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1. Introduction

Abstract

The increasing demand for water in recent decades has led to continuous exploitation
and mismanagement of groundwater resources worldwide. This has often resulted in the
reduction of the water table and deterioration of water quality due to non-sustainable
consumption and excessive extraction practices. To address these issues, it is very crucial
to analyse Groundwater Potential (GWP) zones periodically. In this study, Geographic
Information System (GIS) and Remote Sensing (RS) techniques coupled with Analytical
Hierarchy Process (AHP), Multi Influencing Factor (MIF), and Random Forest (RF)
algorithm have been used to define GWP zones. These methods helped to identify, weigh,
and rank eleven major hydrogeological factors influencing groundwater potential
(GWP). A novel application of the RF algorithm utilized to generate high-resolution GWP
maps outperformed AHP (0.875) and MIF (0.828) with a Receiver Operating
Characteristic (ROC) of 0.982 in GWP delineation, as assessed by the Area Under the
Curve (AUC) analysis. The outcome from AHP, MIF, and RF methods revealed that around
60-70% of the study area showed poor to fair GWP while only 30- 40% of the area
exhibited good to excellent GWP. The results revealed that a significant portion of the
study area exhibits poor to fair GWP, highlighting the urgent need for sustainable GW
management strategies. These findings provide valuable insights for policymakers and
local farmers to make informed decisions on sustainable GW management plans tailored
to the specific needs of the study area.

groundwater, coupled with inadequate governance
to manage it, has led to the over-exploitation of

Humanity relies on water for drinking and
carrying out daily activities, making it essential for
the evolution of human civilization. The significant
rise in the global population over the past few
decades has created a large demand for the world's
available freshwater supplies [1-2]. To address this
increasing water demand, groundwater has been
identified as one of the key sources of freshwater for
domestic, industrial, and agricultural uses [3]. In
developing  countries like India, = where
approximately 65% of its population depends on
agriculture, the accessibility and reliance on
groundwater play a crucial role for living [4-5].
Consequently, the growing demand for
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groundwater in various parts of the country,
reducing groundwater levels and contributing to the
water crisis [6].

In addition to over-exploitation, human-induced
land use changes, erratic rainfall patterns, etc.
remarkably influence groundwater availability [7-8].
Furthermore, hard rock formations limit
groundwater accessibility due to their sparse pore
spaces, which restrict water movement [9].
Addressing these challenges requires sustainable
groundwater management techniques, particularly
in countries like India. Effective monitoring and
management of groundwater resources can be
achieved through groundwater potential (GWP)
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zone mapping using Geographic Information
Systems (GIS) and remote sensing (RS) techniques
[10]. These technologies integrate geographical data
collected at different spatial and temporal scales to
assess groundwater recharge potential and inform
decision-making [11]. GIS and RS can quickly help in
problem-solving in real-world situations by
providing high-resolution satellite datasets with
higher accuracy along with efficiency in saving time
and cost. GIS and RS coupled with Multi-Criteria
Decision Analysis (MCDA), statistical models, and
machine learning (ML) techniques can efficiently
identify GWP zones as well as other risk areas [12-
13]. These methods streamline the process, reduce
time and costs, and maintain high accuracy by
evaluating various factors that influence
groundwater potential (GWP), and assigning ranks
and weights based on their impact [14]. Common
MCDA techniques include Analytical Hierarchy
Process [15-17], Multi-Influencing Factor [18-19],
Random Forest [20-22], Frequency Ratio [19,23],
and Drastic method [24].

In the assessment of GWP at micro-planning
levels such as blocks, prior studies have primarily
focused on larger geographical areas like districts,
states, or large river basins. These studies commonly
rely on secondary data for easier validation and
higher accuracy, despite challenges posed by data
scarcity from low-resolution RS imagery and
inadequate meteorological data [25]. Notably, NRSC
ISRO used LISS-11I datasets with a resolution of 23.5
m in 2011 to carry out their most recent authorized
mapping of GWP zones in the research area.

The study area considered in this work has along
history of water scarcity, accompanied by
groundwater-dependent poor agricultural practices
and increasing population pressure capability have
led to a high demand for water against its lesser
availability. Therefore, there is a keen need for a
highly equipped strategy to cope with these
challenges and effectively bridge the gap between
water availability and demand. In order to achieve
this target, identifying the potential zones of
groundwater  availability and its  proper
management is highly recommended which can only
be achieved through modelling the GWP using
proper statistical and GIS-based techniques [26]. The
present work has employed three widely recognized
methodologies, Analytical Hierarchy Process (AHP),
Multi Influencing Factor (MIF), and Random Forest
(RF), to identify the GWP in the Sarenga block of
Bankura district, West Bengal in India. It also has
attempted to perceive the best method suitable for
delineating the GWP. This study integrated various
physio-climatic factors derived from RS datasets and
ancillary datasets, such as geomorphology, geology,
rainfall, drainage, soil topography, land use and land
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cover (LULC) and groundwater level data within the
three methods to understand their role in
groundwater potential and its variability in the study
area. The outcome of this data-driven approach
tailored to Sarenga's unique hydrogeological setting
will help in micro-level planning and management of
groundwater. The insights gained contribute to a
more sustainable approach to groundwater
management, aligning local groundwater potential
with regional conservation and land management,
resource  planning goals, and agricultural
applications using GIS and Remote sensing in areas
with similar hydrogeological set-ups.

2. Method

2.1 Study Area

The current research focuses on the Sarenga
development block in the Bankura district of West
Bengal shown in Figure 1. Geographically, it is
situated between 86°55'37" E to 87°44'20" E and
22°38'55" N to 22°54'27" N, encompassing an area
of approximately 224 km?. Sarenga is bordered by
Raipur block to the west, Simlapal block to the north
and northeast, and West Medinipur district to the
south and southeast. The region experiences an
average annual rainfall of about 1386 mm.
Topographically, the terrain is highly dissected, with
an average slope of approximately 10-20 m/km.
Geologically, it features lateritic and older alluvium
strata from the Pleistocene era, supporting
groundwater in confined to semi-confined states.
Drilled wells in the area are typically 10 to 15 meters
deep and 3 meters in diameter [27]. The land is
drained by the Kansabati River on its western side,
an area with promising agricultural prospects. In
contrast, the eastern side lacks a reliable water
supply for irrigation and depends on seasonal rain,
canals, and groundwater. Sarenga block along with
the whole Bankura district has witnessed population
growth, modernization of agricultural activities, and
urbanization in past two decades. Despite the

expansion of economic development and
employment opportunities, challenges in
sustainable groundwater management, climate

adaptation, and future resilience persist. The Rajiv
Gandhi National Groundwater Mission had played a
pivotal role in afforestation, enhanced irrigation, and
modern farming methods for improving
groundwater management. According to Central
Ground Water Board’s (CGWB) report 2022 [28],
these initiatives have benefited crops such as paddy
and maize, reducing dependency on monsoon rains
in the study area.
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Figure 1. Location map of the Sarenga development block

2.2 Material Sources

The study area's base map was created using a
1:50,000 scale topographicmap (73]/13,73]/14,73
N/1, and 73 N/2) obtained from the Survey of India
(SOI). Eleven physio-climatic factors contributing to
the Groundwater (GW) recharge were selected.
Some of them were obtained from RS imageries like
drainage density (DD), lineament density (LD), slope
(SL), land use and land cover (LULC), and the
topographic wetness index (TWI), while some of the
datasets obtained either in grided, image and vector
form, which were later digitized and processed in GIS
environment to be used in this work like
geomorphology (GM), geology (GG), rainfall (RF),
soil texture (ST), pre-monsoon and post-monsoon
water levels (WL PRM & WL PM). Data for these
factors were collected from secondary sources,
processed, and converted into raster layers using
QGIS. The GM map was created from Bhukosh GSI
maps at a 1:250,000 scale and refined with a
groundwater prospect map from NRSC ISRO. The GG
map was based on the Geological Survey of India's
district resource map at the same scale. RF data
ranging from 1901 to 2022, obtained from the Indian
Meteorological Department (IMD) Pune, were
assessed to create the rainfall map. DD, LD, SL, and
TWI maps were derived from ALOS PALSAR DEM
data obtained from the Alaska Satellite Facility with
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a resolution of 12.5 x 12.5 meters. The ST map was
digitized from the ICAR NBSS and LUP's data of
Bankura district. Additionally, the Sentinel-2
satellite image for the year 2022 was utilized to
develop the LULC map which was subsequently
validated using the Kappa-coefficient. Groundwater
level fluctuation maps for pre- and post-monsoon
periods were created using 2022 data from Water
Resource Information System managed by Central
Ground Water Board, India. Finally, actual
groundwater (GW) yield data for validation were
obtained from a 1:50,000 scale groundwater
prospect map prepared by NRSC ISRO in 2022 using
regional average annual ground truth observation,
and available on the West Bengal Public Health
Engineering Department portal.

2.3 Methods

The methodologies used in this study are
depicted with the help of a flowchart in Figure 2.
Some important methods applied in this study are
briefly discussed.

2.3.1 Lineament and Drainage Density Map

The lineament and drainage density for the study
region were prepared using the RS dataset in the
form of ALOS PALSAR DEM acquired from the Alaska
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Satellite Facility in QGIS. The following formulas
have been used to calculate the (Ld) lineament
density [29] and (Da) drainage density:

Zi=gn L)

Ly = 2= (1)
Xi=1n (D)

Dy = =@, )

where Y L; = sum of all the lineament length in
kilometer, ) Di = total of all stream lengths in km, and
A = Area in km?.

2.3.2 Analytical Hierarchy Process (AHP)

The AHP technique evaluates multiple elements
based on their relative importance using expert
knowledge from literature reviews [30-31]. It
assigns weights and ranks to parameters, creating an
eigenvalue pairwise comparison matrix. The rank
and weight of each parameter are determined by its
relative importance to others, assessed using Saaty's
absolute scale from 1 to 9, where 1 indicates equal
importance and 9 indicates extreme importance
[32]. This scale constructs the pairwise matrix
(Table 1) and the normalized pairwise matrix using
the following equation:

]

Nij =5 (3)

where Nij represents the normalized cell value
for each cell, Iij is the individual cell weight, }Ijis the
total weight of the corresponding column in that cell.

Normalized weights are calculated from the
normalized pairwise matrix by using the following
formulae:
Nw = 2, 4)

where Nw denotes the normalized weight of each
parameter, )'Nij indicates the sum of normalized
weights of the row and represents the number of
factors analyzed.

Following the creation of a normalized pairwise
matrix, the Consistency Ratio (CR) and Index (CI)
were computed, with the following equations:

cR=4 5)
where RI for Randomness Index.
clr =, (6)

where Amax denotes the principal eigenvalue and
n represents the number of factors considered. The
results are derived using the mentioned formulas.
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Figure 2. Flow chart of methodologies adopted for groundwater potential zone mapping.



International Journal of Engineering and Geosciences- 2026; 11(2); 301-320

Table 1. Pairwise comparison matrix table for AHP

Factors GM GG RF DD LD ST SL LULC WLPRM WLPM TWI
GM 1 2 3 2 2 3 3 6 6 5 4
GG 12 1 2 3 2 4 3 2 6 5 5
RF 1/3 1 1 3 3 3 4 3 5 5 5
DD 1/2 1/3 1/3 1 3 4 4 2 4 3 4
LD 1/2 1/2 13 1/3 1 4 4 2 4 5 2
ST 1/3  1/4 1/3 1/4 1/4 1 2 3 3 3 2

SL 1/3 1/3  1/4 1/4 1/4 1/2 1 2 3 2 3
LULC 1/6 1 13 1/2 172 173 1 1 3 2 2
WL 1/6 1/6  1/5 1/4  1/4 1/3 1/3 1/3 1 1 3
PRM

WLPM 15 1/5 1/5 1/3  1/5 13 172 1/2 1 1 4
TWI 1/4 1/5 1/5 1/4 1/2 1/2 1/3 1/2  1/3 1/4 1
Sum 428 598 818 1117 1295 21.00 2267 2233 3633 3225  35.00

2.3.3 Multi Influencing Factor (MIF)

The MIF approach is an MCDA method where
various influencing factors are evaluated based on
their mutual relationships and impact strengths.
Factors with significant influencing capability are
assigned a score of 1, while those with moderate to
low influence are assigned with 0.5. Conversely,
higher scores indicate stronger influencing
capabilities. The proposed value of a factor is
determined by aggregating all significant and

moderate effects (18). Table 2 presents the assigned
scores for all parameters in this study. The following
equation computes the cumulative score for each
parameter:

A+B
Introduced Score = ST x 100, (7

where A represents the significant influence
between two parameters, while B denotes the minor
influence between them. Figure 3 illustrates the
relative interdependence among the multiple
influencing factors.
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Figure 3. The flowchart outlines the inter-relationship between all the influencing factors and their effects
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Table 2. Major and minor effects for obtaining introduced score in MIF

Factors Major Effect (A) Minor Effect (B) Proposed Value (A + B) Assigned Score
GM 1+1+1+1+1+1 0.5+0.5 7 19
GG 1+1+1+1+1 0.5+05+0.5 6.5 18
RF 1+1+1+1+1 0.5+05+0.5 5.5 15
DD 1+1 0.5 2.5 7
LD 1+1 0.5+0.5 3 8
ST 1+1 0.5+0.5 3 8
SL 1+1+1 0.5 3.5 10
LULC 1+1 0.5 2.5 7
WL PRM 0.5 0.5 2
WL PM 0.5 0.5 2
TWI 1 0.5 1.5 4
Sum 36 100

2.3.4 Random Forest (RF)

The RF model enhances accuracy and reduces
overfitting by aggregating multiple decision trees
trained on random data subsets [33]. It is effective
for both classification and regression tasks, capable
of estimating feature importance and handling noisy
datasets, making it ideal for GWP assessment.
Despite its computational demands, it offers robust
performance and interpretability, although it may be
less precise than complex models like gradient
boosting machines or neural networks [34]. Notably,
RF excels in analysing intricate spatial relationships
in hydrogeological studies [33, 35].

The Google Colab open-sourced Python API was
used to facilitate the GWP map creation using RF
model. For supervised learning, we utilized a feature
class with categorized GWP points, mapped to
numerical values (from ‘excellent’ as 0 to ‘poor’ as 3).
Raster values were extracted to form a feature
matrix (X_train), with labels (y_train) derived from
ground truth data shapefile. To optimize the model,
tuning parameters such as the number of trees
(n_estimators), tree depth (max_depth), and
min_sample_leaf, min_samples_split have been
employed. GridSearch Cross-Validation (using
cross_val_predict) validated the model’s

Table 3. Parameters weightage in AHP and MIF method

performance through confusion matrices and
classification reports [36-38]. The best-performing
configuration included n_estimators=200,
max_depth=None, min_samples_leaf=1, and
min_samples_split=2.

A three-fold cross-validation with 36 random
points ensured robust performance estimates. The
RF model achieved an overall classification accuracy
of 78%. Class-wise precision, recall, and F1-scores
were highest for 'excellent' and 'poor' GWP zones,
indicating strong discriminative performance.
Finally, the trained RF model predicted GWP classes
across the entire study area.

2.3.5 GWP maps in AHP and MIF

Integrating all thematic layers created from the
RS and ancillary datasets is vital for GWP
demarcation before doing that, the digitization and
reclassification of these layers is a significant need in
the zonation process which was exclusively done in
the QGIS environment. To ensure uniformity, all
raster layers were resampled to the same pixel size.
The appropriate weights were assigned to each
thematic layer as shown in Table 3, and each sub-
class of the layers was given a suitable rank.

Factor Parameter AHP weight MIF weight GWP Rank

GM Lateritic Plain - Lithomarge Clay 20 19 Fair 5
Dissected Lateritic Upland Poor 3
Granitoid Gneiss -Valley Fill Shallow Good 7
Alluvium Plain Young - sand and silt Excellent 8
Alluvium Channel Bar - Sand Dominant Excellent 9
Alluvium Plain Older - sand, silt and clay Good 7
Laterite - Valley Fill Shallow Fair 5

GG Laterite 17 18 Fair 5
Sand, silt and clay Good 6
Clay impregnated with caliche Good 7
Sand and silt Good 6
Alternating layers of sand, silt and clay Excellent 9
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Newer alluvium Good 7
Mica schist, occasionally garnet ferrous Good 6
RF (mm) 1305 -1321 15 15 Fair 5
1321-1330 Good 6
1330 - 1337 Good 7
1337 - 1344 Excellent 8
1344 -1351 Excellent 9
DD (km/km?) 0-1.51 12 7 Fair 5
1.51-3.28 Good 6
3.28-5.05 Good 7
5.05-7.27 Excellent 8
7.27-12.92 Excellent 9
LD (km/km?) 0-031 10 8 Poor 3
0.31-0.81 Poor 3
0.81-1.28 Fair 4
1.28-1.84 Fair 5
1.84-3.14 Good 6
ST Waterbody 6 8 Excellent 9
Gravelly sandy clay-Clay loam to sandy clay Fair 5
loam
Clay loam to clay-Clay Fair 4
Sandy-Loamy sand to sandy loam Excellent 8
Gravelly sandy loam-Gravelly sandy loam Good 6
Sandy clay loam-Clay loam to sandy clay loam Good 7
Sandy clay loam to sandy clay Fair 5
Sandy loam to clay loam-Gravelly sandy clay Excellent 8
SL (degree) 0-1.35 5 10 Excellent 8
1.35-3.37 Good 7
3.37-5.23 Good 6
5.23-7.84 Fair 5
7.84 -20.15 Fair 4
LULC Built-up area 5 7 Poor 3
Vegetation Excellent 8
Agriculture Excellent 9
Waterbody Excellent 9
Bare land and sand Fair 4
WL PRM (mbgl) 6.58 - 7.67 3 2 Good 7
7.67 - 8.46 Good 6
8.46 - 9.44 Fair 5
9.44-10.57 Fair 4
10.57 -11.90 Poor 3
WL PM (mbgl) 2.34-2.80 4 2 Excellent 9
2.80-3.17 Excellent 8
3.17 -3.50 Good 7
3.50-3.89 Good 6
4.89-4.43 Fair 5
TWI 3.56-6.58 3 4 Fair 4
6.58 -8.43 Fair 5
8.43-10.56 Good 6
10.56 - 13.44 Excellent 8
13.44 - 21.05 Excellent 9
Finally, a weighted overlay analysis using the GWP =Y (M; X N;), (8)
following formulae was performed to integrate all Where, GWP stands for Groundwater Potential, n
thematic layers and generate the GWP map for the is the number of influencing factors, M; is the

study region:
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thematic layer weight, N; is the thematic layer rank
and i represents every influencing factor considered.

2.3.6 Data Limitation

Despite rigorous data preparation and validation,
still there are possibility of some uncertainties and
limitations. DEM-derived layers (slope, drainage
density, lineament density, and TWI) may carry
vertical and horizontal errors that affect derived
indices. Rainfall interpolation using IDW, based on a
moderate density of IMD stations, may not fully
capture localized variability. Geology and soil texture
maps (1:250,000 scale) may underrepresent fine-
scale heterogeneity, while the Sentinel-2 LULC layer
is subject to seasonal and classification
uncertainties. Groundwater level data were
restricted to 2022, limiting temporal assessment.
These uncertainties are common in GIS-based
hydrogeological studies but were minimized
through resolution standardization and robust
validation. Future studies should integrate multi-
temporal datasets, denser observations, and
ensemble modelling to enhance reliability.

3. Results and Discussions

3.1 Geomorphology (GM)

The geomorphology of an area plays a crucial role
in identifying potential groundwater zones. The
structure and lithological properties of different
landforms, which greatly influence groundwater
availability of the region, is presented in Figure 4.
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Figure 4. Geomorphology map (Lp-Lateritic plain,
Lc-Lithomarge clay, Dlp-Dissected lateritic plain, Gg-
Granitoid gneiss, Vfs-Valley fill shallow, Apy-
Alluvium plain young, s & s-sand and silt, Acb-

Alluvium channel bar, sd-sand dominant, Apo-
Alluvium plain older, c-clay, L-laterite).

Geomorphological factors also play a significant
role in determining the infiltration rate and volume
of water present underground inside a specific
location [30,39]. For instance, the lateritic plain with
lithomarge clay (12.8%) has respectable
groundwater potential due to its intermediate
permeability, allowing for some infiltration but
limited storage. On the other hand, steep slopes in
the dissected lateritic upland (22.3%) increase
runoff and reduce infiltration, resulting in low
groundwater recharge. In the north and east, the
shallow granitoid gneiss valley fills (7.4%) offer high
potential, especially near rivers where weathered
zones improve storage and transmission. Similarly,
the young alluvium plains (18.1%) with sand and silt
have high permeability, aiding effective infiltration
and recharging. In contrast, the alluvium channel bar
with sand dominance (6.2%) shows strong
groundwater potential due to good infiltration and
storage capacity, whereas the older alluvium plains
(8.4%) near rivers are promising for storage and
recharging. Understanding the geomorphological
characteristics is crucial for effective groundwater
resource management [40-41].

3.2 Geology (GG)

The presence of groundwater in an area is greatly
affected by its geological composition, which affects
the porosity and permeability of the rock. The rocks
exposed on the surface play a crucial role in
determining the likelihood of groundwater presence
in an area [9,42-43].

86°52'30"E 87°3'0"E

22°52'30"N

22°42'0"N

Figure 5. Geology map (L-Laterite, Q-Sand, silt and
clay, Q1s-Clay impregnated with caliche, Q2d-Sand
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and silt, Q2p-Alternating layers of sand, silt and clay,
R-River, $3-Mica schist occasionally garnetiferrous).

The various geological units of the study area
have a differential impact on its groundwater
potential due to their varying composition and
properties (Figure 5). In the northern area, laterite
(0.5%) has fair groundwater potential due to
moderate permeability, allowing some infiltration
but with limited storage. The extensive zone of sand,
silt, and clay (44.9%) offers good potential due to
mixed grain sizes, facilitating both infiltration and
storage. Clay containing caliche (28.8%) creates
confined aquifers, enhancing groundwater storage.
The sand and silt zone (2.9%) has good potential due
to high permeability, promoting efficient recharge.
New alluvium (7.9%) allows high infiltration rates
and substantial storage. Mica schist (2.1%) in
various regions offers good potential due to its
foliated structure, storing and transmitting
groundwater via fractures. Alternating layers of
sand, silt, and clay (12.9%) in the south and west
have excellent potential due to multiple aquifer
systems [44-45].

3.3 Lineament Density (LD)

LD are geological features such as rock
structures, joints, faults, and folds that help water
quickly seep into the subsurface and thus directly
influence the groundwater potential. This layer was
created using the remotely sensed ALOS PALSAR
DEM. The area was categorized into five LD classes
given in Figure 6.

86°52_’30"E 87°3I'0"E
Lineament Density )

2 0-031 ’

=

. B 0.31-0.81

0.81-1.28

L 1.28-1.84 W 4xm
B 1.84-3.14

Figure 6. Lineament density map.

Areas with LD ranging from 0 - 0.31 km/km?
(33.7%) and 0.31 - 0.81 km/km? (22.3%) are

categorized as poor, 0.81 - 1.28 km/km? (27.9%) and
1.28 - 1.84 km/km? (10.7%) as fair, and 1.84 - 3.14
km/km? (5.4%) as having good groundwater
potential zones. Areas having high LD typically have
strong groundwater potential, and vice-versa.
Studies have also shown thatlineaments can serve as
pathways for groundwater flow, especially in
fractured rock aquifers, improving the storage and
movement of groundwater [46]. High LD can also
suggest the presence of extensive fracture networks,
which are important for groundwater movement
and storage in hard rock terrains [47].

3.4 Drainage Density (DD)

DD is inversely related to aquifer permeability
and infiltration rate, making it crucial in determining
the groundwater potential of a location [48]. High DD
of a location symbolizes greater surface runoff and
reduced infiltration, resulting in low groundwater
potential, while low DD enhances infiltration, leading
to high groundwater potential [49-50]. The DD
values of the study area ranging between 0 to 1.51
km/km? (27.9 percent) have been considered as fair,
1.51 - 3.28 km/km? (27.4 percent), and 3.28 - 5.05
km/km? (23.5 percent) as good, and 5.05 - 7.27
km/km? (16.2 percent) and 7.27 - 12.92 km/km? (5
percent) considered as the zones of excellent
groundwater prospects.
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Figure 7. Drainage density map.

High DD is often associated with less permeable
surfaces that hinder water from percolating into the
ground, reducing groundwater recharge [51]. This
study has effectively revealed that the central and
western parts of the study area have high DD, while
the eastern and northern parts have comparatively
lower DD, which are shown in Figure 7.
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3.5 Water Level Pre and Post-Monsoon (WL
PRM and PM)

It is important to understand water level
fluctuations below ground to assess groundwater
potential. Data from the India-WRIS portal for 2022
was processed into a raster layer. Typically, during
the arrival of monsoon season (July-September), the
rise in water levels and saturation of the aquifers can
be observed. This study has successfully portrayed a
decreasing trend in water levels from southwest to
northeast during both the pre-monsoon and post-
monsoon periods which has been depicted in Figure
8 and Figure 9.
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Figure 8. Pre-monsoon water level map.
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Areas with varying post-monsoon water levels
have been classified into five categories, the water
level between 2.34 - 2.80 meters below ground level
(mbgl) (3.9 percent) and 2.80 - 3.17 mbgl (10
percent) has been classified as excellent, 3.17 - 3.50
mbgl (33.1 percent) and 3.50 - 3.89 mbgl (32.2
percent) named as good, and 3.89 - 4.43 mbgl (20.8
percent) as fair groundwater potential zones.
Increased precipitation and surface runoff during
this period significantly enhance groundwater
rechargeability [52].

On the other hand, the pre-monsoon period
experiences declining water levels due to reduced or
negligible rainfall over months. This dry season leads
to a region-wide drop in groundwater levels. Pre-
monsoon water levels also vary across the whole
study area, which further classified as good prospect
zone with range 6.58 - 7.67 mbgl (24.8 percent) and
7.67 - 8.46 mbgl (31 percent), fair prospect zone
between 8.46 - 9.44 mbgl (18.6 percent) and 9.44 -
10.57 mbgl (14.8 percent), and the poor potential
areas with water level range 10.57 - 11.90 mbgl (10.8
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percent) stressing the need for effective
groundwater management.
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Figure 9. Post-monsoon water level map.

3.6 Rainfall (RF)

Rainfall is the primary natural water source,
influencing  groundwater  replenishment by
infiltrating rock fissures and porous spaces. Areas
with higher rainfall generally exhibit greater
groundwater potential, contrasting with regions
receiving less rainfall. Consistent and substantial
rainfall raises soil moisture levels and maintains a

steady recharge rate, essential for sustaining
groundwater levels.
Conversely, areas with little rainfall may

experience reduced recharge rates, resulting in
lower groundwater levels and potential depletion
over [29,53]. According to IMD Pune rainfall data, the
annual rainfall in the study area varies from 1305 to
1351 mm [54]. A rainfall layer was created using the
IDW method and categorized into five classes based
on spatial distribution (see Figure 10). IDW was
specifically chosen due to its simplicity,
computational efficiency, and suitability for areas
with limited or moderately spaced stations. It
assumes that closer points exert greater influence on
interpolation, which aligns with the spatial rainfall
pattern of the study area [15,48]. The rainfall layer
revealed that the rainfall intensity gradually
decreases from southwest to northeast. Further five
rainfall classes have been created where the areas
receiving 1305 to 1321 mm (9.7 percent) had fair
prospect, 1321 to 1330 mm (15.9 percent), 1330 to
1337 mm (26.5 percent) as good, and 1337 to 1344
mm (39 percent), and 1344 to 1351 mm (8.9
percent) as excellent GWP.
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Figure 10. Rainfall map.

3.7 Land Use and Land Cover (LULC)

As the land use and land management strategies
directly influences the infiltration, percolation, and
overland flow, and aids in the restoration of GWP,
land use and land cover (LULC) play a significant role
in the groundwater recharge procedure. It reflects
the various natural and man-made features that
cover the surface of the ground, as well as how
humans use the land [55-57]. This study examines a
range of LULC parameters and their fluctuating
effects on groundwater potential within the study
area. In summary, five LULC classes are taken into
consideration for this study. Following the creation
of the LULC map of 2022, these classes were verified
using Google Earth Pro to match the ground truth
actuality (Figure 11). Of the 220 random points that
were generated for the accuracy testing of the final
map, 203 points in total accurately represent the
LULC groupings based on the ground truth data [58-
59]. The built-up areas covering 1.5% of the total
area have a low groundwater prospect (GWP) due to
their impermeable surfaces that hinder infiltration.
A fair GWP with moderate infiltration has been found
in the areas with bare soil and 12.0% sand cover.
Vegetation (24.3%) and agricultural regions (60.5%)
have high GWP because of the improved infiltration
and recharge governed about by plant roots and soil
structure [48]. Waterbodies (1.7%) provide direct
recharge zones, which is considered as an excellent
prospect.
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Figure 11. Land use and land cover map.

3.8 Slope (SL)

The slope of a landform denotes its tilt or
gradient relative to a horizontal surface. This
parameter influences GWP by affecting surface
runoff and infiltration rates. Slope gradient
significantly impacts rainfall distribution, surface
runoff, and infiltration rates, thereby influencing
groundwater retention [60].
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Figure 12. Slope map.

22°42'0"N

Steeper slopes accelerate runoff, reducing
groundwater recharge time. In contrast, gentler
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slopes slow water infiltration, enhancing
groundwater recharge [61-62]. Slope angles (2) were
derived from ALOS PALSAR DEM data using QGIS.
The area is classified into five slope categories shown
in Figure 12. Places with slope of 0 - 1.35 degree
(27.2 percent) has been considered excellent, 1.35 -
3.37 degree (52.9 percent) and 3.37 - 5.23 degree
(15.7 percent) as good, while 5.23 - 7.84 degree (3.5
percent) and 7.84 - 20.15 degrees (0.7 percent) have
been considered as fair potential zone.

3.9 Topographic Wetness Index (TWI)

The topography of an area has a significant
impact on the movement of water, and it's
distributed across the landforms. Steep slope led to
faster surface runoff, reducing the infiltration rate
and limiting the amount of water that replenishes
underground aquifers. On the other hand, gentle
slopes encourage water to seep into the soil,
effectively recharging aquifers. The Topographic
Wetness Index (TWI) indicates how the topography
becomes saturated. High TWI values suggest the
topography is already water-saturated and
generates more runoff due to saturation excess,
influencing areas prone to water accumulation and

higher soil moisture, thereby enhancing
groundwater recharge [63-65].
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Figure 13. TWI map.

Lower TWI values indicate lower GWP, while
higher values suggest greater potential [66-67]. The
study area was classified into five TWI classes,
specifically 3.56 - 6.58 (41%) 6.58 - 8.43 (29%) with
fair GWP, 8.43 - 10.56 (20.6%) with good, and 10.56
-13.44 (7.4%) and 13.44 - 21.05 (2%) with excellent
GWP given in Figure 13.
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3.10 Soil Texture (ST)

Soil texture is an important element that
determines the rate of infiltration, surface runoff,
porosity, and permeability and aids in defining the
appropriate GWP. Soil with coarser textures such as
sandy loam facilitate higher infiltration rate and
groundwater recharge compared to finer textures
like clay loam, having lower infiltration capability
and may impede recharge [29]. Soil texture classes
also affect water holding capacity of soil, influencing
the availability of water for groundwater
replenishment during dry periods [25]. Therefore,
the soil texture classes were translated into GWP
ranks based on their permeability and infiltration
characteristics. For example, sandy loam to clay
loam-gravelly sandy clay was assigned a rank of 8
(excellent) due to its high porosity and infiltration
capacity, which facilitates effective groundwater
recharge. In contrast, clay loam to clay-clay, with low
permeability and high runoff potential, was assigned
a rank of 4 (fair). This ranking approach aligns with
established hydrological principles and similar
groundwater studies in semi-arid regions [25,29].
The soil texture classes of the study area significantly
influence GWP. Zones with waterbodies (4.5%),
sandy loamy sand to sandy loam (10.7%), and sandy
loam to clay loam - gravelly sandy clay (25.6%) have
excellent GWP due to high permeability and
infiltration rates.
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Figure 14. Soil texture map (Wb-Water bodies, Gsc-
Gravelly sandy clay, Cl-Clay loam, Scl-Sandy clay
loam, C-clay, S-Sandy, Ls-Loamy sand, SI-Sandy loam
Gsl-Gravelly sandy loam, Sc-Sandy clay).

Where, Gravelly sandy loam to gravelly sandy
loam (32.7%) and sandy clay loam - clay loam to
sandy clay loam (12.5%) have good prospect.
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Furthermore, gravelly sandy clay - clay loam to
sandy clay loam (2.3%), clay loam to clay-clay
(0.7%), and sandy clay loam to sandy clay (11.0%)
offer fair GWP due to lower permeability (Figure 14).

3.11 Comparison of GWP in AHP, MIF, and RF

The three methods, AHP, MIF, and RF, have been
used for producing GWP for the study area. For this
purpose, all the thematic layers were converted into
raster format with the same cell size and finally
reclassified for their processing. Finally, the datasets
were overlaid using the weighted overlay and ML
algorithm for GWP demarcation. The GWP maps
resulting from the above methods were classified
into four main categories based on the availability of
groundwater, namely poor, fair, good, and excellent.
There are multiple studies that utilized a similar kind
of classification for GWP zonation [15,46]. The class
with the lowest GWP has poor potential, while the
class with optimum groundwater availability was
referred as excellent. The categorisation of the
groundwater (GW) yield data has also been done
accordingly to match the GWP with the actual
classification given in the GW prospect dataset. The
spatial distribution of various GWP is presented in
Table 4.

Table 4. Percentage (%) wise groundwater classes
in AHP, MIF and RF

Type GW yield GWP AHP MIF RF

(Ipm) (%) (%) (%)
1 30-50 Poor 22 15 23
2 50-100 Fair 38 42 47
3 100 - 400 Good 35 36 25
4 400 - 800 Excellent 5 7 5

The study's findings from all the used methods
indicated that the northern and eastern regions,
characterized by sandy lateritic formations, low
lineament, and drainage density, a lower water table,
relatively less rainfall, and high vegetation cover,
demonstrate poor to fair GWP, with minimal
influence from slope and TWI. In contrast, the
eastern, southern, and central regions show fair to
excellent potential. This is due to the presence of
clayey alluvial formations, high lineament and
drainage density, a higher water table, sufficient
rainfall, and extensive agricultural lands. The effects
of slope and TWI are observed to be minimal.

For the AHP method, the CI (0.128),RI (1.51), and
CR (0.085) value obtained using equations 5 and 6
were satisfactory as it lower than its desired upper
limit of 0.10. These values and the value of Amax
(12.282) were determineded using a self-developed
MS Excel sheet-based AHP weightage calculator
created by combining equations, for the total
number of variables (n). Using the AHP method in
the present study, a total of four GWP zones were
found (Figure 15.).

313

86°52'30"E 87°3'0"E
z
2]
@
aQ

GWPZs on AHP
_ | I Ppoor
z
§. Fair
I Good

- Excellent ,

012 4Km
¥ Validation Points

Figure 15. GWP zones on AHP method.

These zones are marked according to their GWP
from poor to excellent. The result of the work
revealed that about 22 % of the total study area has
poor GWP, 38 % of the area has fair, 35 % of the area
has good, and only about 5 % of the remaining area
has excellent GWP.
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Figure 16. GWP zones on MIF method.
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The MIF method also has successfully delineated
the GWP in the present study. As a result, four
groundwater prospect zones were identified and
categorized from poor to excellent as shown in
Figure 16. About 15 % and 42 % of the area poor and
fair GWP while 36 % and 7 % of the total study area
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recognized with good and excellent GWP,
respectively.

The GWP obtained from the RF algorithm have
also produced outstanding result as compared to the
traditional methods, which were further categorized
into four GWP groups, namely poor, fair, good, and
excellent. Almost 23 % of the study area accounts for
poor GWP, the fair zone is extended over 47 % of the
area, the good GWP covers 25 % of the area, and the
excellent GWP covers 6 % of the study area
respectively, as shown in Figure 17.
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Figure 17. GWP zones on RF method.
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The model was tuned using GridSearchCV, to
identify the optimal parameters namely max_depth
as None, min_samples_leaf as 1, min_samples_split as
2, and n_estimators as 200 [36]. The cross-
validation's result shows an overall accuracy of 78%,
where the precision, recall, and f1-scores for
groundwater potential classes have been obtained as
0.83,1.00 and 0.91 for class 0 (excellent), 0.71, 0.45,
and 0.56 for class 1 (good), 0.64, 0.82 and 0.72 for
class 2 (fair), and 1.00, 1.00 and 1.00 for class 3
(poor). The model has efficiently predicted GWP of
the study area and generated an ROC curve with a
macro-average Area Under the Curve (AUC,) which
indicates a good performance and provided valuable
insights for groundwater resource management.

3.11.1 Statistical comparison of GWP

The Chi-square goodness of fit and Mann-
Whitney tests have been conducted to compare the
efficacy of GWP maps prepared using the
aforementioned methods. Both the tests were
carried out by comparing the model output GWP
maps (predicted) with that of GWP identified using
field observation on groundwater yield (Ipm) data of

NRSC ISRO and collected from West Bengal Public
Health  Engineering Department (WBPHED)
(observed).

Chi-square test evaluates differences between
predicted/observed and expected frequencies in the
GWP mapping by various models. A significant
difference between observed and expected
frequencies indicates a discrepancy, suggesting the
need for further investigation or model adjustment
[68].
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Figure 20. Chi-square goodness of fit result for RF.

In the AHP method, the chi-square statistic
(1.641) is less than the critical value (7.815), and the
p-value (0.650) is greater than 0.05, indicates a
match between observed and expected frequencies.

314



International Journal of Engineering and Geosciences- 2026; 11(2); 301-320

While MIF method also showed identical result with
a chi-square statistic of 0.658 and a p-value of 0.883.
On the contrary, the RF method with a chi-square
value of 0.183 and a high p-value of 0.980, suggests
that the observed frequencies match expected
frequencies [69]. The p-values indicates that the
results obtained using RF is more strongly
confirming the null hypothesis (Figure 18 - 20).

The Mann-Whitney U test, a non-parametric test,
was applied to compare the GWP classifications from
three Multi-Criterion Decision-Making (MCDM)
methods namely AHP, MIF, and RF against the
ground truth values.

12| == ewpPz ol U
— Ground Truth R

0.2 e

0.0

0 1 2 3 4 5
Values

Figure 21. Mann-Whitney U test results for AHP.
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Figure 22. Mann-Whitney U test results for MIF.

1.2
[ GWPZ — U= 637.00
1.0/ C= Ground Truth — - p =0.9021
0.8 ]
>
=
206
7}
[a]
0.4
/—-\\
= 1 \w
0.0 ) 5 - . .
Values

Figure 23. Mann-Whitney U test results for RF.

This test, which compares the ranks of two
independent groups, is beneficial when the data does
not follow a normal distribution [70]. The p-values

for all three methods (AHP: 0.8554, MIF: 0.9766, and
RF: 0.9021) were all greater than 0.05, indicating no
significant differences between the predicted GWP
values and the ground truth. Among the methods,
MIF showed the highest U statistic value (651.0),
suggesting a slightly better ranking; however, the
difference was not statistically significant. Overall,
the results indicate that all three methods perform
similarly when evaluated using the Mann-Whitney U
test (Figure 21 - 23). This aligns with the idea that
non-parametric tests like Mann-Whitney are
valuable for comparing non-normally distributed
data without assuming a specific underlying
distribution. Hence, these outcomes implied that the
AHP, MIF, and RF methods offer efficient and
dependable prediction of GWP concerning the
observed groundwater yield data from WBPHED.

4. Validation of GWP zonation Maps

The present study adopted three methodologies
(AHP, MIF, and RF) to delineate GWP and used the
mean macro-average Receiver Operating
Characteristic (ROC) Area Under the Curve (AUC) for
validation of the result. This method evaluates an
overall evaluation of the model's performance across
all classes and is particularly useful for assessing
multi-class classifiers [36,71]. Groundwater yield
data has been used to validate the potential zones
across 36 random points taken for model validation
after consulting a local geologist. The total number of
validation points to be used in this work was
finalized after a rigorous literature survey, where a
study used 14 observation wells for GWP validation
for an area of 976 km?, another two studies used 12
and 32 observation wells for validating 847 km? and
3149 km? study areas, respectively [15,46,48].

During the validation process, it has been found
that the AHP method achieved a mean macro-
average ROC AUC of 0.875, and MIF achieved 0.828
AUC, where RF performed exceptionally well with an
AUC score of 0.982 (Figure 24 - 26).
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Figure 24. AHP ROC curve.
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Figure 26. RF ROC curve.

This indicates that the RF model has a higher
prediction accuracy compared to AHP and MIF in
delineating GWP within the study area, proclaiming
its robustness and reliability for hydrogeological
applications.

These findings provide invaluable insights for
policymakers and local communities to implement
targeted interventions, such as rainwater harvesting,
artificial recharge, and efficient irrigation practices.
However, the incorporating time-series data to
assess changes in groundwater potential over time,
collaborating with local communities to co-develop
groundwater =~ management  strategies  and
developing advanced models to predict future trends
in groundwater availability and quality will help in
better achieving the groundwater sustainability in
the region.

5. Conclusion

The present work to decipher the GWP of the
Sarenga block of Bankura district, West Bengal has
efficiently handled and evaluated, how the
implementation of GIS and RS coupled with MCDM
techniques can lead to the successful delineation of
the GWP. The study unveils that out of the eleven
factors used in the study, geomorphology, geology,

drainage, and lineament have the highest impact on
the GWP.

The GWP maps obtained wusing the
aforementioned models were compared using the
Chi-square test and Mann-Whitney tests, which
showed the edge of the RF model as compared to the
other two methods. The validation results of ROC
AUC foreclosed that the RF model produced an AUC
of 0.982, outperforming AHP's 0.875 and MIF's
0.828. Thus, the study concludes that the machine
learning-based RF model is more effective than the
traditional AHP and MIF methods for delineating
GWP in regions with similar geographical settings,
suggesting future studies may explore advanced ML
models such as XGBoost, Support Vector Machines
(SVM), or Gradient Boosting, which are capable of
capturing more complex hydrogeological patterns.
The model performance can also be improved with
proper tuning, including a larger number of ground
truth points, and implementing a more efficient
quantitative data handling strategy.

The RF model has depicted that 23 % and 47% of
the area exhibits poor and fair GWP. While, about
25% and 5% of the study area have good and
excellent GWP. The study suggests that the south and
western parts of the region have excellent to good
groundwater potential, while the north and eastern
parts have fair to poor GWP. On the contrary, the
central part has fair to good GWP. Though the study
identifies the zones of GW scarcity and adequacy, it
also recommends promoting rainwater collection
and building storage and recharge facilities in areas
with poor groundwater potential to improve GWP.
Finally, it also advocates for regular monitoring of
groundwater to plan its sustainable usage for
agricultural applications using GIS and RS, and
encourage local integrated groundwater
management.

This work acknowledges certain limitations,
including the DEM-related errors, the availability of
fewer rainfall stations, coarse-scale geology and soil
data, and the use of a single-year groundwater
database. While these are quite common in GIS-
based hydrogeological studies, they were minimized
with data standardization and validation. Future
work should incorporate multi-temporal datasets
and more adequate field observation data to further
improve reliability.
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