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After-sales service plays a vital role in the white goods industry, significantly affecting both customer 

satisfaction and operational performance. This paper presents a decision tree-based approach for 

classifying and characterizing failure types in white goods, using after-sales service data from a white 

goods manufacturer. We employ the Classification and Regression Tree (CART) algorithm to identify 

patterns in failure occurrences based on product category, region, usage duration, and brand. The model 

generates interpretable decision rules, providing insights into the factors contributing to failures. The 

results reveal that product category and region are the most significant factors influencing product 

failures. These findings support manufacturers and service providers in optimizing maintenance 

strategies and improving service operations. The proposed approach enhances decision-making 

processes in after-sales service, leading to higher customer satisfaction and extended product life cycles. 
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1. INTRODUCTION 

After-sales services encompass all technical support provided to customers post-purchase, including 

warranties, insurance, maintenance/repair, and product updates. According to Gartner’s AMR research, 

businesses derive 45% of their gross profits and 24% of their revenues from the aftersales market (Gartner 

1999). Furthermore, Cohen and Agrawal (2006) emphasize that customers do not necessarily demand flawless 

products; rather, they place greater value on timeliness and effectiveness of solutions to problems when they 

arise, thereby underscoring the pivotal role of after-sales services in maintaining customer satisfaction and 

loyalty. After-sales service also plays a crucial role in the white goods industry, directly influencing customer 

satisfaction, brand loyalty, and operational efficiency.  

Traditional after-sales service models often rely on reactive maintenance strategies, where failures are 

addressed only after they occur. However, this approach can lead to increased operational costs, prolonged 

downtimes, and reduced customer satisfaction. A shift toward predictive and proactive maintenance can 
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significantly enhance service efficiency. By analyzing historical maintenance records, companies can 

anticipate potential issues, allocate appropriate resources, and reduce unnecessary service visits. Machine 

learning is widely used in various fields, such as retail, finance, banking, security, astronomy, and behavioral 

ecology (Kantardzic, 2003). Data mining and machine learning techniques have been successfully applied in 

after-sales service prediction and modeling, particularly in forecasting spare parts demand, optimizing service 

logistics, and identifying failure patterns (Ko et al., 2017; Rohaan et al., 2022; Liu et al., 2024). 

In the white goods industry, common failure types include compressor malfunctions in refrigerators, motor 

issues in washing machines, and thermostat failures in ovens. These failures are broadly categorized as 

electrical (e.g., wiring faults, control board failures) or functional (e.g., mechanical wear, component 

degradation). Current industry practices predominantly rely on reactive maintenance, leading to delayed 

responses and higher costs. However, manufacturers are increasingly recognizing the potential of predictive 

analytics to transition toward proactive strategies tailored to product categories and regional usage patterns. 

For example, humidity levels in coastal regions may accelerate corrosion in electrical components, while heavy 

usage in urban households could lead to mechanical wear in washing machines. 

Recent studies underscore notable gaps in the predictive maintenance literature for white goods. Unlike 

industrial machinery or critical infrastructure, household appliances have seen relatively sparse research 

attention in failure prediction. A primary challenge is the scarcity of domain-specific data. Papaioannou et al. 

(2024) highlights a significant lack of publicly available malfunction datasets for appliances, which hampers 

the development of effective predictive models. The limited availability of large, labeled datasets is cited as a 

major barrier to advancing appliance fault diagnosis. This data gap is only beginning to be addressed. For 

example, Fonseca, et al. (2023) recently released a real-world dataset of refrigerator and washing machine 

performance (current and vibration readings) to facilitate AI-driven predictive maintenance research. The 

creation of such datasets is crucial, as realistic data is “paramount” for training and validating predictive 

algorithms in this domain. 

Another gap is the limited integration of IoT sensors in legacy appliances, which makes data collection 

difficult. Most in-service white goods were not built with smart monitoring in mind; as one study notes, “most 

of devices do not provide any IoT interface,” forcing researchers to gather data via external sensor retrofits 

(Ferreira, et al., 2021). This lack of built-in instrumentation has historically kept white goods largely excluded 

from predictive maintenance implementations, in contrast to heavily instrumented industrial equipment. 

Moreover, white goods present unique complexity. They combine mechanical systems (motors, compressors, 

pumps) with electronic controls. This dual nature means failures can arise from mechanical wear or electronic 

faults (or interactions of both), requiring specialized prediction approaches. Existing predictive maintenance 

studies often overlook this combination, focusing instead on single-domain systems. Together, these factors, 

such as data scarcity, low connectivity, and system complexity, explain why failure prediction for appliances 

remains underexplored. Bridging these gaps is an open research opportunity identified in recent literature. 
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This study aims to present a decision tree-based approach for classifying and characterizing failure types in 

white goods, focusing on both electrical and functional issues. Using real-world after-sales service data from 

a white goods manufacturer, we employ the CART (Classification and Regression Trees) algorithm to uncover 

patterns in failure occurrences based on factors such as product category, region, usage duration, and brand. 

The model generates interpretable decision rules that provide insights into the most critical factors contributing 

to failures. By applying the proposed approach to after-sales service data, companies can identify key factors 

influencing failure occurrences and improve predictive maintenance strategies. The contributions of this study 

are twofold. First, it provides a practical, rule-based framework that helps service personnel predict the type 

of failure before visiting a customer, leading to more efficient resource management and scheduling. Second, 

the insights derived from this model can aid manufacturers and service companies in optimizing their after-

sales strategies by targeting specific product categories and regions, potentially enhancing customer 

satisfaction and brand reputation. 

2. BACKGROUND 

2.1. Knowledge Discovery in Databases and the Cross-Industry Standard Process for Data Mining 

Knowledge Discovery in Databases (KDD) is a process for extracting useful and meaningful information from 

data (Witten et al., 2011). This method reveals hidden information in databases and provides significant 

business insights (Fayyad, 2001). Businesses can use this information in market analysis, product 

development, and customer segmentation. Moreover, data-driven decision-making enables enterprises to gain 

a competitive advantage. Especially with the increasing data intensity, the data mining process is crucial for 

businesses. 

Data mining, a step in the KDD process, includes techniques widely used in various sectors, such as e-

commerce, retail, services, banking, and healthcare. The data mining process is carried out using various 

methods, and the most commonly used methodology in literature is the Cross-Industry Standard Process for 

Data Mining (CRISP-DM) (Abbasi et al., 2016). This methodology comprises six stages for planning and 

executing data analytics and mining projects. These stages are business understanding, data understanding, 

data preparation, modeling, evaluation, and deployment (Chapman et al., 1999). In the business understanding 

stage, the project's goals and objectives are defined. In the data understanding stage, data sources and data 

quality are examined. In the data preparation stage, data cleaning and preprocessing are performed. Machine 

learning algorithms are applied to the data during the modeling stage. The evaluation stage assesses the model’s 

performance, and in the deployment stage, the resulting insights are presented to the end-users. 

2.2. Decision Tree Algorithms 

Classification algorithms are capable of processing large volumes of information. By leveraging categorical 

class labels and assumptions derived from training datasets, these algorithms enable systematic categorization 

of data and facilitate the classification of newly acquired data in a similar manner (Nikam, 2015). Among the 

various approaches, decision trees represent a particularly powerful and interpretable technique, widely applied 
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across fields such as machine learning, image processing, and model identification (Stein et al., 2005). 

Decision trees efficiently and consistently combine a series of basic tests, where each test compares a numerical 

attribute against a threshold value (Damanik et al., 2019). The conceptual rules created by decision trees are 

much easier to interpret than the numerical weights in neural networks (Barros et al., 2012). Unlike black-box 

models such as deep learning, decision trees allow policy makers to extract human-readable insights that 

facilitate better decision-making. Decision trees are predominantly used for clustering purposes and are a 

frequently employed classification model in data mining (Gavankar & Sawarkar, 2017). 

A decision tree consists of four fundamental structures: the root node, nodes, branches, and leaves. Each node 

represents the features to be classified within a category, and each subset defines a value the node can take 

(Mahesh, 2018). Due to their simplicity and accuracy in analyzing multiple data forms, decision trees have 

been employed in many different application areas (Mrva et al., 2019). In the context of white goods, decision 

trees are particularly advantageous due to their ability to handle categorical variables (e.g., product categories, 

regions) and numerical data (e.g., usage duration) simultaneously. This aligns with the heterogeneous nature 

of after-sales data, where factors like regional climate variations (e.g., coastal vs. arid regions) and product-

specific usage patterns (e.g., frequent vs. intermittent use) must be analyzed cohesively. 

2.3. Overview of Predictive Maintenance Research in Consumer Electronics and Home Appliances 

Recent advancements in predictive maintenance have extended beyond industrial machinery into the realm of 

consumer electronics and household appliances. The reviewed studies demonstrate a growing interest in 

applying data-driven maintenance strategies to systems such as washing machines, refrigerators, boilers, and 

HVAC units. Table 1 presents a concise overview of selected peer-reviewed journal articles published within 

the last decade, focusing on predictive maintenance implementations in these consumer-facing domains. 

The selected studies highlight that washing machines and residential heating systems are among the most 

investigated appliances. These systems are frequently used, subject to wear, and relatively accessible for data 

collection, which makes them suitable candidates for predictive modeling. In particular, appliances that exhibit 

both mechanical and electrical components have become central targets due to their higher risk of functional 

or electrical failure. This reflects an industry-wide shift toward using condition-based monitoring and proactive 

fault detection in everyday products. 

A variety of technical approaches have been applied through the studies. Several contributions rely on Internet 

of Things (IoT) devices to collect real-time sensor data such as current, vibration, and temperature. This data 

is then processed using machine learning algorithms to predict faults before they occur. For example, Fonseca 

et al. (2023) introduced a high-resolution labeled dataset collected from actual appliance repair cases, enabling 

the development of accurate predictive maintenance models. Similarly, Fernandes et al. (2020) demonstrated 

how an IoT-based monitoring system can be used to forecast faults in domestic boilers, helping to avoid 

unnecessary energy waste and improve reliability. Other studies applied advanced deep learning techniques 
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such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs) to analyze 

smart plug data, as seen in the work of Casagrande et al. (2021) on washing machines. This method allows for 

non-intrusive monitoring, eliminating the need for internal sensors by interpreting energy consumption 

signatures. Furthermore, several papers employed data mining techniques, including sequential pattern 

recognition and association rules, to predict future maintenance activities based on historical service records. 

These methods offer practical solutions for optimizing maintenance schedules and reducing downtime. 

One of the emerging challenges in predictive maintenance research is the scarcity of labeled fault data, 

especially for consumer appliances. To address this, recent work by Papaioannou et al. (2024) proposed a 

simulation-based approach to generate synthetic anomalies in appliance power consumption profiles. By 

injecting realistic malfunction signatures into normal usage data, the authors created training datasets for 

machine learning models, thereby overcoming the limitations of real-world data availability. This type of 

contribution is particularly important for scaling predictive maintenance applications in domains where failure 

data are difficult or costly to collect. 

In addition to technical implementations, comprehensive review papers (e.g., Carvalho et al., 2019; Cinar et 

al., 2020) provide valuable insight into the broader landscape of predictive maintenance research. These 

reviews classify machine learning algorithms commonly used in predictive maintenance, identify application 

trends, and discuss ongoing challenges such as data imbalance, sensor integration, and model interpretability. 

They underscore the significance of combining low-cost sensor technology with data analytics to enable 

scalable maintenance solutions across different sectors, including smart homes and industrial systems. 

Some studies, such as that of Falatouri et al. (2023), go a step further by considering spatial and temporal 

patterns in maintenance data across geographic regions. Their use of spatial–temporal networks demonstrate 

the potential of predictive analytics in optimizing large-scale service operations, such as technician dispatch 

and spare part logistics. Similarly, other works from national databases (e.g., TRDizin) illustrate practical 

deployments of machine learning models in real industrial settings, further supporting the feasibility of these 

approaches in both research and commercial environments. 

3. METHODOLOGY 

In this study, a systematic framework called the Cross-Industry Standard Process for Data Mining (CRISP-

DM) was employed to develop a decision tree-based model for predicting failure types in white goods. The 

details are provided in the following subsections. 
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Table 1. Summary of relevant predictive maintenance research 

Study Appliance/System Method/Approach Main Contribution/Findings 

Fonseca et al. 

(2023) 

Refrigerators & 

Washing Machines 

IoT sensors + Data 

Collection (current, 

vibration) 

Provides a labeled dataset of current 

and vibration signals from real washer 

and fridge repair cases, supporting AI 

model training for appliance fault 

detection. 

Es-sakali et al. 

(2022) 

HVAC (Heating, 

Ventilation, A/C) 

Literature Review 

(algorithms for HVAC 

predictive maintenance) 

Systematically reviews HVAC 

predictive maintenance algorithms, 

emphasizing the importance of 

combining IoT sensors with data-

driven methods for effective fault 

prediction. 

Fernandes et al. 

(2020) 

Home Boilers 

(Heating System) 

IoT Data + ML Models 

(Failure Forecasting) 

Develops an IoT-based system for 

predicting boiler faults using machine 

learning, reducing energy waste and 

unplanned maintenance. 

Casagrande et al. 

(2021) 

Washing Machines Deep Learning (CNN & 

LSTM on power signals) 

Uses deep learning on smart-plug data 

to detect internal faults in washing 

machines, enabling low-cost, sensor-

free predictive maintenance. 

Al-Refaie et al. 

(2023) 

Washing Machine 

(maintenance 

records) 

Data Mining (GSP 

sequences + Assoc. Rules) 

Applies data mining to washing 

machine maintenance logs to predict 

upcoming maintenance needs, 

improving planning and uptime. 

Papaioannou et al. 

(2024) 

Various Home 

Appliances (fridge, 

washer, dryer, etc.) 

Synthetic Data Generation 

(anomaly simulation) 

Simulates power anomalies in 

appliances to generate synthetic 

training data, aiding development of 

predictive maintenance models. 

Carvalho et al. 

(2019) 

Various Equipment 

(survey) 

Review (ML techniques in 

predictive maintenance) 

Reviews 160+ studies applying ML in 

predictive maintenance, highlighting 

common methods, challenges, and their 

application across different equipment. 

Cinar et al. 

(2020) 

Industrial Systems 

(review) 

Review (applications of 

ML in predictive 

maintenance ) 

Reviews machine learning-based 

predictive maintenance in Industry 4.0, 

stressing the role of connected sensors 

and AI in reducing equipment 

downtime. 

Falatouri et al. 

(2023) 

Home Heating 

Appliances 

(distributed) 

Spatial–Temporal ML 

Model (demand forecast) 

Uses spatial-temporal modeling to 

predict maintenance for heating 

appliances across locations, improving 

service logistics and accuracy. 
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3.1. Business Understanding 

This stage involved defining the research objective and identifying key factors influencing failure types in 

household appliances. The goal was to develop a model that predicts whether a failure is functional or 

electrical, based on product category, region, usage duration, and brand. Understanding these patterns can help 

manufacturers optimize maintenance strategies and improve product reliability. 

3.2. Data Understanding and Preparation 

The dataset for this research was sourced from the maintenance and after-sales service records of a white goods 

manufacturer in Manisa, Turkey. Failure records from various white goods product categories were extracted 

from the CRM system, utilizing SAP HANA, covering the period between 2018 and 2022. The dataset 

comprises information on various appliances, and Table 2 outlines the selected key features related to product 

failures. 

Table 2. Feature descriptions 

Feature Description 

Product Category Groups of white goods products 

Brand Brands of white goods products 

Region The region where customers submit requests  

Usage Duration Time in months between installation and breakdown 

Failure Type Type of failure occurring (Electrical or Functional) 

During data preparation, the “Product Category” variable was categorized into eight groups, numbered 1 to 8, 

and the “Brand” variable was divided into six groups, numbered 1 to 6. The “Region” variable was created by 

dividing the provinces into seven geographical regions, numbered 1 to 7. The target class variable, “Failure 

Type,” consists of two classes: Electrical Failure (1) and Functional Failure (2). 

Tables 3 and 4 summarize the distribution and statistics for the categorical and numerical features in the final 

dataset. 

3.3. Implementation of CART algorithm 

Decision trees are widely recognized for their balance between interpretability and predictive capability, 

making them suitable for practical, field-level decision-making. In this study, the Classification and Regression 

Tree (CART) algorithm was selected due to its ability to generate clear, interpretable rules, which are 

especially valuable for technicians and service managers who require transparent, actionable insights during 

after-sales service operations. For example, CART enables rules such as: "IF Product = Refrigerator AND 

Region = Black Sea, THEN Functional Failure", which directly align with the diagnostic logic used by field 

personnel. 

https://doi.org/10.54287/gujsa.1655744
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Table 3. Distribution of Categorical Features 

Feature Value Code Distribution (%) 

Product Category Washing Machine 1 31 

 Dishwasher 2 22 

 Refrigerator 3 20 

 Air Conditioner 4 10 

 Oven 5 6 

 Deep Freezer 6 5 

 Stove 7 4 

 Dryer 8 2 

Brand VL 1 56 

 RL 2 20 

 SG 3 11 

 FX 4 6 

 VT 5 4 

 WR 6 3 

Region Mediterranean 1 15 

 Eastern Anatolia 2 9 

 Aegean 3 13 

 Southeastern Anatolia 4 16 

 Central Anatolia 5 13 

 Black Sea 6 15 

 Marmara 7 19 

Failure Type Electrical Failure 1 48 

 Functional Failure 2 52 
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Table 4. Statistical Details of Numerical Variables 

Feature  Min Max Median Mean Std. Dev. 

Usage Duration 0 84 24 27.97 21.60 

Compared to black-box models such as Random Forest and Support Vector Machines (SVM), the CART 

algorithm provides direct interpretability through its rule-based structure (Breiman et al., 1984; Molnar, 2020), 

which is particularly valuable for real-time decision-making in operational settings (Rudin, 2019). Although 

other machine learning methods—such as Random Forest and SVM—may achieve higher predictive 

performance, they often require extensive hyperparameter tuning, involve greater implementation complexity, 

and lack inherent transparency (Hastie et al., 2009). Therefore, CART was favored for its transparency, ease 

of implementation, and its ability to generate intuitive rules that can be readily interpreted by non-technical 

personnel in the field. The trade-off in model complexity versus interpretability was carefully considered, with 

priority given to explainability to support practical application in after-sales service environments. 

The CART algorithm was implemented using the R programming language in RStudio, utilizing the “rpart” 

library for model training. To enhance model robustness and avoid overfitting, hyperparameter tuning was 

performed, including optimization of the complexity parameter (CP) and depth of the tree. 

To build the decision tree model, the dataset was divided into a 70:30 ratio, with 70% used for training and 

30% for testing. The decision tree generates rules in the form of simple IF-THEN statements, where the IF part 

(also called the antecedent) represents a condition, and the THEN part provides the prediction. Two key metrics 

are used to evaluate the usefulness of these decision rules: support (or coverage) and accuracy (or confidence) 

(Molnar, 2010). Support refers to the percentage of instances where the condition of a rule applies, while 

accuracy measures how often the rule correctly predicts the target class for those instances. Typically, there is 

a trade-off between support and accuracy: adding more features to the condition can increase accuracy but may 

reduce support. To balance this, specific thresholds were set for both metrics, allowing us to select and interpret 

the most effective decision rules generated by the algorithm. Additionally, the feature importance scores were 

analyzed to determine the most influential factors in predicting failure types. 

4. RESULTS 

The rule-based representation of the decision tree model built using the CART algorithm is summarized in 

Table 5. Due to the large number of rules generated, we focused on rules with accuracy greater than 60% and 

support above 5%, resulting in a total of 9 rules. These selected rules provide insights into how different 

combinations of product category, region, and usage duration influence the failure type (either electrical or 

functional). 
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Table 5. The rules generated by CART algorithm 

Rules 

Accuracy 

(%) 

Support 

(%) Rule # IF 

THEN- 

Failure Type 

1 ProductCategory=1,2,3,4,6,8 => 2 61 89 

2 ProductCategory=1,2,3,4,6,8 AND Region=5,6 => 2 71 25 

3 ProductCategory=3,6 AND Region=1,2,3,4,7 => 2 61 18 

4 
ProductCategory=3,6 AND Region=1,2,3,4,7 

AND UsageDuration>=2 => 
2 62 16 

5 ProductCategory=1,3 AND Region=5,6 => 2 73 14 

6 ProductCategory=2,4,6,8 AND Region=5,6 => 2 69 11 

7 ProductCategory is 5,7 => 1 78 11 

8 ProductCategory=2,6,8 AND Region=5,6 => 2 70 9 

9 ProductCategory=5,7 AND Region=1,2,3,4,7 => 1 80 8 

In Table 5, each rule is represented as an IF-THEN statement. The IF part consists of conditions based on one 

or more attributes from identified four features, while the THEN part predicts the type of failure (1 for 

Electrical and 2 for Functional). The table also reports the accuracy (confidence) and support (coverage) of 

each rule, indicating how well the rule applies to the dataset. 

The analysis reveals that functional failures are the most common type of failure, particularly in washing 

machines, dishwashers, refrigerators, air conditioners, deep freezers, and dryers (Product Categories 1, 2, 3, 4, 

6, and 8). Rule 1 highlights that these product types frequently experience functional failures, with an accuracy 

of 61% and a support of 89%, covering a significant portion of the dataset. The impact of geographical location 

is evident in Rule 2, which refines this pattern by showing that when these products are located in Central 

Anatolia (Region 5) or the Black Sea region (Region 6), the accuracy of predicting functional failures increases 

to 71%, though the rule applies to a smaller portion of the dataset (support: 25%). This suggests that 

environmental or regional factors may contribute to higher rates of functional issues in these areas. 

Product-specific patterns further support these findings. Rule 3 indicates that refrigerators and deep freezers 

(Product Categories 3 and 6) in regions 1, 2, 3, 4, and 7 have a 61% likelihood of experiencing functional 

failures, with 18% support. When usage duration is greater than or equal to two months (Rule 4), the accuracy 

of predicting functional failure rises slightly to 62%, suggesting that prolonged usage may contribute to higher 
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failure rates. Additionally, washing machines and refrigerators in regions 5 and 6 (Rule 5) exhibit the highest 

accuracy (73%) for functional failures, emphasizing the regional dependency in failure patterns. 

On the other hand, electrical failures are strongly associated with ovens and stoves (Product Categories 5 and 

7). Rule 7 shows that these products have a high likelihood of electrical failures (78% accuracy), regardless of 

location. This pattern becomes even more pronounced in Rule 9, where electrical failure rates increase to 80% 

when these products are in regions 1, 2, 3, 4, or 7, though this rule applies to a smaller portion of the dataset 

(support: 8%). These findings indicate that product type is a primary determinant of failure type, while regional 

differences serve as a secondary factor that refines predictions. 

The relative importance of the features in the decision tree model is visualized in Figure 1, which highlights 

their contributions to the model’s decision-making process. Essentially, variables that frequently appear in the 

decision-making process of the model are assigned higher scores, indicating their stronger influence in 

predicting the target variable (failure type). 

 

Figure 1. Feature Importance scores 

Product category emerges as the most influential variable, with a score exceeding 8,000, reinforcing its 

dominant role in predicting failure type. This is expected, as product type directly determines the nature of 

failures—whether functional or electrical. The second most significant variable is region, with a score above 

4,000, suggesting that geographical factors contribute notably to the failure patterns. The inclusion of regional 

factors in multiple rules further confirms that certain areas are more prone to specific types of failures. 
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In contrast, usage duration, with a score around 1,000, has a lower impact on failure prediction. While it 

appears in some rules (e.g., Rule 4), its influence is less significant compared to product type and region. 

Brand, with the lowest feature importance score, has minimal impact on failure classification, suggesting that 

failure type is not significantly affected by the manufacturer but rather by the product’s category and location. 

These findings align with the rule-based results, confirming that product category and region are the primary 

factors influencing failure types, while other attributes play a lesser role. 

5. CONCLUSION 

This research focused on improving after-sales service in the white goods industry by developing a decision 

tree-based approach to predict failure types (electrical or functional) using the Classification and Regression 

Tree (CART) algorithm. By analyzing key factors such as product category, region, usage duration, and brand, 

a model was developed using historical failure data from a white goods manufacturer in Turkey. The CART 

model was employed to extract interpretable rules that aid in predicting failure types based on these input 

features, facilitating better decision-making for service personnel. 

The key findings of this study indicate that product category and region are the most influential factors in 

predicting failure types, whereas usage duration and brand have relatively minor impacts. The decision tree 

model revealed that functional failures are more prevalent in products such as washing machines and 

refrigerators, particularly in Central Anatolia and Black Sea regions. Conversely, electrical failures are more 

commonly associated with ovens and stoves. These insights underscore the importance of tailoring 

maintenance strategies and failure prevention policies based on both product type and geographical location, 

enabling more targeted and effective interventions in service management. 

The practical implications of this study are significant for after-sales service operations in the white goods 

industry. By implementing the decision tree model, service centers can predict the type of failure (electrical or 

functional) before dispatching technicians, enabling more efficient workforce allocation and reducing 

unnecessary site visits. This leads to improved scheduling, better resource utilization, and a higher likelihood 

of first-time fix rates. Additionally, by identifying patterns related to product type and region, companies can 

tailor their maintenance strategies and training programs, ultimately enhancing service quality, reducing costs, 

and boosting customer satisfaction. 

Despite the valuable insights gained from this study, a couple of limitations should be acknowledged. First, 

the analysis relies on a specific dataset, which may not fully represent all brands, product categories, or regional 

variations in failure patterns. Future research could expand the dataset to include a more diverse range of 

products and geographical regions to enhance generalizability. Further, this study focuses on key variables 

such as product category, region, usage duration, and brand. In future studies, it may be useful to incorporate 

additional contextual factors to provide a more comprehensive understanding of failure patterns. 
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