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Keywords Abstract

Data Mining After-sales service plays a vital role in the white goods industry, significantly affecting both customer
satisfaction and operational performance. This paper presents a decision tree-based approach for
classifying and characterizing failure types in white goods, using after-sales service data from a white
Decision Tree Analysis ~ goods manufacturer. We employ the Classification and Regression Tree (CART) algorithm to identify

patterns in failure occurrences based on product category, region, usage duration, and brand. The model
Rule-Based Approach generates interpretable decision rules, providing insights into the factors contributing to failures. The
results reveal that product category and region are the most significant factors influencing product
failures. These findings support manufacturers and service providers in optimizing maintenance
Business Analytics strategies and improving service operations. The proposed approach enhances decision-making

processes in after-sales service, leading to higher customer satisfaction and extended product life cycles.
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1. INTRODUCTION

After-sales services encompass all technical support provided to customers post-purchase, including
warranties, insurance, maintenance/repair, and product updates. According to Gartner’s AMR research,
businesses derive 45% of their gross profits and 24% of their revenues from the aftersales market (Gartner
1999). Furthermore, Cohen and Agrawal (2006) emphasize that customers do not necessarily demand flawless
products; rather, they place greater value on timeliness and effectiveness of solutions to problems when they
arise, thereby underscoring the pivotal role of after-sales services in maintaining customer satisfaction and
loyalty. After-sales service also plays a crucial role in the white goods industry, directly influencing customer

satisfaction, brand loyalty, and operational efficiency.

Traditional after-sales service models often rely on reactive maintenance strategies, where failures are
addressed only after they occur. However, this approach can lead to increased operational costs, prolonged

downtimes, and reduced customer satisfaction. A shift toward predictive and proactive maintenance can
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significantly enhance service efficiency. By analyzing historical maintenance records, companies can
anticipate potential issues, allocate appropriate resources, and reduce unnecessary service visits. Machine
learning is widely used in various fields, such as retail, finance, banking, security, astronomy, and behavioral
ecology (Kantardzic, 2003). Data mining and machine learning techniques have been successfully applied in
after-sales service prediction and modeling, particularly in forecasting spare parts demand, optimizing service

logistics, and identifying failure patterns (Ko et al., 2017; Rohaan et al., 2022; Liu et al., 2024).

In the white goods industry, common failure types include compressor malfunctions in refrigerators, motor
issues in washing machines, and thermostat failures in ovens. These failures are broadly categorized as
electrical (e.g., wiring faults, control board failures) or functional (e.g., mechanical wear, component
degradation). Current industry practices predominantly rely on reactive maintenance, leading to delayed
responses and higher costs. However, manufacturers are increasingly recognizing the potential of predictive
analytics to transition toward proactive strategies tailored to product categories and regional usage patterns.
For example, humidity levels in coastal regions may accelerate corrosion in electrical components, while heavy

usage in urban households could lead to mechanical wear in washing machines.

Recent studies underscore notable gaps in the predictive maintenance literature for white goods. Unlike
industrial machinery or critical infrastructure, household appliances have seen relatively sparse research
attention in failure prediction. A primary challenge is the scarcity of domain-specific data. Papaioannou et al.
(2024) highlights a significant lack of publicly available malfunction datasets for appliances, which hampers
the development of effective predictive models. The limited availability of large, labeled datasets is cited as a
major barrier to advancing appliance fault diagnosis. This data gap is only beginning to be addressed. For
example, Fonseca, et al. (2023) recently released a real-world dataset of refrigerator and washing machine
performance (current and vibration readings) to facilitate Al-driven predictive maintenance research. The
creation of such datasets is crucial, as realistic data is “paramount” for training and validating predictive

algorithms in this domain.

Another gap is the limited integration of IoT sensors in legacy appliances, which makes data collection
difficult. Most in-service white goods were not built with smart monitoring in mind; as one study notes, “most
of devices do not provide any IoT interface,” forcing researchers to gather data via external sensor retrofits
(Ferreira, et al., 2021). This lack of built-in instrumentation has historically kept white goods largely excluded
from predictive maintenance implementations, in contrast to heavily instrumented industrial equipment.
Moreover, white goods present unique complexity. They combine mechanical systems (motors, compressors,
pumps) with electronic controls. This dual nature means failures can arise from mechanical wear or electronic
faults (or interactions of both), requiring specialized prediction approaches. Existing predictive maintenance
studies often overlook this combination, focusing instead on single-domain systems. Together, these factors,
such as data scarcity, low connectivity, and system complexity, explain why failure prediction for appliances

remains underexplored. Bridging these gaps is an open research opportunity identified in recent literature.
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This study aims to present a decision tree-based approach for classifying and characterizing failure types in
white goods, focusing on both electrical and functional issues. Using real-world after-sales service data from
a white goods manufacturer, we employ the CART (Classification and Regression Trees) algorithm to uncover
patterns in failure occurrences based on factors such as product category, region, usage duration, and brand.
The model generates interpretable decision rules that provide insights into the most critical factors contributing
to failures. By applying the proposed approach to after-sales service data, companies can identify key factors
influencing failure occurrences and improve predictive maintenance strategies. The contributions of this study
are twofold. First, it provides a practical, rule-based framework that helps service personnel predict the type
of failure before visiting a customer, leading to more efficient resource management and scheduling. Second,
the insights derived from this model can aid manufacturers and service companies in optimizing their after-
sales strategies by targeting specific product categories and regions, potentially enhancing customer

satisfaction and brand reputation.

2. BACKGROUND

2.1. Knowledge Discovery in Databases and the Cross-Industry Standard Process for Data Mining
Knowledge Discovery in Databases (KDD) is a process for extracting useful and meaningful information from
data (Witten et al., 2011). This method reveals hidden information in databases and provides significant
business insights (Fayyad, 2001). Businesses can use this information in market analysis, product
development, and customer segmentation. Moreover, data-driven decision-making enables enterprises to gain
a competitive advantage. Especially with the increasing data intensity, the data mining process is crucial for

businesses.

Data mining, a step in the KDD process, includes techniques widely used in various sectors, such as e-
commerce, retail, services, banking, and healthcare. The data mining process is carried out using various
methods, and the most commonly used methodology in literature is the Cross-Industry Standard Process for
Data Mining (CRISP-DM) (Abbasi et al., 2016). This methodology comprises six stages for planning and
executing data analytics and mining projects. These stages are business understanding, data understanding,
data preparation, modeling, evaluation, and deployment (Chapman et al., 1999). In the business understanding
stage, the project's goals and objectives are defined. In the data understanding stage, data sources and data
quality are examined. In the data preparation stage, data cleaning and preprocessing are performed. Machine
learning algorithms are applied to the data during the modeling stage. The evaluation stage assesses the model’s

performance, and in the deployment stage, the resulting insights are presented to the end-users.

2.2. Decision Tree Algorithms

Classification algorithms are capable of processing large volumes of information. By leveraging categorical
class labels and assumptions derived from training datasets, these algorithms enable systematic categorization
of data and facilitate the classification of newly acquired data in a similar manner (Nikam, 2015). Among the

various approaches, decision trees represent a particularly powerful and interpretable technique, widely applied
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across fields such as machine learning, image processing, and model identification (Stein et al., 2005).
Decision trees efficiently and consistently combine a series of basic tests, where each test compares a numerical
attribute against a threshold value (Damanik et al., 2019). The conceptual rules created by decision trees are
much easier to interpret than the numerical weights in neural networks (Barros et al., 2012). Unlike black-box
models such as deep learning, decision trees allow policy makers to extract human-readable insights that
facilitate better decision-making. Decision trees are predominantly used for clustering purposes and are a

frequently employed classification model in data mining (Gavankar & Sawarkar, 2017).

A decision tree consists of four fundamental structures: the root node, nodes, branches, and leaves. Each node
represents the features to be classified within a category, and each subset defines a value the node can take
(Mahesh, 2018). Due to their simplicity and accuracy in analyzing multiple data forms, decision trees have
been employed in many different application areas (Mrva et al., 2019). In the context of white goods, decision
trees are particularly advantageous due to their ability to handle categorical variables (e.g., product categories,
regions) and numerical data (e.g., usage duration) simultaneously. This aligns with the heterogeneous nature
of after-sales data, where factors like regional climate variations (e.g., coastal vs. arid regions) and product-

specific usage patterns (e.g., frequent vs. intermittent use) must be analyzed cohesively.

2.3. Overview of Predictive Maintenance Research in Consumer Electronics and Home Appliances

Recent advancements in predictive maintenance have extended beyond industrial machinery into the realm of
consumer electronics and household appliances. The reviewed studies demonstrate a growing interest in
applying data-driven maintenance strategies to systems such as washing machines, refrigerators, boilers, and
HVAC units. Table 1 presents a concise overview of selected peer-reviewed journal articles published within

the last decade, focusing on predictive maintenance implementations in these consumer-facing domains.

The selected studies highlight that washing machines and residential heating systems are among the most
investigated appliances. These systems are frequently used, subject to wear, and relatively accessible for data
collection, which makes them suitable candidates for predictive modeling. In particular, appliances that exhibit
both mechanical and electrical components have become central targets due to their higher risk of functional
or electrical failure. This reflects an industry-wide shift toward using condition-based monitoring and proactive

fault detection in everyday products.

A variety of technical approaches have been applied through the studies. Several contributions rely on Internet
of Things (IoT) devices to collect real-time sensor data such as current, vibration, and temperature. This data
is then processed using machine learning algorithms to predict faults before they occur. For example, Fonseca
et al. (2023) introduced a high-resolution labeled dataset collected from actual appliance repair cases, enabling
the development of accurate predictive maintenance models. Similarly, Fernandes et al. (2020) demonstrated
how an IoT-based monitoring system can be used to forecast faults in domestic boilers, helping to avoid

unnecessary energy waste and improve reliability. Other studies applied advanced deep learning techniques
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such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs) to analyze
smart plug data, as seen in the work of Casagrande et al. (2021) on washing machines. This method allows for
non-intrusive monitoring, eliminating the need for internal sensors by interpreting energy consumption
signatures. Furthermore, several papers employed data mining techniques, including sequential pattern
recognition and association rules, to predict future maintenance activities based on historical service records.

These methods offer practical solutions for optimizing maintenance schedules and reducing downtime.

One of the emerging challenges in predictive maintenance research is the scarcity of labeled fault data,
especially for consumer appliances. To address this, recent work by Papaioannou et al. (2024) proposed a
simulation-based approach to generate synthetic anomalies in appliance power consumption profiles. By
injecting realistic malfunction signatures into normal usage data, the authors created training datasets for
machine learning models, thereby overcoming the limitations of real-world data availability. This type of
contribution is particularly important for scaling predictive maintenance applications in domains where failure

data are difficult or costly to collect.

In addition to technical implementations, comprehensive review papers (e.g., Carvalho et al., 2019; Cinar et
al., 2020) provide valuable insight into the broader landscape of predictive maintenance research. These
reviews classify machine learning algorithms commonly used in predictive maintenance, identify application
trends, and discuss ongoing challenges such as data imbalance, sensor integration, and model interpretability.
They underscore the significance of combining low-cost sensor technology with data analytics to enable

scalable maintenance solutions across different sectors, including smart homes and industrial systems.

Some studies, such as that of Falatouri et al. (2023), go a step further by considering spatial and temporal
patterns in maintenance data across geographic regions. Their use of spatial-temporal networks demonstrate
the potential of predictive analytics in optimizing large-scale service operations, such as technician dispatch
and spare part logistics. Similarly, other works from national databases (e.g., TRDizin) illustrate practical
deployments of machine learning models in real industrial settings, further supporting the feasibility of these

approaches in both research and commercial environments.

3. METHODOLOGY
In this study, a systematic framework called the Cross-Industry Standard Process for Data Mining (CRISP-
DM) was employed to develop a decision tree-based model for predicting failure types in white goods. The

details are provided in the following subsections.
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Table 1. Summary of relevant predictive maintenance research
Study Appliance/System Method/Approach Main Contribution/Findings
Fonseca et al. Refrigerators & IoT sensors + Data Provides a labeled dataset of current
(2023) Washing Machines Collection (current, and vibration signals from real washer
vibration) and fridge repair cases, supporting Al
model training for appliance fault
detection.

Es-sakali et al. HVAC (Heating, Literature Review

(2022)

Ventilation, A/C)

(algorithms for HVAC
predictive maintenance)

Systematically reviews HVAC
predictive maintenance algorithms,
emphasizing the importance of
combining loT sensors with data-
driven methods for effective fault
prediction.

Fernandes et al.

Home Boilers IoT Data + ML Models Develops an [oT-based system for
(2020) (Heating System) (Failure Forecasting) | predicting boiler faults using machine
learning, reducing energy waste and
unplanned maintenance.
Casagrande et al. | Washing Machines | Deep Learning (CNN & | Uses deep learning on smart-plug data
(2021) LSTM on power signals) | to detect internal faults in washing
machines, enabling low-cost, sensor-
free predictive maintenance.
Al-Refaie et al. Washing Machine Data Mining (GSP Applies data mining to washing
(2023) (maintenance sequences + Assoc. Rules)| machine maintenance logs to predict
records)

upcoming maintenance needs,
improving planning and uptime.

Papaioannou et al.
(2024)

Various Home
Appliances (fridge,
washer, dryer, etc.)

Synthetic Data Generation
(anomaly simulation)

Simulates power anomalies in
appliances to generate synthetic
training data, aiding development of
predictive maintenance models.

Carvalho et al.
(2019)

Various Equipment
(survey)

Review (ML techniques in
predictive maintenance)

common methods, challenges, and their
application across different equipment.

Reviews 160+ studies applying ML in
predictive maintenance, highlighting

Cinar et al.
(2020)

Industrial Systems
(review)

Review (applications of
ML in predictive
maintenance )

predictive maintenance in Industry 4.0,
stressing the role of connected sensors

Reviews machine learning-based

and Al in reducing equipment
downtime.

Falatouri et al.
(2023)

Home Heating
Appliances
(distributed)

Spatial-Temporal ML
Model (demand forecast)

appliances across locations, improving

Uses spatial-temporal modeling to
predict maintenance for heating

service logistics and accuracy.



https://doi.org/10.54287/gujsa.1655744

Caglar SOLMAZ, Serhat PEKER, Onur DOGAN
GU J Sci, Part A 12(3)  858-872  (2025) 10.54287/gujsa. 1655744

864

3.1. Business Understanding

This stage involved defining the research objective and identifying key factors influencing failure types in
household appliances. The goal was to develop a model that predicts whether a failure is functional or
electrical, based on product category, region, usage duration, and brand. Understanding these patterns can help

manufacturers optimize maintenance strategies and improve product reliability.

3.2. Data Understanding and Preparation

The dataset for this research was sourced from the maintenance and after-sales service records of a white goods
manufacturer in Manisa, Turkey. Failure records from various white goods product categories were extracted
from the CRM system, utilizing SAP HANA, covering the period between 2018 and 2022. The dataset
comprises information on various appliances, and Table 2 outlines the selected key features related to product

failures.

Table 2. Feature descriptions

Feature Description

Product Category Groups of white goods products

Brand Brands of white goods products

Region The region where customers submit requests

Usage Duration Time in months between installation and breakdown
Failure Type Type of failure occurring (Electrical or Functional)

During data preparation, the “Product Category” variable was categorized into eight groups, numbered 1 to 8,
and the “Brand” variable was divided into six groups, numbered 1 to 6. The “Region” variable was created by
dividing the provinces into seven geographical regions, numbered 1 to 7. The target class variable, “Failure

Type,” consists of two classes: Electrical Failure (1) and Functional Failure (2).

Tables 3 and 4 summarize the distribution and statistics for the categorical and numerical features in the final

dataset.

3.3. Implementation of CART algorithm

Decision trees are widely recognized for their balance between interpretability and predictive capability,
making them suitable for practical, field-level decision-making. In this study, the Classification and Regression
Tree (CART) algorithm was selected due to its ability to generate clear, interpretable rules, which are
especially valuable for technicians and service managers who require transparent, actionable insights during
after-sales service operations. For example, CART enables rules such as: "IF Product = Refrigerator AND
Region = Black Sea, THEN Functional Failure", which directly align with the diagnostic logic used by field

personnel.
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Table 3. Distribution of Categorical Features

Feature Value Code Distribution (%)
Product Category Washing Machine 1 31
Dishwasher 2 22
Refrigerator 3 20
Air Conditioner 4 10
Oven 5 6
Deep Freezer 6 5
Stove 7 4
Dryer 8 2
Brand VL 1 56
RL 2 20
SG 3 11
FX 4 6
VT 5 4
WR 6 3
Region Mediterranean 1 15
Eastern Anatolia 2 9
Aegean 3 13
Southeastern Anatolia 4 16
Central Anatolia 5 13
Black Sea 6 15
Marmara 7 19
Failure Type Electrical Failure 1 48
Functional Failure 2 52
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Table 4. Statistical Details of Numerical Variables

Feature Min Max Median Mean Std. Dev.

Usage Duration 0 84 24 27.97 21.60

Compared to black-box models such as Random Forest and Support Vector Machines (SVM), the CART
algorithm provides direct interpretability through its rule-based structure (Breiman et al., 1984; Molnar, 2020),
which is particularly valuable for real-time decision-making in operational settings (Rudin, 2019). Although
other machine learning methods—such as Random Forest and SVM—may achieve higher predictive
performance, they often require extensive hyperparameter tuning, involve greater implementation complexity,
and lack inherent transparency (Hastie et al., 2009). Therefore, CART was favored for its transparency, ease
of implementation, and its ability to generate intuitive rules that can be readily interpreted by non-technical
personnel in the field. The trade-off in model complexity versus interpretability was carefully considered, with

priority given to explainability to support practical application in after-sales service environments.

The CART algorithm was implemented using the R programming language in RStudio, utilizing the “rpart”
library for model training. To enhance model robustness and avoid overfitting, hyperparameter tuning was

performed, including optimization of the complexity parameter (CP) and depth of the tree.

To build the decision tree model, the dataset was divided into a 70:30 ratio, with 70% used for training and
30% for testing. The decision tree generates rules in the form of simple IF-THEN statements, where the IF part
(also called the antecedent) represents a condition, and the THEN part provides the prediction. Two key metrics
are used to evaluate the usefulness of these decision rules: support (or coverage) and accuracy (or confidence)
(Molnar, 2010). Support refers to the percentage of instances where the condition of a rule applies, while
accuracy measures how often the rule correctly predicts the target class for those instances. Typically, there is
a trade-off between support and accuracy: adding more features to the condition can increase accuracy but may
reduce support. To balance this, specific thresholds were set for both metrics, allowing us to select and interpret
the most effective decision rules generated by the algorithm. Additionally, the feature importance scores were

analyzed to determine the most influential factors in predicting failure types.

4. RESULTS

The rule-based representation of the decision tree model built using the CART algorithm is summarized in
Table 5. Due to the large number of rules generated, we focused on rules with accuracy greater than 60% and
support above 5%, resulting in a total of 9 rules. These selected rules provide insights into how different
combinations of product category, region, and usage duration influence the failure type (either electrical or

functional).
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Table 5. The rules generated by CART algorithm
Rules
THEN- Accuracy | Support
Rule # IF Failure Type (%) (%)
1 ProductCategory=1,2,3,4,6,8 => 2 61 89
2 ProductCategory=1,2,3,4,6,8 AND Region=5,6 => 2 71 25
3 ProductCategory=3,6 AND Region=1,2,3,4,7 => 2 61 18
4 ProductCategory=3,6 AND Region=1,2,3,4,7 ) 62 16
AND UsageDuration>=2 =>
5 ProductCategory=1,3 AND Region=5,6 => 2 73 14
6 ProductCategory=2,4,6,8 AND Region=5,6 => 2 69 11
7 ProductCategory is 5,7 => 1 78 11
8 ProductCategory=2,6,8 AND Region=5,6 => 2 70 9
9 ProductCategory=5,7 AND Region=1,2,3,4,7 => 1 80 8

In Table 5, each rule is represented as an [F-THEN statement. The IF part consists of conditions based on one
or more attributes from identified four features, while the THEN part predicts the type of failure (1 for
Electrical and 2 for Functional). The table also reports the accuracy (confidence) and support (coverage) of

each rule, indicating how well the rule applies to the dataset.

The analysis reveals that functional failures are the most common type of failure, particularly in washing
machines, dishwashers, refrigerators, air conditioners, deep freezers, and dryers (Product Categories 1, 2, 3, 4,
6, and 8). Rule 1 highlights that these product types frequently experience functional failures, with an accuracy
of 61% and a support of 89%, covering a significant portion of the dataset. The impact of geographical location
is evident in Rule 2, which refines this pattern by showing that when these products are located in Central
Anatolia (Region 5) or the Black Sea region (Region 6), the accuracy of predicting functional failures increases
to 71%, though the rule applies to a smaller portion of the dataset (support: 25%). This suggests that

environmental or regional factors may contribute to higher rates of functional issues in these areas.

Product-specific patterns further support these findings. Rule 3 indicates that refrigerators and deep freezers
(Product Categories 3 and 6) in regions 1, 2, 3, 4, and 7 have a 61% likelihood of experiencing functional
failures, with 18% support. When usage duration is greater than or equal to two months (Rule 4), the accuracy

of predicting functional failure rises slightly to 62%, suggesting that prolonged usage may contribute to higher
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failure rates. Additionally, washing machines and refrigerators in regions 5 and 6 (Rule 5) exhibit the highest

accuracy (73%) for functional failures, emphasizing the regional dependency in failure patterns.

On the other hand, electrical failures are strongly associated with ovens and stoves (Product Categories 5 and
7). Rule 7 shows that these products have a high likelihood of electrical failures (78% accuracy), regardless of
location. This pattern becomes even more pronounced in Rule 9, where electrical failure rates increase to 80%
when these products are in regions 1, 2, 3, 4, or 7, though this rule applies to a smaller portion of the dataset
(support: 8%). These findings indicate that product type is a primary determinant of failure type, while regional

differences serve as a secondary factor that refines predictions.

The relative importance of the features in the decision tree model is visualized in Figure 1, which highlights
their contributions to the model’s decision-making process. Essentially, variables that frequently appear in the
decision-making process of the model are assigned higher scores, indicating their stronger influence in

predicting the target variable (failure type).

Feature Importance Scores

ProductCategory

Region

Feature Name

UsageDuration

Brand

T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000
Importance Score

Figure 1. Feature Importance scores

Product category emerges as the most influential variable, with a score exceeding 8,000, reinforcing its
dominant role in predicting failure type. This is expected, as product type directly determines the nature of
failures—whether functional or electrical. The second most significant variable is region, with a score above
4,000, suggesting that geographical factors contribute notably to the failure patterns. The inclusion of regional

factors in multiple rules further confirms that certain areas are more prone to specific types of failures.


https://doi.org/10.54287/gujsa.1655744

Caglar SOLMAZ, Serhat PEKER, Onur DOGAN
GU J Sci, Part A 12(3)  858-872  (2025) 10.54287/gujsa. 1655744

869

In contrast, usage duration, with a score around 1,000, has a lower impact on failure prediction. While it
appears in some rules (e.g., Rule 4), its influence is less significant compared to product type and region.
Brand, with the lowest feature importance score, has minimal impact on failure classification, suggesting that
failure type is not significantly affected by the manufacturer but rather by the product’s category and location.
These findings align with the rule-based results, confirming that product category and region are the primary

factors influencing failure types, while other attributes play a lesser role.

5. CONCLUSION

This research focused on improving after-sales service in the white goods industry by developing a decision
tree-based approach to predict failure types (electrical or functional) using the Classification and Regression
Tree (CART) algorithm. By analyzing key factors such as product category, region, usage duration, and brand,
a model was developed using historical failure data from a white goods manufacturer in Turkey. The CART
model was employed to extract interpretable rules that aid in predicting failure types based on these input

features, facilitating better decision-making for service personnel.

The key findings of this study indicate that product category and region are the most influential factors in
predicting failure types, whereas usage duration and brand have relatively minor impacts. The decision tree
model revealed that functional failures are more prevalent in products such as washing machines and
refrigerators, particularly in Central Anatolia and Black Sea regions. Conversely, electrical failures are more
commonly associated with ovens and stoves. These insights underscore the importance of tailoring
maintenance strategies and failure prevention policies based on both product type and geographical location,

enabling more targeted and effective interventions in service management.

The practical implications of this study are significant for after-sales service operations in the white goods
industry. By implementing the decision tree model, service centers can predict the type of failure (electrical or
functional) before dispatching technicians, enabling more efficient workforce allocation and reducing
unnecessary site visits. This leads to improved scheduling, better resource utilization, and a higher likelihood
of first-time fix rates. Additionally, by identifying patterns related to product type and region, companies can
tailor their maintenance strategies and training programs, ultimately enhancing service quality, reducing costs,

and boosting customer satisfaction.

Despite the valuable insights gained from this study, a couple of limitations should be acknowledged. First,
the analysis relies on a specific dataset, which may not fully represent all brands, product categories, or regional
variations in failure patterns. Future research could expand the dataset to include a more diverse range of
products and geographical regions to enhance generalizability. Further, this study focuses on key variables
such as product category, region, usage duration, and brand. In future studies, it may be useful to incorporate

additional contextual factors to provide a more comprehensive understanding of failure patterns.
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