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 The increasing demand for water in recent decades has led to continuous exploitation 
and mismanagement of groundwater resources worldwide. This has often resulted in the 
reduction of the water table and deterioration of water quality due to non-sustainable 
consumption and excessive extraction practices. To address these issues, it is very crucial 
to analyse Groundwater Potential (GWP) zones periodically. In this study, Geographic 
Information System (GIS) and Remote Sensing (RS) techniques coupled with Analytical 
Hierarchy Process (AHP), Multi Influencing Factor (MIF), and Random Forest (RF) 
algorithm have been used to define GWP zones. These methods helped to identify, weigh, 
and rank eleven major hydrogeological factors influencing groundwater potential 
(GWP).  A novel application of the RF algorithm utilized to generate high-resolution GWP 
maps outperformed AHP (0.875) and MIF (0.828) with a Receiver Operating 
Characteristic (ROC) of 0.982 in GWP delineation, as assessed by the Area Under the 
Curve (AUC) analysis. The outcome from AHP, MIF, and RF methods revealed that around 
60-70% of the study area showed poor to fair GWP while only 30- 40% of the area 
exhibited good to excellent GWP. The results revealed that a significant portion of the 
study area exhibits poor to fair GWP, highlighting the urgent need for sustainable GW 
management strategies. These findings provide valuable insights for policymakers and 
local farmers to make informed decisions on sustainable GW management plans tailored 
to the specific needs of the study area.   
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1. Introduction 

 
Humanity relies on water for drinking and 

carrying out daily activities, making it essential for 
the evolution of human civilization. The significant 
rise in the global population over the past few 
decades has created a large demand for the world's 
available freshwater supplies [1-2]. To address this 
increasing water demand, groundwater has been 
identified as one of the key sources of freshwater for 
domestic, industrial, and agricultural uses [3]. In 
developing countries like India, where 
approximately 65% of its population depends on 
agriculture, the accessibility and reliance on 
groundwater play a crucial role for living [4-5]. 
Consequently, the growing demand for 

groundwater, coupled with inadequate governance 
to manage it, has led to the over-exploitation of 
groundwater in various parts of the country, 
reducing groundwater levels and contributing to the 
water crisis [6]. 

In addition to over-exploitation, human-induced 
land use changes, erratic rainfall patterns, etc. 
remarkably influence groundwater availability [7-8]. 
Furthermore, hard rock formations limit 
groundwater accessibility due to their sparse pore 
spaces, which restrict water movement [9]. 
Addressing these challenges requires sustainable 
groundwater management techniques, particularly 
in countries like India. Effective monitoring and 
management of groundwater resources can be 
achieved through groundwater potential (GWP) 
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zone mapping using Geographic Information 
Systems (GIS) and remote sensing (RS) techniques 
[10]. These technologies integrate geographical data 
collected at different spatial and temporal scales to 
assess groundwater recharge potential and inform 
decision-making [11]. GIS and RS can quickly help in 
problem-solving in real-world situations by 
providing high-resolution satellite datasets with 
higher accuracy along with efficiency in saving time 
and cost. GIS and RS coupled with Multi-Criteria 
Decision Analysis (MCDA), statistical models, and 
machine learning (ML) techniques can efficiently 
identify GWP zones as well as other risk areas [12-
13]. These methods streamline the process, reduce 
time and costs, and maintain high accuracy by 
evaluating various factors that influence 
groundwater potential (GWP), and assigning ranks 
and weights based on their impact [14]. Common 
MCDA techniques include Analytical Hierarchy 
Process [15-17], Multi-Influencing Factor [18-19], 
Random Forest [20-22], Frequency Ratio [19,23], 
and Drastic method [24]. 

In the assessment of GWP at micro-planning 
levels such as blocks, prior studies have primarily 
focused on larger geographical areas like districts, 
states, or large river basins. These studies commonly 
rely on secondary data for easier validation and 
higher accuracy, despite challenges posed by data 
scarcity from low-resolution RS imagery and 
inadequate meteorological data [25]. Notably, NRSC 
ISRO used LISS-III datasets with a resolution of 23.5 
m in 2011 to carry out their most recent authorized 
mapping of GWP zones in the research area.  

The study area considered in this work has a long 
history of water scarcity, accompanied by 
groundwater-dependent poor agricultural practices 
and increasing population pressure capability have 
led to a high demand for water against its lesser 
availability. Therefore, there is a keen need for a 
highly equipped strategy to cope with these 
challenges and effectively bridge the gap between 
water availability and demand. In order to achieve 
this target, identifying the potential zones of 
groundwater availability and its proper 
management is highly recommended which can only 
be achieved through modelling the GWP using 
proper statistical and GIS-based techniques [26]. The 
present work has employed three widely recognized 
methodologies, Analytical Hierarchy Process (AHP), 
Multi Influencing Factor (MIF), and Random Forest 
(RF), to identify the GWP in the Sarenga block of 
Bankura district, West Bengal in India. It also has 
attempted to perceive the best method suitable for 
delineating the GWP. This study integrated various 
physio-climatic factors derived from RS datasets and 
ancillary datasets, such as geomorphology, geology, 
rainfall, drainage, soil topography, land use and land 

cover (LULC) and groundwater level data within the 
three methods to understand their role in 
groundwater potential and its variability in the study 
area. The outcome of this data-driven approach 
tailored to Sarenga's unique hydrogeological setting 
will help in micro-level planning and management of 
groundwater. The insights gained contribute to a 
more sustainable approach to groundwater 
management, aligning local groundwater potential 
with regional conservation and land management, 
resource planning goals, and agricultural 
applications using GIS and Remote sensing in areas 
with similar hydrogeological set-ups. 

 
2. Method 

 

2.1 Study Area 
 

The current research focuses on the Sarenga 
development block in the Bankura district of West 
Bengal shown in Figure 1. Geographically, it is 
situated between 86⁰55ʹ37ʹʹ E to 87⁰44ʹ20ʹʹ E and 
22⁰38ʹ55ʹʹ N to 22⁰54ʹ27ʹʹ N, encompassing an area 
of approximately 224 km². Sarenga is bordered by 
Raipur block to the west, Simlapal block to the north 
and northeast, and West Medinipur district to the 
south and southeast. The region experiences an 
average annual rainfall of about 1386 mm. 
Topographically, the terrain is highly dissected, with 
an average slope of approximately 10–20 m/km. 
Geologically, it features lateritic and older alluvium 
strata from the Pleistocene era, supporting 
groundwater in confined to semi-confined states. 
Drilled wells in the area are typically 10 to 15 meters 
deep and 3 meters in diameter [27]. The land is 
drained by the Kansabati River on its western side, 
an area with promising agricultural prospects. In 
contrast, the eastern side lacks a reliable water 
supply for irrigation and depends on seasonal rain, 
canals, and groundwater. Sarenga block along with 
the whole Bankura district has witnessed population 
growth, modernization of agricultural activities, and 
urbanization in past two decades. Despite the 
expansion of economic development and 
employment opportunities, challenges in 
sustainable groundwater management, climate 
adaptation, and future resilience persist. The Rajiv 
Gandhi National Groundwater Mission had played a 
pivotal role in afforestation, enhanced irrigation, and 
modern farming methods for improving 
groundwater management. According to Central 
Ground Water Board’s (CGWB) report 2022 [28], 
these initiatives have benefited crops such as paddy 
and maize, reducing dependency on monsoon rains 
in the study area.

 



International Journal of Engineering and Geosciences– 2026; 11(2); 301-320 

 

  303  

 

 
Figure 1. Location map of the Sarenga development block 

2.2 Material Sources 
 

The study area's base map was created using a 
1:50,000 scale topographic map (73 J/13, 73 J/14, 73 
N/1, and 73 N/2) obtained from the Survey of India 
(SOI). Eleven physio-climatic factors contributing to 
the Groundwater (GW) recharge were selected. 
Some of them were obtained from RS imageries like 
drainage density (DD), lineament density (LD), slope 
(SL), land use and land cover (LULC), and the 
topographic wetness index (TWI), while some of the 
datasets obtained either in grided, image and vector 
form, which were later digitized and processed in GIS 
environment to be used in this work like 
geomorphology (GM), geology (GG), rainfall (RF), 
soil texture (ST), pre-monsoon and post-monsoon 
water levels (WL PRM & WL PM). Data for these 
factors were collected from secondary sources, 
processed, and converted into raster layers using 
QGIS. The GM map was created from Bhukosh GSI 
maps at a 1:250,000 scale and refined with a 
groundwater prospect map from NRSC ISRO. The GG 
map was based on the Geological Survey of India's 
district resource map at the same scale. RF data 
ranging from 1901 to 2022, obtained from the Indian 
Meteorological Department (IMD) Pune, were 
assessed to create the rainfall map. DD, LD, SL, and 
TWI maps were derived from ALOS PALSAR DEM 
data obtained from the Alaska Satellite Facility with 

a resolution of 12.5 x 12.5 meters. The ST map was 
digitized from the ICAR NBSS and LUP's data of 
Bankura district. Additionally, the Sentinel-2 
satellite image for the year 2022 was utilized to 
develop the LULC map which was subsequently 
validated using the Kappa-coefficient. Groundwater 
level fluctuation maps for pre- and post-monsoon 
periods were created using 2022 data from Water 
Resource Information System managed by Central 
Ground Water Board, India. Finally, actual 
groundwater (GW) yield data for validation were 
obtained from a 1:50,000 scale groundwater 
prospect map prepared by NRSC ISRO in 2022 using 
regional average annual ground truth observation, 
and available on the West Bengal Public Health 
Engineering Department portal. 

 

2.3 Methods 
 

The methodologies used in this study are 
depicted with the help of a flowchart in Figure 2. 
Some important methods applied in this study are 
briefly discussed. 

 

2.3.1 Lineament and Drainage Density Map 
 

The lineament and drainage density for the study 
region were prepared using the RS dataset in the 
form of ALOS PALSAR DEM acquired from the Alaska 
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Satellite Facility in QGIS. The following formulas 
have been used to calculate the (Ld) lineament 
density [29] and (Dd) drainage density: 

 𝐿𝑑 =
∑𝑖=1𝑛 (𝐿𝑖)

𝐴
,                                                                            (1) 

 𝐷𝑑 =
∑𝑖=1𝑛(𝐷𝑖)

𝐴
,                                                                            (2) 

where ∑Li = sum of all the lineament length in 
kilometer, ∑Di = total of all stream lengths in km, and 
A = Area in km². 

 

2.3.2 Analytical Hierarchy Process (AHP) 
 

The AHP technique evaluates multiple elements 
based on their relative importance using expert 
knowledge from literature reviews [30-31]. It 
assigns weights and ranks to parameters, creating an 
eigenvalue pairwise comparison matrix. The rank 
and weight of each parameter are determined by its 
relative importance to others, assessed using Saaty's 
absolute scale from 1 to 9, where 1 indicates equal 
importance and 9 indicates extreme importance 
[32]. This scale constructs the pairwise matrix 
(Table 1) and the normalized pairwise matrix using 
the following equation:  

𝑁𝑖𝑗 =
𝐼𝑖𝑗

∑𝐼𝑗
,                                                                                    (3) 

where Nij represents the normalized cell value 
for each cell, Iij is the individual cell weight, ∑Ij is the 
total weight of the corresponding column in that cell.  

Normalized weights are calculated from the 
normalized pairwise matrix by using the following 
formulae: 

𝑁𝑤 =  
∑𝑁𝑖𝑗

𝑛
,                                                                                (4) 

where Nw denotes the normalized weight of each 
parameter, ∑Nij indicates the sum of normalized 
weights of the row and represents the number of 
factors analyzed.  

Following the creation of a normalized pairwise 
matrix, the Consistency Ratio (CR) and Index (CI) 
were computed, with the following equations: 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
,                                                                                        (5) 

where RI for Randomness Index. 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
,                                                                 (6) 

where λmax denotes the principal eigenvalue and 
n represents the number of factors considered. The 
results are derived using the mentioned formulas. 

 

 

 
Figure 2. Flow chart of methodologies adopted for groundwater potential zone mapping. 
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Table 1. Pairwise comparison matrix table for AHP 
Factors GM GG RF DD LD ST SL LULC WL PRM WL PM TWI 

GM 1 2 3 2 2 3 3 6 6 5 4 

GG 1/2 1 2 3 2 4 3 2 6 5 5 

RF 1/3 1 1 3 3 3 4 3 5 5 5 

DD 1/2 1/3 1/3 1 3 4 4 2 4 3 4 

LD 1/2 1/2 1/3 1/3 1 4 4 2 4 5 2 

ST 1/3 1/4 1/3 1/4 1/4 1 2 3 3 3 2 

SL 1/3 1/3 1/4 1/4 1/4 1/2 1 2 3 2 3 

LULC 1/6 1 1/3 1/2 1/2 1/3 1 1 3 2 2 

WL 
PRM 

1/6 1/6 1/5 1/4 1/4 1/3 1/3 1/3 1 1 3 

WL PM 1/5 1/5 1/5 1/3 1/5 1/3 1/2 1/2 1 1 4 

TWI 1/4 1/5 1/5 1/4 1/2 1/2 1/3 1/2 1/3 1/4 1 

Sum 4.28 5.98 8.18 11.17 12.95 21.00 22.67 22.33 36.33 32.25 35.00 
 

2.3.3 Multi Influencing Factor (MIF) 
 

The MIF approach is an MCDA method where 
various influencing factors are evaluated based on 
their mutual relationships and impact strengths. 
Factors with significant influencing capability are 
assigned a score of 1, while those with moderate to 
low influence are assigned with 0.5. Conversely, 
higher scores indicate stronger influencing 
capabilities. The proposed value of a factor is 
determined by aggregating all significant and 

moderate effects (18). Table 2 presents the assigned 
scores for all parameters in this study. The following 
equation computes the cumulative score for each 
parameter: 

𝐼𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 =  
𝐴+𝐵

∑(𝐴+𝐵)
× 100,                            (7) 

where A represents the significant influence 
between two parameters, while B denotes the minor 
influence between them. Figure 3 illustrates the 
relative interdependence among the multiple 
influencing factors.

 

 
Figure 3. The flowchart outlines the inter-relationship between all the influencing factors and their effects 
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Table 2. Major and minor effects for obtaining introduced score in MIF 

Factors Major Effect (A) Minor Effect (B) Proposed Value (A + B) Assigned Score 

GM 1 + 1 + 1 + 1 + 1 + 1 0.5 + 0.5 7 19 

GG 1 + 1 + 1 + 1 + 1 0.5 + 0.5 + 0.5 6.5 18 

RF 1 + 1 + 1 + 1 + 1 0.5 + 0.5 + 0.5 5.5 15 

DD 1 + 1 0.5 2.5 7 

LD 1 + 1 0.5 + 0.5 3 8 

ST 1 + 1 0.5 + 0.5 3 8 

SL 1 + 1 + 1 0.5 3.5 10 

LULC 1 + 1 0.5 2.5 7 

WL PRM  0.5 0.5 2 

WL PM  0.5 0.5 2 

TWI 1 0.5 1.5 4 

Sum   36 100 

2.3.4 Random Forest (RF) 
 

The RF model enhances accuracy and reduces 
overfitting by aggregating multiple decision trees 
trained on random data subsets [33]. It is effective 
for both classification and regression tasks, capable 
of estimating feature importance and handling noisy 
datasets, making it ideal for GWP assessment. 
Despite its computational demands, it offers robust 
performance and interpretability, although it may be 
less precise than complex models like gradient 
boosting machines or neural networks [34]. Notably, 
RF excels in analysing intricate spatial relationships 
in hydrogeological studies [33, 35]. 

The Google Colab open-sourced Python API was 
used to facilitate the GWP map creation using RF 
model. For supervised learning, we utilized a feature 
class with categorized GWP points, mapped to 
numerical values (from ‘excellent’ as 0 to ‘poor’ as 3). 
Raster values were extracted to form a feature 
matrix (X_train), with labels (y_train) derived from 
ground truth data shapefile. To optimize the model, 
tuning parameters such as the number of trees 
(n_estimators), tree depth (max_depth), and 
min_sample_leaf, min_samples_split have been 
employed. GridSearch Cross-Validation (using 
cross_val_predict) validated the model’s 

performance through confusion matrices and 
classification reports [36-38]. The best-performing 
configuration included n_estimators=200, 
max_depth=None, min_samples_leaf=1, and 
min_samples_split=2.  

A three-fold cross-validation with 36 random 
points ensured robust performance estimates. The 
RF model achieved an overall classification accuracy 
of 78%. Class-wise precision, recall, and F1-scores 
were highest for 'excellent' and 'poor' GWP zones, 
indicating strong discriminative performance. 
Finally, the trained RF model predicted GWP classes 
across the entire study area. 

 

2.3.5 GWP maps in AHP and MIF 
 

Integrating all thematic layers created from the 
RS and ancillary datasets is vital for GWP 
demarcation before doing that, the digitization and 
reclassification of these layers is a significant need in 
the zonation process which was exclusively done in 
the QGIS environment. To ensure uniformity, all 
raster layers were resampled to the same pixel size. 
The appropriate weights were assigned to each 
thematic layer as shown in Table 3, and each sub-
class of the layers was given a suitable rank. 

 
Table 3. Parameters weightage in AHP and MIF method  

Factor Parameter AHP weight MIF weight GWP Rank 

GM Lateritic Plain - Lithomarge Clay 20 19 Fair 5 

 Dissected Lateritic Upland   Poor 3 

 Granitoid Gneiss -Valley Fill Shallow   Good 7 

 Alluvium Plain Young - sand and silt   Excellent 8 

 Alluvium Channel Bar - Sand Dominant   Excellent 9 

 Alluvium Plain Older - sand, silt and clay   Good 7 

 Laterite - Valley Fill Shallow   Fair 5 

GG  Laterite 17 18 Fair 5 

 Sand, silt and clay   Good 6 

 Clay impregnated with caliche   Good 7 

 Sand and silt   Good 6 

 Alternating layers of sand, silt and clay   Excellent 9 
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 Newer alluvium   Good 7 

 Mica schist, occasionally garnet ferrous   Good 6 

RF (mm) 1305 - 1321 15 15 Fair 5 

 1321 - 1330   Good 6 

 1330 - 1337   Good 7 

 1337 - 1344   Excellent 8 

 1344 - 1351   Excellent 9 

DD (km/km²) 0 - 1.51 12 7 Fair 5 

 1.51 - 3.28   Good 6 

 3.28 - 5.05   Good 7 

 5.05 - 7.27   Excellent 8 

 7.27 - 12.92   Excellent 9 

LD (km/km²) 0 - 0.31 10 8 Poor 3 

 0.31 - 0.81   Poor 3 

 0.81 - 1.28   Fair 4 

 1.28 - 1.84   Fair 5 

 1.84 - 3.14   Good 6 

ST  Waterbody 6 8 Excellent 9 

 Gravelly sandy clay-Clay loam to sandy clay 
loam 

  Fair 5 

 Clay loam to clay-Clay   Fair 4 

 Sandy-Loamy sand to sandy loam   Excellent 8 

 Gravelly sandy loam-Gravelly sandy loam   Good 6 

 Sandy clay loam-Clay loam to sandy clay loam   Good 7 

 Sandy clay loam to sandy clay   Fair 5 

 Sandy loam to clay loam-Gravelly sandy clay   Excellent 8 

SL (degree) 0 - 1.35 5 10 Excellent 8 

 1.35 - 3.37   Good 7 

 3.37 - 5.23   Good 6 

 5.23 - 7.84   Fair 5 

 7.84 - 20.15   Fair 4 

LULC   Built-up area 5 7 Poor 3 

 Vegetation   Excellent 8 

 Agriculture   Excellent 9 

 Waterbody   Excellent 9 

 Bare land and sand   Fair 4 

WL PRM (mbgl) 6.58 - 7.67 3 2 Good 7 

 7.67 - 8.46   Good 6 

 8.46 - 9.44   Fair 5 

 9.44 - 10.57   Fair 4 

 10.57 - 11.90   Poor 3 

WL PM (mbgl) 2.34 - 2.80 4 2 Excellent 9 

 2.80 - 3.17   Excellent 8 

 3.17 - 3.50   Good 7 

 3.50 - 3.89   Good 6 

 4.89 - 4.43   Fair 5 

TWI  3.56 - 6.58 3 4 Fair 4 

 6.58 - 8.43   Fair 5 

 8.43 - 10.56   Good 6 

 10.56 - 13.44   Excellent 8 

 13.44 - 21.05   Excellent 9 

Finally, a weighted overlay analysis using the 
following formulae was performed to integrate all 
thematic layers and generate the GWP map for the 
study region:  

𝐺𝑊𝑃 = ∑𝑖=1
𝑛 (𝑀𝑖 × 𝑁𝑖),                                                 (8)  

Where, GWP stands for Groundwater Potential, n 
is the number of influencing factors, Mi is the 
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thematic layer weight, Ni is the thematic layer rank 
and i represents every influencing factor considered. 

 

2.3.6 Data Limitation 
 
Despite rigorous data preparation and validation, 

still there are possibility of some uncertainties and 
limitations. DEM-derived layers (slope, drainage 
density, lineament density, and TWI) may carry 
vertical and horizontal errors that affect derived 
indices. Rainfall interpolation using IDW, based on a 
moderate density of IMD stations, may not fully 
capture localized variability. Geology and soil texture 
maps (1:250,000 scale) may underrepresent fine-
scale heterogeneity, while the Sentinel-2 LULC layer 
is subject to seasonal and classification 
uncertainties. Groundwater level data were 
restricted to 2022, limiting temporal assessment. 
These uncertainties are common in GIS-based 
hydrogeological studies but were minimized 
through resolution standardization and robust 
validation. Future studies should integrate multi-
temporal datasets, denser observations, and 
ensemble modelling to enhance reliability. 

 
3. Results and Discussions 

 

3.1 Geomorphology (GM) 
 

The geomorphology of an area plays a crucial role 
in identifying potential groundwater zones. The 
structure and lithological properties of different 
landforms, which greatly influence groundwater 
availability of the region, is presented in Figure 4.  

 

 
Figure 4. Geomorphology map (Lp-Lateritic plain, 
Lc-Lithomarge clay, Dlp-Dissected lateritic plain, Gg-
Granitoid gneiss, Vfs-Valley fill shallow, Apy-
Alluvium plain young, s & s-sand and silt, Acb-

Alluvium channel bar, sd-sand dominant, Apo-
Alluvium plain older, c-clay, L-laterite). 

 
Geomorphological factors also play a significant 

role in determining the infiltration rate and volume 
of water present underground inside a specific 
location [30,39]. For instance, the lateritic plain with 
lithomarge clay (12.8%) has respectable 
groundwater potential due to its intermediate 
permeability, allowing for some infiltration but 
limited storage. On the other hand, steep slopes in 
the dissected lateritic upland (22.3%) increase 
runoff and reduce infiltration, resulting in low 
groundwater recharge. In the north and east, the 
shallow granitoid gneiss valley fills (7.4%) offer high 
potential, especially near rivers where weathered 
zones improve storage and transmission. Similarly, 
the young alluvium plains (18.1%) with sand and silt 
have high permeability, aiding effective infiltration 
and recharging. In contrast, the alluvium channel bar 
with sand dominance (6.2%) shows strong 
groundwater potential due to good infiltration and 
storage capacity, whereas the older alluvium plains 
(8.4%) near rivers are promising for storage and 
recharging. Understanding the geomorphological 
characteristics is crucial for effective groundwater 
resource management [40-41]. 

 

3.2 Geology (GG) 
 

The presence of groundwater in an area is greatly 
affected by its geological composition, which affects 
the porosity and permeability of the rock. The rocks 
exposed on the surface play a crucial role in 
determining the likelihood of groundwater presence 
in an area [9,42-43].  

 

Figure 5. Geology map (L-Laterite, Q-Sand, silt and 
clay, Q1s-Clay impregnated with caliche, Q2d-Sand 
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and silt, Q2p-Alternating layers of sand, silt and clay, 
R-River, S3-Mica schist occasionally garnetiferrous). 

 
The various geological units of the study area 

have a differential impact on its groundwater 
potential due to their varying composition and 
properties (Figure 5). In the northern area, laterite 
(0.5%) has fair groundwater potential due to 
moderate permeability, allowing some infiltration 
but with limited storage. The extensive zone of sand, 
silt, and clay (44.9%) offers good potential due to 
mixed grain sizes, facilitating both infiltration and 
storage. Clay containing caliche (28.8%) creates 
confined aquifers, enhancing groundwater storage. 
The sand and silt zone (2.9%) has good potential due 
to high permeability, promoting efficient recharge. 
New alluvium (7.9%) allows high infiltration rates 
and substantial storage. Mica schist (2.1%) in 
various regions offers good potential due to its 
foliated structure, storing and transmitting 
groundwater via fractures. Alternating layers of 
sand, silt, and clay (12.9%) in the south and west 
have excellent potential due to multiple aquifer 
systems [44-45]. 

 

3.3 Lineament Density (LD) 
 

LD are geological features such as rock 
structures, joints, faults, and folds that help water 
quickly seep into the subsurface and thus directly 
influence the groundwater potential. This layer was 
created using the remotely sensed ALOS PALSAR 
DEM. The area was categorized into five LD classes 
given in Figure 6.  

 

 
Figure 6. Lineament density map. 
 

Areas with LD ranging from 0 - 0.31 km/km² 
(33.7%) and 0.31 - 0.81 km/km² (22.3%) are 

categorized as poor, 0.81 - 1.28 km/km² (27.9%) and 
1.28 - 1.84 km/km² (10.7%) as fair, and 1.84 - 3.14 
km/km² (5.4%) as having good groundwater 
potential zones. Areas having high LD typically have 
strong groundwater potential, and vice-versa. 
Studies have also shown that lineaments can serve as 
pathways for groundwater flow, especially in 
fractured rock aquifers, improving the storage and 
movement of groundwater [46]. High LD can also 
suggest the presence of extensive fracture networks, 
which are important for groundwater movement 
and storage in hard rock terrains [47]. 

 

3.4 Drainage Density (DD) 
 

DD is inversely related to aquifer permeability 
and infiltration rate, making it crucial in determining 
the groundwater potential of a location [48]. High DD 
of a location symbolizes greater surface runoff and 
reduced infiltration, resulting in low groundwater 
potential, while low DD enhances infiltration, leading 
to high groundwater potential [49-50]. The DD 
values of the study area ranging between 0 to 1.51 
km/km² (27.9 percent) have been considered as fair, 
1.51 - 3.28 km/km² (27.4 percent), and 3.28 - 5.05 
km/km² (23.5 percent) as good, and 5.05 - 7.27 
km/km² (16.2 percent) and 7.27 - 12.92 km/km² (5 
percent) considered as the zones of excellent 
groundwater prospects. 

 

 
Figure 7. Drainage density map. 
 

 High DD is often associated with less permeable 
surfaces that hinder water from percolating into the 
ground, reducing groundwater recharge [51]. This 
study has effectively revealed that the central and 
western parts of the study area have high DD, while 
the eastern and northern parts have comparatively 
lower DD, which are shown in Figure 7.  
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3.5 Water Level Pre and Post-Monsoon (WL 
PRM and PM) 
 

It is important to understand water level 
fluctuations below ground to assess groundwater 
potential. Data from the India-WRIS portal for 2022 
was processed into a raster layer.  Typically, during 
the arrival of monsoon season (July-September), the 
rise in water levels and saturation of the aquifers can 
be observed. This study has successfully portrayed a 
decreasing trend in water levels from southwest to 
northeast during both the pre-monsoon and post-
monsoon periods which has been depicted in Figure 
8 and Figure 9.  

 

 
Figure 8. Pre-monsoon water level map. 
 

Areas with varying post-monsoon water levels 
have been classified into five categories, the water 
level between 2.34 - 2.80 meters below ground level 
(mbgl) (3.9 percent) and 2.80 - 3.17 mbgl (10 
percent) has been classified as excellent, 3.17 - 3.50 
mbgl (33.1 percent) and 3.50 - 3.89 mbgl (32.2 
percent) named as good, and 3.89 - 4.43 mbgl (20.8 
percent) as fair groundwater potential zones. 
Increased precipitation and surface runoff during 
this period significantly enhance groundwater 
rechargeability [52]. 

On the other hand, the pre-monsoon period 
experiences declining water levels due to reduced or 
negligible rainfall over months. This dry season leads 
to a region-wide drop in groundwater levels. Pre-
monsoon water levels also vary across the whole 
study area, which further classified as good prospect 
zone with range 6.58 - 7.67 mbgl (24.8 percent) and 
7.67 - 8.46 mbgl (31 percent), fair prospect zone 
between 8.46 - 9.44 mbgl (18.6 percent) and 9.44 - 
10.57 mbgl (14.8 percent), and the poor potential 
areas with water level range 10.57 - 11.90 mbgl (10.8 

percent) stressing the need for effective 
groundwater management. 

 

 
Figure 9. Post-monsoon water level map. 

 

3.6 Rainfall (RF) 
 

Rainfall is the primary natural water source, 
influencing groundwater replenishment by 
infiltrating rock fissures and porous spaces. Areas 
with higher rainfall generally exhibit greater 
groundwater potential, contrasting with regions 
receiving less rainfall. Consistent and substantial 
rainfall raises soil moisture levels and maintains a 
steady recharge rate, essential for sustaining 
groundwater levels.  

Conversely, areas with little rainfall may 
experience reduced recharge rates, resulting in 
lower groundwater levels and potential depletion 
over [29,53]. According to IMD Pune rainfall data, the 
annual rainfall in the study area varies from 1305 to 
1351 mm [54]. A rainfall layer was created using the 
IDW method and categorized into five classes based 
on spatial distribution (see Figure 10). IDW was 
specifically chosen due to its simplicity, 
computational efficiency, and suitability for areas 
with limited or moderately spaced stations. It 
assumes that closer points exert greater influence on 
interpolation, which aligns with the spatial rainfall 
pattern of the study area [15,48]. The rainfall layer 
revealed that the rainfall intensity gradually 
decreases from southwest to northeast. Further five 
rainfall classes have been created where the areas 
receiving 1305 to 1321 mm (9.7 percent) had fair 
prospect, 1321 to 1330 mm (15.9 percent), 1330 to 
1337 mm (26.5 percent) as good, and 1337 to 1344 
mm (39 percent), and 1344 to 1351 mm (8.9 
percent) as excellent GWP. 
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Figure 10. Rainfall map. 

 

3.7 Land Use and Land Cover (LULC) 
 

As the land use and land management strategies 
directly influences the infiltration, percolation, and 
overland flow, and aids in the restoration of GWP, 
land use and land cover (LULC) play a significant role 
in the groundwater recharge procedure. It reflects 
the various natural and man-made features that 
cover the surface of the ground, as well as how 
humans use the land [55-57]. This study examines a 
range of LULC parameters and their fluctuating 
effects on groundwater potential within the study 
area. In summary, five LULC classes are taken into 
consideration for this study. Following the creation 
of the LULC map of 2022, these classes were verified 
using Google Earth Pro to match the ground truth 
actuality (Figure 11). Of the 220 random points that 
were generated for the accuracy testing of the final 
map, 203 points in total accurately represent the 
LULC groupings based on the ground truth data [58-
59]. The built-up areas covering 1.5% of the total 
area have a low groundwater prospect (GWP) due to 
their impermeable surfaces that hinder infiltration. 
A fair GWP with moderate infiltration has been found 
in the areas with bare soil and 12.0% sand cover. 
Vegetation (24.3%) and agricultural regions (60.5%) 
have high GWP because of the improved infiltration 
and recharge governed about by plant roots and soil 
structure [48]. Waterbodies (1.7%) provide direct 
recharge zones, which is considered as an excellent 
prospect. 

 

 
Figure 11. Land use and land cover map. 

 

3.8 Slope (SL) 
 

The slope of a landform denotes its tilt or 
gradient relative to a horizontal surface. This 
parameter influences GWP by affecting surface 
runoff and infiltration rates. Slope gradient 
significantly impacts rainfall distribution, surface 
runoff, and infiltration rates, thereby influencing 
groundwater retention [60].  

 

 
Figure 12. Slope map. 

 
Steeper slopes accelerate runoff, reducing 

groundwater recharge time. In contrast, gentler 
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slopes slow water infiltration, enhancing 
groundwater recharge [61-62]. Slope angles (º) were 
derived from ALOS PALSAR DEM data using QGIS. 
The area is classified into five slope categories shown 
in Figure 12. Places with slope of 0 - 1.35 degree 
(27.2 percent) has been considered excellent, 1.35 - 
3.37 degree (52.9 percent) and 3.37 - 5.23 degree 
(15.7 percent) as good, while 5.23 - 7.84 degree (3.5 
percent) and 7.84 - 20.15 degrees (0.7 percent) have 
been considered as fair potential zone. 

 

3.9 Topographic Wetness Index (TWI) 
 

The topography of an area has a significant 
impact on the movement of water, and it's 
distributed across the landforms. Steep slope led to 
faster surface runoff, reducing the infiltration rate 
and limiting the amount of water that replenishes 
underground aquifers. On the other hand, gentle 
slopes encourage water to seep into the soil, 
effectively recharging aquifers. The Topographic 
Wetness Index (TWI) indicates how the topography 
becomes saturated. High TWI values suggest the 
topography is already water-saturated and 
generates more runoff due to saturation excess, 
influencing areas prone to water accumulation and 
higher soil moisture, thereby enhancing 
groundwater recharge [63-65].  

 

 
Figure 13. TWI map. 

 
Lower TWI values indicate lower GWP, while 

higher values suggest greater potential [66-67]. The 
study area was classified into five TWI classes, 
specifically 3.56 - 6.58 (41%) 6.58 - 8.43 (29%) with 
fair GWP, 8.43 - 10.56 (20.6%) with good, and 10.56 
- 13.44 (7.4%) and 13.44 - 21.05 (2%) with excellent 
GWP given in Figure 13. 

 

3.10 Soil Texture (ST) 
 

Soil texture is an important element that 
determines the rate of infiltration, surface runoff, 
porosity, and permeability and aids in defining the 
appropriate GWP. Soil with coarser textures such as 
sandy loam facilitate higher infiltration rate and 
groundwater recharge compared to finer textures 
like clay loam, having lower infiltration capability 
and may impede recharge [29]. Soil texture classes 
also affect water holding capacity of soil, influencing 
the availability of water for groundwater 
replenishment during dry periods [25]. Therefore, 
the soil texture classes were translated into GWP 
ranks based on their permeability and infiltration 
characteristics. For example, sandy loam to clay 
loam–gravelly sandy clay was assigned a rank of 8 
(excellent) due to its high porosity and infiltration 
capacity, which facilitates effective groundwater 
recharge. In contrast, clay loam to clay–clay, with low 
permeability and high runoff potential, was assigned 
a rank of 4 (fair). This ranking approach aligns with 
established hydrological principles and similar 
groundwater studies in semi-arid regions [25,29]. 
The soil texture classes of the study area significantly 
influence GWP. Zones with waterbodies (4.5%), 
sandy loamy sand to sandy loam (10.7%), and sandy 
loam to clay loam - gravelly sandy clay (25.6%) have 
excellent GWP due to high permeability and 
infiltration rates.  

 

 
Figure 14. Soil texture map (Wb-Water bodies, Gsc-
Gravelly sandy clay, Cl-Clay loam, Scl-Sandy clay 
loam, C-clay, S-Sandy, Ls-Loamy sand, Sl-Sandy loam 
Gsl-Gravelly sandy loam, Sc-Sandy clay). 
 

Where, Gravelly sandy loam to gravelly sandy 
loam (32.7%) and sandy clay loam - clay loam to 
sandy clay loam (12.5%) have good prospect. 



International Journal of Engineering and Geosciences– 2026; 11(2); 301-320 

 

  313  

 

Furthermore, gravelly sandy clay - clay loam to 
sandy clay loam (2.3%), clay loam to clay-clay 
(0.7%), and sandy clay loam to sandy clay (11.0%) 
offer fair GWP due to lower permeability (Figure 14). 

 

3.11 Comparison of GWP in AHP, MIF, and RF 
 

The three methods, AHP, MIF, and RF, have been 
used for producing GWP for the study area. For this 
purpose, all the thematic layers were converted into 
raster format with the same cell size and finally 
reclassified for their processing. Finally, the datasets 
were overlaid using the weighted overlay and ML 
algorithm for GWP demarcation. The GWP maps 
resulting from the above methods were classified 
into four main categories based on the availability of 
groundwater, namely poor, fair, good, and excellent. 
There are multiple studies that utilized a similar kind 
of classification for GWP zonation [15,46]. The class 
with the lowest GWP has poor potential, while the 
class with optimum groundwater availability was 
referred as excellent. The categorisation of the 
groundwater (GW) yield data has also been done 
accordingly to match the GWP with the actual 
classification given in the GW prospect dataset. The 
spatial distribution of various GWP is presented in 
Table 4. 

 
Table 4. Percentage (%) wise groundwater classes 
in AHP, MIF and RF 

Type GW yield 
(lpm) 

GWP AHP 
(%) 

MIF 
(%) 

RF 
(%) 

1 30 – 50 Poor 22 15 23 

2 50 – 100 Fair 38 42 47 

3 100 – 400 Good 35 36 25 

4 400 – 800 Excellent 5 7 5 

 
The study's findings from all the used methods 

indicated that the northern and eastern regions, 
characterized by sandy lateritic formations, low 
lineament, and drainage density, a lower water table, 
relatively less rainfall, and high vegetation cover, 
demonstrate poor to fair GWP, with minimal 
influence from slope and TWI. In contrast, the 
eastern, southern, and central regions show fair to 
excellent potential. This is due to the presence of 
clayey alluvial formations, high lineament and 
drainage density, a higher water table, sufficient 
rainfall, and extensive agricultural lands. The effects 
of slope and TWI are observed to be minimal.  

For the AHP method, the CI (0.128), RI (1.51), and 
CR (0.085) value obtained using equations 5 and 6 
were satisfactory as it lower than its desired upper 
limit of 0.10.  These values and the value of λmax 
(12.282) were determineded using a self-developed 
MS Excel sheet-based AHP weightage calculator 
created by combining equations, for the total 
number of variables (n). Using the AHP method in 
the present study, a total of four GWP zones were 
found (Figure 15.). 

 

 
Figure 15. GWP zones on AHP method. 

  
These zones are marked according to their GWP 

from poor to excellent. The result of the work 
revealed that about 22 % of the total study area has 
poor GWP, 38 % of the area has fair, 35 % of the area 
has good, and only about 5 % of the remaining area 
has excellent GWP.  

 

 
Figure 16. GWP zones on MIF method. 
 

The MIF method also has successfully delineated 
the GWP in the present study. As a result, four 
groundwater prospect zones were identified and 
categorized from poor to excellent as shown in 
Figure 16. About 15 % and 42 % of the area poor and 
fair GWP while 36 % and 7 % of the total study area 
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recognized with good and excellent GWP, 
respectively.  

The GWP obtained from the RF algorithm have 
also produced outstanding result as compared to the 
traditional methods, which were further categorized 
into four GWP groups, namely poor, fair, good, and 
excellent. Almost 23 % of the study area accounts for 
poor GWP, the fair zone is extended over 47 % of the 
area, the good GWP covers 25 % of the area, and the 
excellent GWP covers 6 % of the study area 
respectively, as shown in Figure 17. 
 

Figure 17. GWP zones on RF method. 
 

The model was tuned using GridSearchCV, to 
identify the optimal parameters namely max_depth 
as None, min_samples_leaf as 1, min_samples_split as 
2, and n_estimators as 200 [36]. The cross-
validation's result shows an overall accuracy of 78%, 
where the precision, recall, and f1-scores for 
groundwater potential classes have been obtained as 
0.83,1.00 and 0.91 for class 0 (excellent), 0.71, 0.45, 
and 0.56 for class 1 (good), 0.64, 0.82 and 0.72 for 
class 2 (fair), and 1.00, 1.00 and 1.00 for class 3 
(poor). The model has efficiently predicted GWP of 
the study area and generated an ROC curve with a 
macro-average Area Under the Curve (AUC,) which 
indicates a good performance and provided valuable 
insights for groundwater resource management. 

 

3.11.1 Statistical comparison of GWP 
 

The Chi-square goodness of fit and Mann-
Whitney tests have been conducted to compare the 
efficacy of GWP maps prepared using the 
aforementioned methods. Both the tests were 
carried out by comparing the model output GWP 
maps (predicted) with that of GWP identified using 
field observation on groundwater yield (lpm) data of 

NRSC ISRO and collected from West Bengal Public 
Health Engineering Department (WBPHED) 
(observed). 

Chi-square test evaluates differences between 
predicted/observed and expected frequencies in the 
GWP mapping by various models. A significant 
difference between observed and expected 
frequencies indicates a discrepancy, suggesting the 
need for further investigation or model adjustment 
[68]. 
 

Figure 18. Chi-square goodness of fit result for AHP. 
 

Figure 19. Chi-square goodness of fit result for MIF. 
 

Figure 20. Chi-square goodness of fit result for RF. 
 

In the AHP method, the chi-square statistic 
(1.641) is less than the critical value (7.815), and the 
p-value (0.650) is greater than 0.05, indicates a 
match between observed and expected frequencies. 
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While MIF method also showed identical result with 
a chi-square statistic of 0.658 and a p-value of 0.883. 
On the contrary, the RF method with a chi-square 
value of 0.183 and a high p-value of 0.980, suggests 
that the observed frequencies match expected 
frequencies [69]. The p-values indicates that the 
results obtained using RF is more strongly 
confirming the null hypothesis (Figure 18 - 20). 

The Mann-Whitney U test, a non-parametric test, 
was applied to compare the GWP classifications from 
three Multi-Criterion Decision-Making (MCDM) 
methods namely AHP, MIF, and RF against the 
ground truth values.  
 

Figure 21. Mann-Whitney U test results for AHP. 
 

Figure 22. Mann-Whitney U test results for MIF. 
 

Figure 23. Mann-Whitney U test results for RF. 
 

This test, which compares the ranks of two 
independent groups, is beneficial when the data does 
not follow a normal distribution [70]. The p-values 

for all three methods (AHP: 0.8554, MIF: 0.9766, and 
RF: 0.9021) were all greater than 0.05, indicating no 
significant differences between the predicted GWP 
values and the ground truth. Among the methods, 
MIF showed the highest U statistic value (651.0), 
suggesting a slightly better ranking; however, the 
difference was not statistically significant. Overall, 
the results indicate that all three methods perform 
similarly when evaluated using the Mann-Whitney U 
test (Figure 21 - 23). This aligns with the idea that 
non-parametric tests like Mann-Whitney are 
valuable for comparing non-normally distributed 
data without assuming a specific underlying 
distribution. Hence, these outcomes implied that the 
AHP, MIF, and RF methods offer efficient and 
dependable prediction of GWP concerning the 
observed groundwater yield data from WBPHED. 

 
4. Valıdatıon of GWP zonation Maps 

 
The present study adopted three methodologies 

(AHP, MIF, and RF) to delineate GWP and used the 
mean macro-average Receiver Operating 
Characteristic (ROC) Area Under the Curve (AUC) for 
validation of the result. This method evaluates an 
overall evaluation of the model's performance across 
all classes and is particularly useful for assessing 
multi-class classifiers [36,71]. Groundwater yield 
data has been used to validate the potential zones 
across 36 random points taken for model validation 
after consulting a local geologist. The total number of 
validation points to be used in this work was 
finalized after a rigorous literature survey, where a 
study used 14 observation wells for GWP validation 
for an area of 976 km2, another two studies used 12 
and 32 observation wells for validating 847 km2 and 
3149 km2 study areas, respectively [15,46,48]. 

During the validation process, it has been found 
that the AHP method achieved a mean macro-
average ROC AUC of 0.875, and MIF achieved 0.828 
AUC, where RF performed exceptionally well with an 
AUC score of 0.982 (Figure 24 - 26).  

 

 
Figure 24. AHP ROC curve. 
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Figure 25. MIF ROC curve. 
 

 
Figure 26. RF ROC curve. 
 

This indicates that the RF model has a higher 
prediction accuracy compared to AHP and MIF in 
delineating GWP within the study area, proclaiming 
its robustness and reliability for hydrogeological 
applications.  

These findings provide invaluable insights for 
policymakers and local communities to implement 
targeted interventions, such as rainwater harvesting, 
artificial recharge, and efficient irrigation practices. 
However, the incorporating time-series data to 
assess changes in groundwater potential over time, 
collaborating with local communities to co-develop 
groundwater management strategies and 
developing advanced models to predict future trends 
in groundwater availability and quality will help in 
better achieving the groundwater sustainability in 
the region. 

 
5. Conclusıon 

 
The present work to decipher the GWP of the 

Sarenga block of Bankura district, West Bengal has 
efficiently handled and evaluated, how the 
implementation of GIS and RS coupled with MCDM 
techniques can lead to the successful delineation of 
the GWP. The study unveils that out of the eleven 
factors used in the study, geomorphology, geology, 

drainage, and lineament have the highest impact on 
the GWP. 

The GWP maps obtained using the 
aforementioned models were compared using the 
Chi-square test and Mann-Whitney tests, which 
showed the edge of the RF model as compared to the 
other two methods.  The validation results of ROC 
AUC foreclosed that the RF model produced an AUC 
of 0.982, outperforming AHP's 0.875 and MIF's 
0.828. Thus, the study concludes that the machine 
learning-based RF model is more effective than the 
traditional AHP and MIF methods for delineating 
GWP in regions with similar geographical settings, 
suggesting future studies may explore advanced ML 
models such as XGBoost, Support Vector Machines 
(SVM), or Gradient Boosting, which are capable of 
capturing more complex hydrogeological patterns. 
The model performance can also be improved with 
proper tuning, including a larger number of ground 
truth points, and implementing a more efficient 
quantitative data handling strategy.  

The RF model has depicted that 23 % and 47% of 
the area exhibits poor and fair GWP. While, about 
25% and 5% of the study area have good and 
excellent GWP. The study suggests that the south and 
western parts of the region have excellent to good 
groundwater potential, while the north and eastern 
parts have fair to poor GWP. On the contrary, the 
central part has fair to good GWP. Though the study 
identifies the zones of GW scarcity and adequacy, it 
also recommends promoting rainwater collection 
and building storage and recharge facilities in areas 
with poor groundwater potential to improve GWP. 
Finally, it also advocates for regular monitoring of 
groundwater to plan its sustainable usage for 
agricultural applications using GIS and RS, and 
encourage local integrated groundwater 
management. 

This work acknowledges certain limitations, 
including the DEM-related errors, the  availability of 
fewer rainfall stations, coarse-scale geology and soil 
data, and the use of a single-year groundwater 
database. While these are quite common in GIS-
based hydrogeological studies, they were minimized 
with data standardization and validation. Future 
work should incorporate multi-temporal datasets 
and more adequate field observation data to further 
improve reliability. 
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