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NEW PRESENTATIONS FOR REAL NUMBERS

NİHAL YILMAZ ÖZGÜR AND SÜMEYRA UÇAR

(Communicated by Taher ABUALRUP)

Abstract. In this paper we prove that every real number can be uniquely
represented as the sum of the squares of consecutive k- Fibonacci numbers.

To do this, we give new presentation theorems for any real number u 6= 0 using
k- Fibonacci series.

1. Introduction

Zeckendorf’s theorem is a theorem about representation of integers as follows.

Theorem 1.1. (Zeckendorf’s theorem) Every positive integer can be uniquely rep-
resented as the sum of distinct Fibonacci numbers if no two consecutive Fibonacci
numbers are used in any given sum.

Let k > 0 be any positive real number. In [7], Hoggatt used the sequence defined
by

(1.1) Fk,0 = 0, Fk,1 = 1 and Fk,n+1 = kFk,n + Fk,n−1 for n ≥ 1,

to generalize Zeckendorf’s theorem (see [5] for more details about this sequence).
For k = 1 and k = 2 we obtain the well-known Fibonacci and Pell sequences,
respectively. Recently it was given the relationship between this new sequence and
the recursive application of two geometrical transformations used in well-known
four-triangle longest-edge (4TLE) partition (see [3] and [4]). This new number
sequence called k-Fibonacci. Here we prefer the notation Fk,n used in [3] and [4].

The first seven k-Fibonacci numbers are showed in the following table :
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Fk,1 = 1

Fk,2 = k

Fk,3 = k2 + 1

Fk,4 = k3 + 2k

Fk,5 = k4 + 3k2 + 1

Fk,6 = k5 + 4k3 + 3k

Fk,7 = k6 + 5k4 + 6k2 + 1

In this paper we obtain new presentations of any real number u 6= 0 using
k-Fibonacci series and hence we deduce that every real number can be uniquely
represented as the sum of the squares of consecutive k-Fibonacci numbers. Es-
pecially we have found infinitely many presentations for any real number. As an
application we present a new infinite family of complex series for 1

π (see [1] for more
details).

2. Representation Theorems

We begin the following theorem.

Theorem 2.1. Let k > 0 be any real number, r ≥ 0 be an integer and Fk,n be the
k-th Fibonacci number. Then we have

(2.1)

∞∑
n=1

1

Fk,n+rFk,n+r+2
=

1

kFk,r+1Fk,r+2
.

Proof. Using (1.1) we obtain

1

Fk,n+rFk,n+r+2
=

1

kFk,n+rFk,n+r+1
− 1

kFk,n+r+1Fk,n+r+2

and then we find

sn =

n∑
l=1

1

Fk,l+rFk,l+r+2

=

n∑
l=1

(
1

kFk,l+rFk,l+r+1
− 1

kFk.l+r+1Fk,l+r+2
)

=
1

kFk,r+1Fk,r+2
− 1

kFk.r+n+1Fk,r+n+2
.

So we have
∞∑
n=1

1

Fk,n+rFk,n+r+2
=

1

kFk.r+1Fk,r+2
.

�

Theorem 2.2. For any real number u 6= 0 and any positive integer r, there exists
unique positive real number k satisfying the following equation

(2.2)

∞∑
n=1

1

Fk,n+rFk,n+r+2
=

1

u
.
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Proof. Let u > 0 be any real number. From the Theorem 2.2 we know the following
equation:

∞∑
n=1

1

Fk,n+rFk,n+r+2
=

1

kFk.r+1Fk,r+2
.

Then we get
1

kFk.r+1Fk,r+2
=

1

u

and so we get the following equation

(2.3) kFk,r+1Fk,r+2 − u = 0.

Using Fk,r+2 = kFk,r+1 + Fk,r, we obtain

kFk,r+1Fk,r+2 = k2(F 2
k,1 + F 2

k,2 + F 2
k,3 + ...+ F 2

k,r + F 2
k,r+1).

Let us consider the following polynomial

(2.4) fr(k) = k2(F 2
k,1 + F 2

k,2 + F 2
k,3 + ...+ F 2

k,r + F 2
k,r+1)− u.

Applying the Descartes rule of signs, fr(k) has unique positive real zero, say k0,
and then we have equation (2.2) for k0. If u < 0, then for the real number a = |u|
we get

∞∑
n=1

1

Fk,n+rFk,n+r+2
=

1

a
.

and hence
∞

−
∑
n=1

1

Fk,n+rFk,n+r+2
=

1

u
.

Thus, for all real numbers different zero, there exists unique k such that (2.2)
holds. �

Corollary 2.1. For any positive integer r, there exists unique positive real number
k satisfying the following equation

(2.5)
∞∑
n=1

1

Fk,n+rFk,n+r+2
=

1

π
.

Thus, we have an infinite family of real series converging to 1
π .

Theorem 2.3. Let u 6= 0 be any real number. For any positive integer r, there
exists unique positive real number k such that we have the following polynomial
representation for u :

(2.6) u = k2(F 2
k,1 + F 2

k,2 + F 2
k,3 + ...+ F 2

k,r + F 2
k,r+1).

Proof. The proof follows easily from the proof of Theorem 2.2. �

Thus, we have an infinite family of polynomials representing u.

Example 2.1. Let u = 1
97 and r = 3. From (2.3) we have kFk,4Fk,5 − 1

97 = 0.

Hence we have the equation k(k3 + 2k)(k4 + 3k2 + 1)− 1
97 = 0. The unique positive

root of this equation is 0, 07116. Thus, we have
∞∑
n=1

1
F0,07116,n+3F0,07116,n+5

= 97.
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Now we restrict our attention to polynomial representation and the equation
(2.6), so let u be any real number. By Theorem 2.3, for any positive integer r, there
exists unique positive real number k such that we have the following polynomial
representation for u

(2.7) u = k2(F 2
k,1 + F 2

k,2 + F 2
k,3 + ...+ F 2

k,r + F 2
k,r+1).

Let

ur(k) = k2(F 2
k,1 + F 2

k,2 + F 2
k,3 + ...+ F 2

k,r + F 2
k,r+1).

Example 2.2. For the prime number u = 41, we have the following table.

u r ur(k) k
41 1 k2(1 + k2) 2, 43364
41 2 k2(1 + k2 + (1 + k2)2) 1, 59526
41 3 k2(1 + k2 + (1 + k2)2 + (k3 + 2k)2) 1, 22655
41 4 k2(1 + k2 + (1 + k2)2 + (k3 + 2k)2 + (k4 + 3k2 + 1)2) 1, 00449

So we have seen that one of the presentations representing any prime looks like
very simple, u1(k) = k2(1+k2). Now we focus on the case r = 1. At first we consider
the following example.

Example 2.3. Let r = 1 be fixed. Then we have u1(k) = k2(1 + k2). In the
following table we can see the values of k such that the corresponding polynomial
u1(k) = k2(1 + k2) represents the first ten primes.

p k
2 1
3 1, 14139
5 1, 33839
7 1, 48074
11 1, 68941
13 1, 77202
17 1, 91136
19 1, 97167
23 2, 0789
29 2, 21547

Notice that k can not be an integer for p ≥ 3. We have only integer value of
k = 1 in the case p = 2.
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