. This
means that the introduction of a single infected individual into the susceptible human population,
considered to be free from HIV and TB infection, will fail to generate an average of a single infected
individual, resulting in the disease ultimately dying out in no time.

Global asymptotic stability of the EEP of HIV-only model
In this section, we consider the asymptotic stability of the endemic equilibrium point of HIV-only
model (10).

Theorem 3 The unique EEP of model (10) is globally asymptotically stable (GAS) in Ω1/Ω2, whenever
R̄0H > 1, and unstable whenever R̄0H < 1, and L2 = 0.

Proof Consider HIV-only model (10), with the conditions: R̄0H = R̄0H > 1, when L2 = 0, for
existence of unique equilibrium, therefore we construct the non-linear Lyapunov function of the
Goh-Volterra type as follows:

L2 = S − S++ − S++ ln
(

S
S++

)
+ IH − I++

H ln

(
IH

I++
H

)
. (16)
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Differentiating (16) with respect to time, yields

L̇2 = Ṡ −
S++

S
Ṡ +

(
İH −

I++
H
IH

İH

)
. (17)

From Eqs. (10) and (17), we have:

L̇2 = π − β̄H IHS − µS −
S++

S
(
π − β̄H IHS − µS

)
+ β̄H IHS − µIH −

I++
H
IH

(
β̄H IHS − µIH

)
, (18)

π = β̄H I++
H S++ + µS++, (19)

where

µ = β̄HS++. (20)

Putting (19) and (20) into (18) we have:

L̇2 = µS++

(
2 −

S++

S
−

S
S++

)
+ β̄H I++

H S++

(
2 −

S++

S
−

S
S++

)
. (21)

Observe that L̇2, is a Lyapunov function in Ω1/Ω2, and the endemic equilibrium of HIV-only
model (10) is unique under these conditions.

TB - only model

The TB-only model is obtained by setting all HIV components to zero in the co-infection model (5),
that is, setting: IH = 0, IHT = 0, IHU = 0, IHDA = 0, ITH = 0, to give TB-only model:

dS
dt

= π − λTS − µS,

dE
dt

= λTS + ε1λTR − (ψ1 + µ) E,

dEL
dt

= ψ1E − (ψ2 + σ1 + µ) EL,

dEUL
dt

= ψ2EL − (ψ3 + σ2 + µ) EUL,

dIUA
dt

= ψ3EUL − (ψ4 + σ3 + µ) IUA,

dT
dt

= ψ4 IUA − (ψ5 + σ4 + µ) T,

dR
dt

= σ1EL + σ2EUL + σ3 IUA + σ4T − ε1λTR − µR,

with

λT = βT
(IUA + η1T)

N
,
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where

N(t) = S(t) + E(t) + EL(t) + EUL(t) + IUA(t) + T(t) + R(t). (22)

It can equally be shown that the solution set of TB-only model (22) are all positive when they enter
the invariant region Ω3, defined as:

Ω3 =

{
S(t) + E(t) + EL(t) + EUL(t) + IUA(t) + T(t) + R(t) ∈ ℜ7

+ : N ≤ π

µ

}
.

Therefore, we can conclude that it is appropriate to analyze the transmission dynamics of the
TB-only model (22) within the domain Ω3. This allows us to consider the model as biologically
and mathematically well-posed, as indicated by previous studies [18].

Disease–free equilibrium (DFE) of TB-only model
To find the disease-free equilibrium of the TB-only model, we set all the disease components to
zero at a steady-state. Thus, we have:

Ω3 =
(
S+, E+, E+

L , E+
UL, I+UA, T+, R+

)
=

(
π

µ
, 0, 0, 0, 0, 0, 0

)
.

Local stability of disease-free equilibrium of TB-only model
To determine the local asymptotic stability (LAS) of the disease-free equilibrium (DFE) in the
TB-only model (22), we can use the next-generation matrix method. This approach is based
on the method proposed by Van den Driessche and Wartmough [20], which involves defining
a next-generation matrix where the new infection terms and the remaining transfer terms are
represented by, respectively.

F2 =


0 0 0 βT η1βT
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , V2 =


c1 0 0 0 0
−ψ1 c2 0 0 0

0 −ψ2 c3 0 0
0 0 −ψ3 c4 0
0 0 0 −ψ4 c5

 ,

where
c1 = (ψ1 + µ), c2 = (ψ2 + σ1 + µ), c3 = (ψ3 + σ2 + µ), c4 = (ψ4 + σ3 + µ), and c5 = (ψ5 + σ4 + µ).
ρ is the spectral radius of (F2V−1

2 ). It follows from [26] that, the effective reproduction number of
TB-only model (22) is given as

RT = ρ
(
F2V−1

2

)
,

⇒ RT =
βTψ1ψ2ψ3 (c5 + η1ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
. (23)

Lemma 3 The disease-free equilibrium (DFE) of the TB-only model (22) is locally asymptotically stable
whenever RT < 1, and unstable whenever RT > 1.
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The threshold parameter, denoted by RT, is the basic reproduction number for the TB-only model
(22), representing the average number of secondary TB infections caused by an infected individual
introduced to a population completely free of TB infections [26].
Based on Lemma 3, TB can be eradicated from the population if the initial sizes of the subpopula-
tion of the submodel are in the region of attraction of the DFE.

Analysis of the reproduction number for the TB-only model

It is important to analyze the basic reproduction number with respect to the treatment parameters,
in order to determine the sufficient and necessary conditions required to control and eradicate the
disease in the population. By taking the following limits, we can obtain:

lim
σ1→∞RT = 0, (24)

lim
σ2→∞RT = 0, (25)

lim
σ3→∞RT = 0, (26)

and

lim
σ4→∞RT =

βTψ1ψ2ψ3

(ψ1 + µ) (ψ2 + σ1 + µ)(µ + σ2 + ψ3)(ψ4 + σ3 + µ)
> 0. (27)

It can be inferred from the Eqs. (24)-(27) that implementing a control strategy that emphasizes
high treatment rates for undiagnosed and diagnosed latent TB infections, as well as undiagnosed
and diagnosed active TB infections, can lead to effective control of the disease in the population,
provided that the right-hand sides of these equations are reduced to less than one.
However, it should be noted that near-total eradication of TB can only be achieved if high treatment
rates are applied to all stages of the disease, rather than just focusing on the treatment of diagnosed
active cases, as the limit in Eq. (27) does not approach zero. Furthermore, the effect of the treatment
parameters and on the control of TB in the population can be determined by computing the partial
derivatives of the reproduction number with respect to these parameters. This analysis will shed
light on how changes in and impact the control of TB. Specifically, we obtain:

∂RT
∂σ1

= −
βTψ1ψ2ψ3 (µ + σ4 + ψ5 + η1ψ3ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)2(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
< 0, (28)

∂RT
∂σ2

= −
βTψ1ψ2ψ3 (µ + σ4 + ψ5 + η1ψ3ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)2(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
< 0, (29)

∂RT
∂σ3

= −
βTψ1ψ2ψ3 (µ + σ4 + ψ5 + η1ψ3ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)2(ψ5 + σ4 + µ)
< 0, (30)

and

∂RT
∂σ4

= −
βTψ1ψ2ψ3 (µ + σ4 + ψ5 + η1ψ3ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)2(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
< 0. (31)
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The results of the previous analysis indicate that effective treatment of undiagnosed and diagnosed
latently infected individuals, as well as undiagnosed and diagnosed actively infected individuals,
can have a positive impact on reducing the spread of TB in the population. This is supported
by the fact that the partial derivatives of the reproduction number with respect to the treatment
parameters were found to be negative. However, the analysis also revealed that a treatment
strategy that places a higher emphasis on the treatment of diagnosed actively-infected individuals
is more effective for controlling the disease than focusing on other stages of the disease.

Theorem 4 The treatment of individuals infected with TB, regardless of the stage of infection, will have a
positive impact on the dynamics of TB in the population.

Further analysis of the relationship between the reproduction number and treatment rates for
singly infected individuals with latent TB, as well as undiagnosed cases of latent TB, reveals that
increasing the values of the treatment parameters would lead to a corresponding decrease in the
value of the reproduction number. It was also found that a high treatment rate for individuals
with latent TB can compensate for a lower treatment rate for undiagnosed cases of latent TB by
reducing the value of the reproduction number to below unity. However, it is important to note
that this conclusion was based on the specific parameter values used in the analysis.

Figure 2. A contour plot of RT , as a function of σ1, and σ2, where parameter values are as given in Table 3

Existence of endemic equilibrium for the TB-only model

To find the endemic equilibrium point (EEP) of TB-only model (22) in the TB-only model (20)
context, we can set each equation of model (22) to zero and solve for the force of infection. This
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gives us:

S++ =

(
π

λ++
T + µ

)
, E++ =

(
πc2c3c4c5λ++

T (µ + η1λ++
T )

P

)
,

E++
L =

(
πψ1c1c3c4c5λ++

T (µ + η1λ++
T )

P

)
, E++

UL =

(
πψ1c3c4c5λ++

T (µ + η1λ++
T )

P

)
,

I++
UA =

(
πc1c2c3c5λ++

T (µ + η1λ++
T )

P

)
, T++ =

(
πc1c2c3c4λ++

T (µ + η1λ++
T )

P

)
,

R++ =
Q
P

, and N++ =
R
P

,

(32)

where

P = (µ + λ++
T )(c1c2c3c4c5(µ + η1λ++

T )

− η1λ++
T ψ1(σ1c3c4c5 + σ2ψ2c4c5 + σ3ψ2ψ3c5 + σ4ψ2ψ3ψ4c5 + σ4ψ2ψ3ψ4)),

Q = πψ1λ++
T (σ1c3c4c5 + σ2ψ2c4c5 + σ3ψ2ψ3c4 + σ4ψ2ψ3ψ4c5 + σ4ψ2ψ3),

R = c1c2c3c4c5
(
µ + η1λ++

T
)

πc2c3c4c5λ++
T
(
µ + η1λ++

T
)
+ πc1c2c4c5λ++

T
(
µ + η1λ++

T
)

+ πc1c2c3c5λ++
T
(
µ + η1λ++

T
)
− πψ1η1λ++

T (σ1c3c4c5 + σ2ψ2c4c5 + σ3ψ2ψ3c5 + σ4ψ2ψ3ψ4c5 + σ4ψ2ψ3)

+ πc1c2c3c4c5λ++
T
(
µ + η1λ++

T
)
+ πc1c2c3c4c5λ++

T
(
µ + η1λ++

T
)

+ πc1λ++
T (σ1c3c4c5 + σ2ψ2c4c5 + σ3ψ2ψ3c4 + σ4ψ2ψ3ψ4c5 + σ4ψ2ψ3ψ4).

It is important to note that on expansion, it can be shown that P > 0, and R > 0, likewise. By
letting the TB force of infection at a steady state by:

λ++
T = β++

T

(
I++
UA + η1T++

)
N++

. (33)

By substituting the values I++
UA , T++, and N++, above into the force of infection in (33), we obtain:

P0λ++2
T + P1λ++

T + P2 = 0, (34)

where

P0 = η1(c2c3c4c5 + ψ1c3c4c5 + ψ1ψ2c4c5 + ψ1ψ2ψ3c3c5 + ψ1ψ2ψ3ψ4c5 + ψ1ψ2ψ3ψ4),

P1 = η1c1c2c3c4c5(1 − RT)− η1σ1ψ1c3c4c5 − η1σ2ψ1c3c4c5 − η1σ3ψ1ψ2ψ3c4c5 − η1σ4ψ1ψ2ψ3ψ4c5

− η1σ4ψ1ψ2ψ3ψ4 + µc2c3c4c5 + µψ1c3c4c5 + µψ1ψ2c4c5 + µψ1ψ2ψ3c5 + µψ1ψ2ψ3ψ4c5

+ µψ1ψ2ψ3ψ4 + σ1ψ1c3c4c5 + σ2ψ1ψ2c4c5 + σ3ψ1ψ2ψ3c5 + σ4ψ1ψ2ψ3ψ4 + σ4ψ1ψ2 − 3ψ3ψ4,

P2 = µc1c2c3c4c5 (1 −RT) .

A careful look at the quadratic equation in (34) shows that P0, has a positive coefficient while P1
has a positive (negative) coefficient which depends on whether the basic reproduction number
RT is less (greater) than unity. From this, we establish the following results:

Lemma 4 The TB-only model (22) has:

• A unique endemic equilibrium if A2 < 0 ↔ RT > 1;
• A unique endemic equilibrium if A2 < 0, and A0 = 0, or A2

1 − 4A2 A0 = 0;
• Two endemic equilibria if A0 > 0, A1 < 0, and A21 − 4A2 A0 > 0, and RT < 1;
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• No endemic equilibrium otherwise.

From the above, the occurrence of item (22) gives rise to the suggestion of the possibility of the
existence of backward bifurcation in the TB-only model (22), where there is coexistence of locally
asymptotically stable DFE and locally asymptotically stable endemic equilibrium whenever the
basic reproduction number RT < 1. The causes of this kind of phenomenon in epidemiological
models were extensively discussed in the works of [9, 16, 27–29]. Biologically, the existence of
backward bifurcation in a model implies that the classical epidemiological requirement, that for
the effective control of a disease in a population, the basic reproduction number of the disease
must be less than unity, though necessary, in this circumstance, it is not sufficient for the effective
control of such a disease. Consequently, we now explore the existence of backward bifurcation in
the TB-only model (22).

Analysis of bifurcation
Consequently, it becomes highly imperative to explore the possibility of backward bifurcation in
the TB-only model (22) as follows:

Theorem 5 For the TB-only model (22) there is the exhibition of the phenomenon of backward bifurcation
at RT = 1, whenever the inequality ε1 > (ω2+ω3+ω4+ω5+ω6+ω7)(ω3+η1ω4)

ω8(ω3+η1ω4)
holds.

It should be noted that ε1, stands for the modification parameter accounting for reduced susceptibility to
tuberculosis reinfection after an individual has been successfully treated for a previous tuberculosis infection.

Proof Let

∆3 =
(
S++, E++, E++

L , E++
UL , I++

UA , T++, R++
)

, (35)

denote an arbitrary endemic equilibrium point of the TB-only model (22). We then investigate
whether a backward bifurcation exists in the model by using the ’center manifold theory’ [30].
For convenience, we carry out the following change of variables before applying the theory: Let
S = x1, E = x2, EL = x3, EUL = x4, IUA = x5, T = x6, and R = x7. Consequently, we rewrite
model (22) as follows:

ẋ1 ≡ f1 = π −
βT(x5 + η1x6)x1∑

i=1 xi
− µx1,

ẋ2 ≡ f2 =
ξ1βT(x5 + η1x6)x7∑7

i=1 xi
− c1x2,

ẋ3 ≡ f3 = ϕ1x2 − c2x3,

ẋ4 ≡ f4 = ϕ2x3 − c3x4,

ẋ5 ≡ f5 = ϕ3x4 − c4x5,

ẋ6 ≡ f6 = ϕ4x5 − c5x6,

ẋ7 ≡ f7 = σ1x3 + σ2x5 + σ3x5 + σ5x6 −
βT(x5 + η1x6)x2∑

i=1 xi
− µx7.

(36)

Considering a bifurcation parameter βT = β∗
T. By solving for βT = β∗

T, from RT, yields

β∗
T =

c1c2c3c4c5

ϕ1ϕ2ϕ3(1 + σ1)(c5 + µηϕ4 + ηϕ3ϕ4)
,

where
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c1 = (ϕ1 + µ), c2 = (ϕ2 + σ1 + µ), c3 = (ϕ3 + σ2 + µ), c4 = (ϕ4 + σ3 + µ), and c5 = (φ5 + σ4 + µ).
We then evaluate the Jacobian of the transformed system (36) evaluated at DFE (∆3) with βT = β∗

T,
to obtain

J(∆3) =



−µ 0 0 0 −β∗
T −η1β∗

T 0
0 −c1 0 0 β∗

T η1β∗
T 0

0 ϕ1 −c1 0 0 0 0
0 0 ϕ2 −c3 0 0 0
0 0 0 ϕ3 −c4 0 0
0 0 0 0 ϕ4 0 0
0 0 σ1 σ2 σ3 σ4 −µ


.

The matrix J∗ has a simple zero eigenvalue and the remaining eigenvalues have real parts
indicating that "center manifold theory" is applicable. It is noted that matrix J∗ has a right

eigenvector given by ω = (ω1, ω2, ..., ω7)
T, where ω1 =

−(β∗Tω5−η1β∗Tω5)
µ , ω2>0, ω3 = ϕ1ϕ2

c2
,

ω5 = ϕ1ϕ2ϕ3ω3
c2c3c4

, ω6 = ϕ1ϕ2ϕ3ϕ4ω2
c2c3c4c5

, and ω7 = σ1ω3+σ2ω4+σ3ω5+σ4ω6
µ . Similarly, J∗ has left eigenvectors

V = (v1, v2, ..., v7), satisfying v.ω = 1, with v1 = 0, v2 = ϕ1v3
c1

, v3>0, v4 = c2v3
ϕ2

, v5 = c2c3ω2
ϕ3

,

v6 =
η1β∗Tϕ3ϕ1

c1c5
, and v7 = 0.

Arising from Theorem 4.1 in [30] computation of the associated non-zero partial derivatives of
f (x), evaluated at DFE (∆3), the associated bifurcation coefficients a, and b defined as

a =
∑

vkωiωj
∂2 fk

∂xi∂xj
(0, 0), and b =

∑
vkωi

∂2 fk
∂xi∂β∗

T
(0, 0),

are: a = 2v2η1βT
µ
π (ω3ω7 + ω4ω7)− 2v2η1βT

µ
π (ω2ω3 + ω3ω5 + ω3ω6 + ω2

3 + ω3ω7 + ω3ω4)−

2v2η1βT ∗ µ
π (ω2ω4 + ω4ω5 + ω3ω4 + ω4ω7 + ω2

4 + ω4ω5 + ω4ω6), and b = v2ω3 + η1v2ω4 >

0, with v2, ω2, ω3, ω4, ω5, ω6, and ω7, being positive. Consequently, due to the fact that the
bifurcation coefficient b > 0, it can be deduced from Theorem 4.1 in [30] that the TB-only model
(22) undergoes the phenomena of a backward bifurcation whenever the backward bifurcation
coefficient a > 0. This is so if

ϵ1 >
(ω2 + ω3 + ω4 + ω5 + ω6 + ω7)(ω3 + η1ω4)

ω8(ω3 + η1ω4)
= ϵ∗ (37)

holds. It should be recalled that ϵ1, stands for the modification parameter accounting for the reduc-
tion in susceptibility to tuberculosis reinfection after an infected individual has been successfully
treated for a previous tuberculosis infection. It should be noted that all parameters of model (22)
are non-zero, and β∗

T > 0. Setting ϵ1 = 0, the bifurcation coefficient a, is reduced to

a = −[2v2β∗
T

µ

π
(ω2ω3 + ω3ω5 + ω3ω6 + ω2

3 + ω3ω6 + ω3ω4)

+ 2v2η1β∗
T

µ

π
(ω2ω4 + ω4ω5 + ω3ω4 + ω4ω7ω2

4 + ω4ω6 + ω4ω6)],
(38)

with v2 > 0, ω2 > 0, ω3 > 0, ω4 > 0, ω5 > 0, ω6 > 0, and ω7 > 0, where each of them are
as defined earlier. Consequently, since b > 0, it can be deduced from Theorem 4.1 in [30] that
the TB-only model (22) does not undergo a backward bifurcation if ϵ = 0, since the backward
bifurcation coefficient a < 0. The revelation from here is that the cause of backward bifurcation in
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the model (22) is the susceptibility to tuberculosis reinfection after a successful treatment from
a previous infection. Obviously, for the TB-only model (22) to undergo backward bifurcation at
RT = 1, requires that the bifurcation coefficient a > 0, for ϵ1, is of greater value than the quantity
on the right-hand side of (37), that is ϵ1 > ϵ∗. On the other hand, if ϵ1 < ϵ∗, model (22) will not
undergo backward bifurcation at RT = 1. As a matter of fact, if ϵ1 = 0, for the TB-model (22), there
will be the existence of the phenomenon of backward bifurcation. See Figure 3 for the schematic
diagram of the phenomenon of backward bifurcation that the TB-only model (22) undergoes.

Figure 3. Bifurcation diagram of the TB-only model

Global asymptotic stability of DFE of TB-only model
In this section, we remove the cause of backward bifurcation, by setting ε1 = 0, and then show
that the given model (22) is globally asymptotically stable.

By considering model (22) with ε1 = 0, the following is claimed:

Theorem 6 The DFE of TB-only model (22) is globally asymptotically stable in Ω3, whenever the repro-
duction number RT < 1.

See the proof of this theorem in ‘’Appendix A”. The implication of Theorem 6 epidemiologically is
that a previous infection of the disease covers a lifelong immunity to reinfection of susceptible
individuals to tuberculosis. Thus, tuberculosis can ultimately be eradicated from the given human
population when the reproduction number RT < 1.
Furthermore, since with ε1 = 0, the global stability of the DFE of the TB-only model (22) follows if
RT < 1, from here, we carry out the estimates of the range of values of the treatment parameters
σ1, σ2, σ3, and σ4, for which the objectives of tuberculosis eradication is possible. When we set
RT < 1, and make the treatment parameters σ1, σ2, σ3, and σ4, the subject of the expression in the
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reproduction number of the model (22), we obtain the following:

σ1 > βTψ1ψ2ψ3
(c5 + η1ψ4)

(ψ1 + µ) (ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
− (ψ2 + µ),

σ2 > βTψ1ψ2ψ3
(c5 + η1ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
− (ψ3 + µ),

σ3 > βTψ1ψ2ψ3
(c5 + η1ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)(ψ5 + σ4 + µ)
− (ψ4 + µ),

σ4 > βTψ1ψ2ψ3
(c5 + η1ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)
− (ψ5 + µ).

(39)

If the inequalities in (39) above are satisfied, then the reproduction number RT < 1, and tubercu-
losis can be completely eradicated in the human population.
However, from the first inequalities in (39), if

βTψ1ψ2ψ3
(c5 + η1ψ4)

(ψ1 + µ) (ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
< (ψ2 + µ),

then treating individuals that are latently-infected with TB is not necessary as σ1 = 0, will result
in RT < 1. Likewise, the same results are obtained from other inequalities in (39).

4 Analysis of the co-infection model of TB-HIV

We carry out the analysis of the HIV-TB Co-infection model (5) for its basic properties as follows:

Local asymptotic stability of the DFE of the TB-HIV co-infection model

The disease free equilibrium of the TB-HIV co-infection model (5) is as given below:

D4 =
(
S+, E+, E+

L , E+
UL, I+UA, T+, R+, I+H , E+

HT, I+HU , I+HUA, I+HDA, T+
HT
)

=

(
π

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

)
.

(40)

By using the next-generation matrix method, we obtain the Local Asymptotic Stability (LAS)
of the DFE of co-infection model (5). It follows from Driessche and Watmough in [20] which is
defined by FV−1. Where F, and V, are the terms for new infection and the terms for the remainder
respectively, given as:

F =



0 0 0 βT η1βT 0 0 0 η2βT η3βT 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 βH βH ϕ1βH ϕ2βH ϕ3βH ϕ4βH
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



,
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and

V =



c1 0 0 0 0 0 0 0 0 0 0
−ψ1 c2 0 0 0 0 0 0 0 0 0

0 −ψ2 c3 0 0 0 0 0 0 0 0
0 0 −ψ3 c4 0 0 0 0 0 0 0
0 0 0 −ψ4 c5 0 0 0 0 0 0
0 0 0 0 0 c6 −σT1 −σT2 −σT3 −σT4 0
0 0 0 0 0 0 c7 0 0 0 0
0 0 0 0 0 0 0 c8 0 0 0
0 0 0 0 0 0 0 −ψHUA c9 0 0
0 0 0 0 0 0 0 0 −ψHDA c10 0
0 0 0 0 0 0 0 0 0 −ψHU c11



,

where
c1 = (ψ1 +µ), c2 = (ψ2 +σ1 +µ), c3 = (ψ3 +σ2 +µ), c4 = (ψ4 +σ3 +µ), c5 = (ψ5 +σ4 +µ), c6 =

(δ1 + µ), c7 = (ψHU + σT1 + δ2 + µ), c8 = (ψHUA + δ3 + σT2 + µ), c9 = (ψHDA + σT3 + δ4 + µ),
c10 = (ψHT + σT4 + δ5 + µ), and c11 = (σT5 + δ6 + µ).
Consequently, arising from [26], the basic reproduction number for the disease is obtained as:

RC = ρ
(

FV−1
)
= max {RH,RT} ,

where

RH =
βH

(µ + σ1)
, and RT =

βTψ1ψ2ψ3 (c5 + η1ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
.

That is,

RC =
βTψ1ψ2ψ3 (c5 + η1ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
. (41)

It should be noted that Theorem 2 in [20] gives rise to the result below.

Lemma 5 The disease-free equilibrium, (DFE), D4 of the co-infection model (5), is locally asymptotically
stable (LAS) whenever the reproduction number of the model is less than unity (RC < 1), and unstable
when RC > 1.

It is pertinent to note that the quantity RC = max{RH,RT}, is the effective reproduction number
of the co-infection model (5), in which case is previously defined. By adopting the same approach
as we did in Section 3, it can be shown that there is an exhibition of the phenomenon of backward
bifurcation at RC = 1, for co-infection model (5). It is pertinent to note that the same conclusion
is arrived at for TB-only model (22) in the previous section, that susceptibility to tuberculosis
reinfection after a successful treatment of the disease is the cause of this backward bifurcation in
the co-infection model (5).

Theorem 7 There is an exhibition of backward bifurcation at RC = 1, for co-infection model (5) whenever

ε1 >
(ω2 + ω3 + ω4 + ω5 + ω6 + ω7 + ω8) (ω3 + η1ω4)

ω8 (ω3 + η1ω4)
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holds.

For the proof of this theorem, see ‘’Appendix B”.

5 Sensitivity analysis and uncertainty analysis of TB-only model

In the TB-only model, many parameters are involved in its formulation. Therefore, expectedly,
uncertainties do arise in the estimation of the values of these parameters adopted for the numerical
simulations of the model. By adopting the approach in [16, 26, 31], using Latin hypercube sampling
(LHS), we carried out in this section, uncertainty analysis with a view to accounting for the
effect that such uncertainties have on the numerical simulation results obtained in this work.
Additionally, by using partial rank correlation coefficients (PRCC), we equally carried out a global
sensitivity analysis to quantify the impact of the variations or sensitivity of each parameter on the
associated numerical simulations.

The Latin hypercube sampling (LHS) method is adopted here by defining baseline values and
ranges for each of the parameters of the TB-only model (22), as stated in Table 3, where multiple
runs for NR = 1000, are done for the sample data for the response output [26, 31]. In this case, it
is the control reproduction number RT. It is worth mentioning that each parameter is assumed to
obey a uniform distribution [32].

On the other hand, we computed the sensitivity of the parameters in the Tuberculosis-only model
(22) by finding PRCC between each parameter and the control reproduction number RT. The
values of these PRCC values making up the effective reproduction number of the model (22) are as
given in Table 2, while Figure 4 gives the distribution of PRCC values. From the PRCC distribution
in Figure 4, it could be seen that the transmission rate for tuberculosis βT, the modification
parameters that account for the infectiousness of infected individuals with TB-only η1, and the
treatment rates for singly infected individuals with latently-infected TB, σ1, are the parameters
that play a dominant role in driving the dynamics of tuberculosis with respect to the response
function RT. It is worth mentioning that while βT, and η1, are positively correlated with the
response function RT, on the other hand, σ1, is negatively correlated with the response function
RT. The epidemiological implication of this is that tuberculosis can be effectively controlled and
eradicated by procuring all strategies that can help minimize the transmission rate of the disease,
such as measures like public awareness and educational enlightenment campaigns for susceptible
individuals always to cover their mouth when coughing or sneezing, and the need for infants to
be vaccinated against tuberculosis.

Likewise, the infectiousness of individuals with latent tuberculosis can be minimized by testing
and adequate treatment of latently infected individuals.

Table 2. PRCC values of the parameters of TB-only model (22), with RT , as the output (response function).
Parameter values and ranges used are as given in Table 3

S/N Parameters PRCC (RT)
1. βT 0.9013
2. σ1 0.0412
3. u2 -0.03712
4. σ2 -0.3124
5. ψ3 -0.4021
6. ψ2 -0.4202
7. η1 0.5633
8. σ3 -0.6234
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Figure 4. Schematic diagram of the sensitivity indices for the TB-only model (22). Values and ranges of parameters
used are as given in Table 3

6 Numerical simulation

For the illustration of some of the theoretical results obtained earlier in this study, it is necessary to
conduct numerical simulations of the co-infection model. We performed numerical simulations
of the model using the parameter values presented in the table below. The numerical simulation
of the model was carried out using MATLAB’s ODE45 solver, which is well-known for its high
convergence, consistency, and stability. The embedded numerical scheme in MATLAB, like other
computing software such as Maple, Mathematica, and Scientific Workplace, is known for its
reliability and efficiency in numerical simulations of epidemiological models.

Table 3. Values of parameters of the co-infection model (5) with the total population of Nigeria as of January 1st,
2023 estimated at 200,000,000 (real-life data as obtained from National Population Commission (NPC) of Nigeria)

Parameter Baseline (Range) Sources
π 5,000 [3,500 - 6500] year−1 [1]
µ 0.02043 [0.02034 - 0.02052]

year−1
[16]

βT(βH) 0.1 year−1 [1]
σ1, σ2, σ3, σ4 0.7, 0.7, 0.7, 0.7 year−1 [15]
σT1, σT2, σT3, σT4 0.7, 0.7, 0.7, 0.7 year−1 [15]
ψ1, ψ2, ψ3, ψ4 6, 4.18, 2.5, 3 year−1 [16]
ψHU , ψHUA, ψHDA, ψHT 6, 4.5, 3, 3 year−1 [16]
ε1, ε2 1, 1.2 [0.8-1.2, 1-1.5] Assumed
γ1, γ2 0.6, 0.8 [0-1, 0-1] Assumed
θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 3.2, 3, 3.2, 2, 2, 2, 2, 2 [2.8-3.6,

2.5-3.5, 1.7 -2.3]
[16]

η1, η2, η3 1.2, 1.3, 1.5 [1-2, 0.9-1.7, 1-2.3] [16]
ϕ1, ϕ2, ϕ3, ϕ4 1.3, 1.7, 1.2, 1.1 [1-1.6, 1-2.4,

0.8-1.6, 0.7-1.5, 0.75-1.25]
[16]

δ1, δ2, δ3, δ4, δ5, δ6 0.08, 0.05, 0.8, 0.1, 0.1, 0.01
year−1

[15]
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(a) Incidence of diagnosed latently infected
individuals with TB with the effect of σ1

(b) Incidence of diagnosed latently infected
individuals with TB with the effect of σ2

(c) Incidence of diagnosed latently infected
individuals with TB with the effect of σ3

(d) Incidence of diagnosed latently infected
individuals with TB with the effect of σ4

Figure 5. Incidence of diagnosed latently infected individuals with TB with the effect of σ

(a) Cumulative number of new cases of dually
infected HIV-TB with the effect of σT3

(b) Cumulative number of new cases of dually
infected HIV-TB with the effect of σT4

Figure 6. Cumulative number of new cases of dually infected HIV-TB with the effect of σ
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(a) Cumulative number of new cases of TB with
the effect of σ1

(b) Cumulative number of new cases of
Tuberculosis with the effect of σ3

(c) Cumulative number of new cases of TB with
the effect of σ4

Figure 7. Cumulative number of new cases of TB with the effect of σ

Discussion of numerical simulation of the model

For the simulation of the co-infection model for dually infected individuals with the two diseases
TB and HIV, from Figure 5a, it is observed that there is a steady rise in the number of cumulative
cases for dual infection until day eighteen when it flattens out with a slight drop in its values as
the treatment rate σT1 increases. Likewise, from Figure 5b, it is observed that there is a steady rise
in the number of cumulative cases of dually infected individuals with the two diseases until about
day twenty, for an increase in treatment rate σT2, accompanied by a slight drop in the values of
the cumulative number of new cases of dually infected individuals. However, as observed from
Figure 5c, there is a significant effect of the treatment rate σT3 on the cumulative number of new
cases of dually infected individuals of HIV-TB. As the treatment rate increases, it is accompanied
by a drop in the values of the cumulative number of new cases of infections of individuals infected
with both diseases. The same effect is observed for the treatment rate σT4 on the cumulative
number of new cases of individuals infected with both diseases, as seen in Figure 5d.
From Figure 6a, it can be seen that the cumulative number of new cases of TB rises steadily until
day three when it flattens out with an increase in the values of the treatment rates σ1. In Figure 6b,
we observe that the cumulative number of new cases of TB rises generally and starts flattening out
almost immediately with a drop in the values of the cumulative number of new cases of TB as the
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treatment rate σ2 increases. Similarly, there is a significant effect of treatment rate σ4 on the value
of the cumulative number of new cases of TB, which drops as the treatment rate is increased.
The reproduction number RC for the TB-HIV co-infection model (5) is 0.0715997. As shown
in Figure 7a, where we plotted the incidence of diagnosed latently infected individuals with TB
with the effect of treatment rate σ1, there was a general steady rise in the first two days followed by
a decline until day ten, when it flattens out as the treatment rate increases. From Figure 7b, it can
be observed that the incidence of diagnosed latently infected individuals decreases steadily until
day seven when it flattens out as the treatment rate σ2 decreases in value. Similarly, in Figure 7c,
the incidence of diagnosed latently infected individuals decreases from day one and flattens out
immediately as the treatment rate σ3 increases. The implication of this is that as the values of the
treatment rates σ1, σ2, and σ3 increase, there is a decrease in the incidence of the disease, ultimately
bringing the disease under control.

7 Findings from the research work

The major findings from this work are:

• The HIV-only model possesses a locally asymptotically stable disease-free equilibrium whenever
the associated reproduction number RH is less than unity.

• The co-infection model (5) and the TB-only model (22) undergo the phenomenon of backward
bifurcation due to susceptibility to TB re-infection after recovery from previous tuberculosis
infection. The implication of this is that the classical requirement that the reproduction number
of the disease be less than unity, though still necessary for disease control, is no longer sufficient
for its control, meaning that more strategies are needed to be procured for effective control of
the disease in the given population.

• When the cause of backward bifurcation is removed from the TB-only model and the co-infection
model, the disease-free equilibrium of the TB-only model and co-infection model is shown to be
locally asymptotically stable when the associated reproduction number RT is less than unity.

• The disease-free equilibrium of the TB-only model and that of the co-infection model are each
shown to be locally asymptotically stable when the associated reproduction number RT and
RC respectively are not up to unity.

• From the sensitivity and uncertainty analysis of the TB model, it could be seen that the trans-
mission rate for tuberculosis βT, the modification parameters accounting for the infectiousness
of infected individuals with TB-only η1, and the treatment rates for singly infected individuals
with latently-infected TB, σ1 are the three top drivers of tuberculosis infection in the given
population.

• From the numerical simulation of the model, it could be seen that different treatment rates
have a significant effect on the reduction of the incidence of tuberculosis infection and on the
cumulative number of new cases of TB-HIV co-infection.

Of importance is the revelation that through this work, it has been shown that with adequate
treatment of tuberculosis, even though there is currently no treatment available for HIV, the
burden of the co-infection of the two diseases will be significantly reduced in the population. It is
pertinent to note that this work has made a modest contribution to the control of the spread of
tuberculosis and HIV in a population where both diseases are co-circulating.

8 Recommendations

The primary purpose of research in mathematical epidemiology is to provide healthcare policy-
makers with evidence-based recommendations that can guide the formulation of effective policies
for controlling the spread of contagious diseases and reducing the burden of disease in both
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human and animal populations. With this objective in mind, it is essential to present actionable
recommendations that can be readily utilized by healthcare policymakers. Below are some crucial
recommendations:

• Every effort must be made to launch a comprehensive educational campaign aimed at individu-
als who are susceptible to TB. The campaign should emphasize the importance of consistently
covering their mouths when coughing or sneezing in public spaces. Additionally, ensuring that
infants receive vaccination against the disease should be a priority.

• It is essential to implement a highly visible awareness program targeting all members of
communities. This program should stress the significance of practicing safe sexual activities by
consistently using condom protection during sexual encounters.

• A comprehensive educational awareness campaign is crucial for educating all individuals about
the importance of being cautious to avoid contact with bodily secretions and droplets from
infected patients. Additionally, it is essential to implement appropriate measures to prevent the
vertical transmission of these diseases.

• A campaign should be initiated to encourage regular screening for both diseases among indi-
viduals. It is imperative that infected individuals seek prompt medical attention as soon as they
are aware of their status.

9 Conclusion

In this research work, we developed a co-infection model to gain insights into the transmission
of HIV-Tuberculosis in a human population where HIV treatment is not readily available but
tuberculosis treatment is accessible. We rigorously analyzed both the HIV-only and TB-only
models to understand their fundamental properties. Subsequently, we extended our analysis to
the co-infection model.
The key contributions in this work are:

• We show that the disease-free equilibrium of the sub-models and the full co-infection model
were locally asymptotically stable.

• We conducted a rigorous analysis of the reproduction number to identify parameters that can
reduce the spread of the disease.

• We conducted the sensitivity analysis to identify key parameters that drive the infectiousness of
each of the diseases and that which is of great influence on the co-infection of both diseases.

• The theoretical results were validated appropriately with numerical simulations, and the plots
from the simulations were extensively interpreted.

• We plotted contour plots involving key parameters and the reproduction numbers for the
diseases with a view to determining the threshold for control and measures that can help
eradicate the disease from the human population.

Specifically, by using parameter values sourced from existing literature and employing the MAT-
LAB programming language, we conducted numerical simulations of the model, allowing us to
validate the theoretical results obtained from the model analysis. Our findings revealed that a
specific subgroup of individuals, those with varying treatments for tuberculosis, plays a pivotal
role in significantly reducing the disease burden caused by co-infection. Notably, our simulations
highlighted that targeting treatment towards individuals with tuberculosis in the diagnosed latent
infection stage (whether singly or dually infected with HIV) is an effective strategy for reducing
both the co-infection disease burden and HIV incidence within the studied population. This
work’s merit lies in demonstrating the promising potential for controlling co-infection when HIV
treatment is not readily accessible.
Furthermore, the outcomes of this study can be valuable for healthcare policymakers, especially
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in regions with limited healthcare resources. In societies where tuberculosis treatment, albeit occa-
sionally scarce, is available while HIV treatment is not, our results suggest that careful application
of these findings can aid in formulating robust public awareness campaigns and disease control
strategies. Ultimately, this approach has the potential to reduce the incidence and prevalence of
both HIV and tuberculosis in populations where these diseases co-circulate.
The formulation of our model has a notable limitation: it does not account for the simultaneous
transmission of both diseases from the same source. We acknowledge that this is a potential
scenario, as suggested by the findings of Ciesielski et al. [33], where they demonstrated the
possibility of an individual acquiring both HIV and Hepatitis C virus (HCV) from a single source.
As an area for further contribution to knowledge by other researchers, this work can be extended
by incorporating time-dependent control functions into the proposed model. This extension
would yield a model with optimal control, facilitating the development of optimal strategies for
preventing the spread of the disease within the given population and implementing other strate-
gies to mitigate the disease burden. Furthermore, the model proposed herein can be reformulated
as a fractional-order model, incorporating fractional-order derivatives. The resulting system of
nonlinear fractional-order derivatives can be solved using appropriate methods, such as Laplace
Adomian decomposition or other techniques commonly employed for solving fractional-order
models.

Declarations

Ethical approval

The authors hereby state that the project is in compliance with ethical standards. This research
does not involve human or animal participants.

Consent for publication

Not applicable

Conflict of Interest

The authors hereby declare that there are no known competing interests.

Data availability statement

Data availability is not applicable to this research work, as no new data was created or analyzed
in the work.

Authors’ contributions

B.B.: Conceptualization, Project administration, supervision, Model analysis. T.O.: Compliment in
model formulation, Joined in model analysis. AC: Coding for numerical simulation, Script writing,
O.U. and O.B.: Model validation, Interpretation of plots. The authors have read and agreed to the
published version of the manuscript.

Acknowledgements

The authors hereby express their appreciation to the reviewers for their constructive comments
and valuable contributions that have helped to improve the manuscript.



Bolaji et al. | 51

Appendix A: Proof of Theorem 6

Proof Consider the following linear Lyapunov function

g2 = ψ1 (c3 + ψ2η1) E + c1 (c3 + ψ2η1) IUA + c3c3c3T.

With Lyapunov derivatives

ġ2 = (IUA + η1T)
[

βTS
N

(ψ1 (c3 + ψ2η1)− c1c2c3)

]
,

ġ2 = c1c2c3 (IUA + η1T)
[
S/NRT − 1

]
.

By taking note that S(t) ≤ N(t), and N(t) ≤ π/
µ, in Ω2, for all t > 0, it follow from the above that

ġ2 = c1c2c3 (IUA + η1T) (RT − 1).

Hence, ġ2 ≤ 0, if RT ≤ 1, with ġ2 = 0, if and only if E = EL = EUL = IUA = T = R = 0.
Therefore, ġ2, is a Lyapunov function in Ω2, and it follows from Lasalle’s invariance principle [34]
that every solution to the equations in TB-only model (22) with initial conditions in Ω2, converges
to ξ, as t → ∞. That is, (E(t), EL(t), EUL(t), IUA(t), T(t), R(t)) → (0, 0, 0, 0, 0, 0), as t → ∞. By
substituting E = EL = EUL = IUA = T = R = 0, into the first equation in model (22) with S(t) →
π/

µ, as t → ∞. Therefore (S(t), E(t), EL(t), EUL(t), IUA(t), T(t), R(t)) → (
π/

µ, 0, 0, 0, 0, 0, 0
)

, as
t → ∞, for RT ≤ 1, so that the DFE, ξ, of TB-only model (22) is locally asymptotically stable in Ω2,
when RT ≤ 1.

Appendix B: Proof of Theorem 7

Proof For convenience, let S = x1, E = x2, EL = x3, EUL = x4, IUA = x5, T = x6, R = x7, IH = x8,
EHT = x9, IHU = x10, IHUA = x11, IHDA = x12, and THT = x13. It then follows that the model (22)
can be rewritten as:

ẋ1 ≡ f1 = π −
βT (x5 + η1x6) x1

N
−

βHx8x1

N
−

βT (η2x11 + η3x12) x1

N

−
βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x1

N
− µx1,

ẋ2 ≡ f2 =
βT (x5 + η1x6) x1

N
−

βT (η2x11 + η3x12) x1

N
+

ε1βT (x5 + η1x6) x7

N
+

βT (η2x11 + η3x12) x7

N

−
βHx8x2

N
−

ε2βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x2

N
− c1x2,

ẋ3 ≡ f3 = ψ1x2 −
ϕ1βHx8x3

N
−

ϕ2βT (η2x11 + η3x12) x3

N
− c2x3,

ẋ4 ≡ f4 = ψ2x3 −
ϕ3βHx8x4

N
−

ϕ4βHx8x4

N
− c3x4,

ẋ5 ≡ f5 = ψ3x4 −
ϕ5βHx8x5

N
−

ϕ6βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x5

N
− c4x5,

ẋ6 ≡ f6 = ψ4x5 −
θ7βHx8x6

N
−

ϕ8βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x6

N
− c5x6,

(42)
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ẋ7 ≡ f7 = σ1x3 + σ2x4 + σ3x5 + σ4x6 −
ε1βT (x5 + η1x6) x7

N
−

ε2βT (η2x11 + η3x12) x7

N

−
βHx8x7

N
−

ε2βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x6

N
− µx7,

ẋ8 ≡ f8 =
βHx8x1

N
+

βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x1

N
−

ψ1βT (x5 + η1x6) x7

N

+
βHx8x1

N
+

βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x6

N
−

ψ2βT (η2x11 + η3x12) x8

N
+ σT1x9 + σT2x10 + σT3x11 + σT4x12 + σT5x13 − c6x8,

ẋ9 ≡ f9 =
σ1βT (x5 + η1x6) x8

N
+

σ2βT (η2x11 + η3x12) x8

N

+
βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x6

N
− c7x9,

ẋ10 ≡ f10 = ψHUx9 +
θ1βHx8x3

N
+

θ2βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x3

N
− c8x10,

ẋ11 ≡ f11 = ψHUAx10 +
θ3βHx8x4

N
+

θ4βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x4

N
− c9x11,

ẋ12 ≡ f12 = ψHDAx11 +
θ5βHx8x5

N
+

θ6βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x5

N
− c10x12,

ẋ13 ≡ f13 = ψHUx12 +
θ7βHx8x6

N
+

θ8βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x6

N
− c11x13,

(43)

where N = x1 + x2 + x3 + x4 + x5 + x6 + x7. The Jacobian of the transformed system evaluated at
DFE is given by:

J∗ (ξ0) =

(
J1(7×7) J2(7×6)
J3(6×7) J4(6×6)

)
,

where

J1 =



−µ 0 0 0 −β∗
T −η1β∗

T 0
0 −c1 0 0 β∗

T η1β∗
T 0

0 ψ1 −c2 0 0 0 0
0 0 ψ2 −c3 0 0 0
0 0 0 ψ3 −c4 0 0
0 0 0 0 ψ4 −c5 0
0 0 σ1 σ2 σ3 σ4 −µ


,

J2 =



β∗
H β∗

H − (η2β∗
T + ϕ2β∗

H) − (η3β∗
T + ϕ3β∗

H) −η2β∗
T −η3β∗

T
0 0 η2β∗

T η2β∗
T 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,
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J3 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

J4 =



β∗
H − c6 β∗

H ϕ1β∗
H + σT1 ϕ2β∗

H + σT2 ϕ3β∗
H + σT3 ϕ4β∗

H + σT4
0 −c7 0 0 0 0
0 ψHU −c8 0 0 0
0 0 ψHUA −c9 0 0
0 0 0 ψHDA −c10 0
0 0 0 0 ψHT −c11


.

We consider the case with βT = β∗
T, a bifurcation parameter. By solving for βT = β∗

T, from RT,
yields:

β∗
T =

c1c2c3c4c5

ψ1ψ2ψ3 (1 + σ1) (c5 + µηψ4 + ησ2ψ4 + ηψ3ψ4)
,

where c1 = (ψ1 + µ), c2 = (ψ2 + σ1 + µ), c3 = (ψ3 + σ2 + µ), c4 = (ψ4 + σ3 + µ), and c5 =

(ψ5 + σ4 + µ).
It is noted that matrix J∗ (ξ0), has a right eigenvector given by: w = (w1, w2, ...w13)

T, where

w1 =
−(β∗Tw5−η1β∗Tw5)

µ , w2 > 0, w3 = ψ1w2
c2

, w4 = ψ1ψ2w2
c2c3

, w5 = ψ1ψ2ψ3w2
c2c3c4

, w6 = ψ1ψ2ψ3ψ4w2
c2c3c4c5

,

w7 = σ1w3+σ2w4+σ3w5+σ4w6
µ , w8 = w9 = w10 = w11 = w12 = w13 = 0.

Similarly, the component of the left eigenvectors of J∗ (ξ0)|βT=β∗T
,v = (v1, v2, ...v13), satisfying

v.w = 1, are
v1 = 0, v2 = ψ1v3

c1
, v3 > 0, v4 = c2v3

ψ2
, v5 = c2c3w2

ψ3
, v6 =

η1β∗Tψ3ψ1
c1c5

, v7 = v8 = v9 = 0, v10 =
ψUAv11

c8
, v11 =

ψHUAv12+ϕ2β∗Tv2
c9

, v12 = v13 = 0. It then follows from Theorem 4.1 in [30] that by
computing the associated nonzero partial derivatives of f (x), evaluated at the DFE (D3), the

associated bifurcation coefficients a, and b, are defined as: a =
∑n

k,i,j=1 vkwiwj
∂2 fk

∂xi∂xj
(0, 0), and

b =
∑n

k,i,j=1 vkwi
∂2 fk

∂xi∂β∗T
(0, 0), are computed to be:

a = 2v2ε1β∗
T

µ

π
(w3w7 + ϕ1w4w7)

−2v2β∗
T

µ

π

(
w2w3 + w3w5 + w3w6 + w3w7 + w2

3 + w3w7 + w3w4

)

−2v2η1β∗
T

µ

π

(
w2w4 + w4w5 + w3w4 + w3w7 + w2

4 + w4w5 + w3w6

)
,

and

b = v2w3 + η1v2w4 > 0,
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with v2, w2, w3, w4, w5, w6, and w7, being positive. Consequently, since the bifurcation coefficient
b > 0, it can be deduced from Theorem 4.1 in [30] that TB-only model (22) undergoes a backward
bifurcation if the backward bifurcation coefficient a > 0. This is so if,

ε1 >
(ω2 + ω3 + ω4 + ω5 + ω6 + ω7) (ω3 + η1ω4)

ω8 (ω3 + η1ω4)
.

Obviously, if ε1 = 0, then a < 0, and HIV and TB co-infection model (5) will not undergo backward
bifurcation at RC = 1.
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