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ON COMPLEX NUMBERS AND TAXICAB PLANE

AYŞE BAYAR, SÜHEYLA EKMEKÇI, AND İCLAL ÖZTÜRK

(Communicated by Bayram S. AHİN)

Abstract. In this work, we apply complex theoretic information to the taxi-

cab plane geometry. Also, the formulations of the isometries of the taxicab

plane are given in terms of complex numbers.

1. Introduction

Recall that one can think of the taxicab plane as the set of all pairs of real
numbers (x, y) equipped with the taxicab metric

dT (A(x1, y1), B(x2, y2)) = |x1 − x2|+ |y1 − y2|
instead of the well known Euclidean metric

dE (A,B) =

√
(x1 − x2)2 + (y1 − y2)

2
.

The dT taxicab distance between A and B is the length of a shortest path from
A and B compose of line segments parallel to the coordinate axes. The taxicab
geometry have been studied and improved by some authors [1-8].

We want to see the role played by complex numbers in the taxicab plane. We
have come to think of the points of the taxicab plane as complex numbers. This
allows us to apply complex numbers in to theoretic information to taxicab plane
geometry.

Informally, a complex number is a number that can be put in the form z = x+iy,
where x and y are real numbers and i2 = −1. x and y are called the real part and
the imaginary part of the complex number z, respectively.

One can pack coordinates (x, y) of a point in the taxicab plane, in a complex
number z = x+ iy. This way we get one-to-one correspondence between points of
the taxicab plane and C.

In this paper we give an interpretation of taxicab plane geometry using complex
coordinates. By using elementary mathematics and an Euclidean approach, it is
straightforward to formalize the taxicab plane trigonometry in the taxicab plane
with the same coherence as the Euclidean trigonometry. We will explore complex
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numbers which are a slightly modified version of taxicab geometry instead of using
complex numbers and we formulate the isometries of the taxicab plane given in
terms of complex numbers.

2. Modulus of Complex Number in Taxicab Plane

It is well known that the conjugate of z = x+ iy is x− iy and is denoted by z.
The absolute value or modulus of a complex number z is |z| =

√
z.z. Now, we give

the taxicab modulus of z, denoted by |z|T , with the complex notation.

Definition 2.1. The taxicab modulus, or taxicab absolute value, of a complex
number z = x+ yi, denoted |z|T , is the nonnegative real number |z|T = |x|+ |y|.

Geometrically, the modulus is the taxicab distance from the origin 0 to the point
z. Some properties of the modulus are given in the following proposition:

Proposition 2.1. The function z → |z|T has the following properties: for all
z, w ∈ C,

i. |z|T = 0 ⇔ z = 0,

ii. zz =
|z|T

|1
z
|T
,

iii. |z|T = |z|T ,
iv. |zw|T ≤ |z|T |w|T ,
v. |z + w|T ≤ |z|T + |w|T ,
|z + w|T = |z|T + |w|T with w 6= 0 ⇔ z = λw for some λ > 0.

Proof. i) and iii) are obvious from the definition1.

ii) One can easily calculated |1
z
|T =

∣∣∣∣ 1

x+ iy

∣∣∣∣ =
|x|+ |y|
x2 + y2

=
|z|T
|z|2

and zz =

x2 + y2 = |z|2. From these equalities, zz =
|z|T

|1
z
|T

is obtained.

iv) Let z = x+ iy and w = u+ iv be two complex numbers.

|zw|T = |xu− yv|+ |xv + yu| ≤ |xu|+ |xv|+ |yv|+ |yu| = |z|T |w|T
is obtained.
v) Let z = x+ iy and w = u+ iv be two complex numbers with z 6= w 6= 0. Then

|z + w|T = |x+ u|+ |y + v| ≤ |x|+ |y|+ |u|+ |v| = |z|T + |w|T
is obtained. If z = λw, one can get

|z + w|T = |1 + λ||w|T = |w|T + λ|w|T = |w|T + |λw|T = |z|T + |w|T .

�

Definition 2.2. If z and w ∈ C, the taxicab distance between z and w is the
nonnegative real number |z − w|T .

This is the taxicab distance function in the taxicab plane, and it may be ex-
pressed in coordinate form as well as in the complex form:

if z = x+ iy = (x, y) and w = u+ iv = (u, v), then

|z − w|T = |(x− u) + i(y − v)|T = |x− u|+ |y − v| .
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Proposition 2.2. The taxicab distance function (z, w) → |z − w|T satisfies the
following properties:
i) For all z, w ∈ C, |z − w|T ≥0. Equality holds ⇔ z = w.
ii) For all z, w ∈ C, |z − w|T = |w − z|T .
iii) For all z, w, r ∈ C, |z − r|T ≤ |z − w|T + |r − w|T .
|z − w|T = |z − r|T + |r − w|T ⇔ r = (1− t)z + tw for some t with 0 ≤ t ≤ 1.

Proof. i) Let z = x + iy and w = u + iv be two complex numbers with z 6= w.
Since |z − w|T = |x− u| + |y − v| and |x− u| ≥ 0, |y − v| ≥ 0 then |z − w|T ≥ 0.
In equality case,

|z − w|T = 0 ⇔ |x− u| = 0, |y − v| = 0
⇔ x = u, y = v
⇔ z = w.

ii) Let z = x+ iy and w = u+ iv be two complex numbers. One can easily get
the following equality

|z − w|T = |(x− u) + i(y − v)|T = |x− u|+ |y − v|
= |u− x|+ |v − y| = |w − z|T .

iii) Let z = x+ iy , w = u+ iv and r = p+ iq be three complex numbers. Using
the triangular inequality in the following equality

|z − w|T = |x− u|+ |y − v| ,
one can obtain |z − w|T ≤ |z − r|T + |r − w|T . Furthermore, equality holds if
and only if z − r = λ(r − w) for nonnegative real number λ from the Proposition

2.1 . Setting t =
λ

1 + λ
, it is seen that 0 ≤ t ≤ 1, while 1 − t =

1

1 + λ
so that

r = (1− t)z + tw. �

3. Polar form in taxicab plane

Let z = x+ yi = (x, y) be a nonzero complex number. The standard argument
of z is the angle from the positive x axis to the ray Oz , denoted by arg(z) whose
values lie in [0, 2π). It is well known in Euclidean that

|z| =
√
x2 + y2, arg(z) = arctan

y

x

and if r = |z| and θ = arg(z), then the polar form of z is

z = r(cosθ + isinθ) = reiθ.

Now, we give the polar form of z in the taxicab plane. Any point z = x+ yi =
(x, y) ∈ R2

T can be written in polar coordinates (rT , θ), rT ≥ 0, θ ∈ [0, 2π) where
rT = |x| + |y| and where, if (x, y) 6= (0, 0), is the angle, measured in radians and
proceeding counterclockwise, from the positive x-axis to the ray joining (0, 0) to
(x, y). Note that rT is the modulus |z|T of the complex number z. The point (0, 0)
∈ R2

T has non-unique polar coordinates (0, θ), any real number.
In [1], for the point P = (x, y) on the taxicab unite circle

x = cosT θ =
cos θ

|cos θ|+ |sin θ|
, 0 ≤ θ < 2π

y = sinT θ =
sin θ

|cos θ|+ |sin θ|
, 0 ≤ θ < 2π

.
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It is well known that Taxicab tangent function is the same as standard Euclidean
tangent function. Hence, Euclidean argument is same the taxicab argument for a
complex number. The Cartesian coordinates (x, y) of a point in taxicab plane can
be recovered from the polar coordinates (rT , θ) by x = rT cosT θ , y = rT sinT θ,
[1,6] . Thus we have shown that z = x + iy complex number can be expressed in
the polar form or trigonometric form in the taxicab plane as

z = |z|T (cosT θ + i sinT θ).

The modulus of the product of the complex numbers is product of their moduli,
and the argument of the product is sum of their arguments according to Euclidean
metric. Although the argument of the product is sum of their arguments, the
modulus of the product of the complex numbers is not product of their moduli in
taxicab plane. This is given by the following proposition.

Proposition 3.1. Let z1 and z2 be two complex numbers with arguments θ1 and
θ2, respectively. Then the modulus of the product of these complex numbers in
terms of the moduli and arguments is

|z1.z2|T = |z1|T |z2|T

√
(cos2

T θ1 + sin2
T θ1)(cos2

T θ2 + sin2
T θ2)

cos2
T (θ1 + θ2) + cos2

T (θ1 + θ2)
.

Proof. The polar forms of z1and z2 are z1 = |z1|T (cosT θ1 + i sinT θ1), z2 =
(cosT θ2 + i sinT θ2) and z1.z2 = |z1.z2|T (cosT (θ1 + θ2) + i sinT (θ1 + θ2)). The rela-
tions between the taxicab moduli and Euclidean moduli of z1, z2 and z1.z2 complex
numbers are

|z1| = |z1|T
√

(cos2
T θ1 + sin2

T θ1),

|z2| = |z2|T
√

(cos2
T θ2 + sin2

T θ2),

|z1.z2| = |z1z2|T
√

cos2
T (θ1 + θ2) + cos2

T (θ1 + θ2).

Since the modulus of the product of the complex numbers is product of their
moduli and the argument of the product is sum of their arguments according to
Euclidean metric,

|z1.z2|T = |z1|T |z2|T

√
(cos2

T θ1 + sin2
T θ1)(cos2

T θ2 + sin2
T θ2)

cos2
T (θ1 + θ2) + sin2

T (θ1 + θ2)

is obtained by using above relations. �

4. Isometries in terms of complex numbers in taxicab plane

It is well known that the group of the isometries of Euclidean plane with the
usual metric is the semi–direct product of its the symmetry group of the unit circle
and the group of all translations of the plane. Also the group of the isometries of
Euclidean plane with respect to the taxicab metric is the semi–direct product of
the symmetry group of the square and the group of all translations of the plane, [3],
[4], [5], [8]. The goal of this section is to obtain formulations in terms of complex
numbers for the taxicab isometries.

Lemma 4.1. If c is any fixed complex number, then the function

Tc(z) = z + c

is a translation of the taxicab plane.
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Lemma 4.2. For any angle θ, the function

Rθ(z) =

 cosT θ√
cos2

T θ + sin2
T θ

+ i
sinT θ√

cos2
T θ + sin2

T θ

 z

is the rotation of the vector Oz with the origin center by the angle θ in taxicab
plane.

Proof. Let z = x + yi be complex number corresponding to the point (x, y) in
taxicab plane. Let the polar form of z be z = |z|T (cosT α+ i sinT α). From [7], the
image of Oz under the rotation with an angle θ is

Oz′ = (|zT |

√
(cos2

T α+ sin2
T α)

cos2
T (θ + α) + sin2

T (θ + α)
cosT (θ+α), |zT |

√
(cos2

T α+ sin2
T α)

cos2
T (θ + α) + sin2

T (θ + α)
sinT (θ+α)).

So,

z′ = |zT |

√
(cos2

T α+ sin2
T α)

cos2
T (θ + α) + sin2

T (θ + α)
(cosT (θ + α) + i sinT (θ + α)).

By Proposition 3.1 , the product of z and

(
cosT θ√

cos2T θ+sin2
T θ

+ i sinT θ√
cos2T θ+sin2

T θ

)
is

equal to z′ = Rθ(z) and this proves the lemma. �

The geometric interpretation of the multiplication of complex numbers is given
in the following corollary.

Corollary 4.1. The multiplication of two complex numbers is the product of the
image of first complex number under the rotation counter-clockwise by the other’s
argument and the Euclidean norm of the second complex number.

Proof. Let the polar forms of z1and z2 be z1 = |z1|T (cosT θ1 + i sinT θ1), z2 =
|z2|T (cosT θ2 + i sinT θ2). From Proposition 3.1 and Lemma 4.2, it is easily seen
that

z1.z2 = |z2|Rθ2(z1) = |z1|Rθ1(z2).

�

The reflections of the taxicab plane are same the reflections of Euclidean plane.
If z = x + iy is any complex number, the function ρx(z) = z = x− iy = R−θ is
the reflection in x−axis.

Lemma 4.3. If m is the line through the origin with inclination θ to positive
x−axis, then the reflection in m in terms of complex numbers can be written as

ρx(z) =

 cosT 2θ√
cos2

T 2θ + sin2
T 2θ

+ i
sinT 2θ√

cos2
T 2θ + sin2

T 2θ

 z

Proof. Since the reflection in the line m is the composition Rθ ◦ρx ◦R−θ, it is clear
that

ρm(z) = (Rθ ◦ ρx ◦R−θ)(z) =

 cosT 2θ√
cos2

T 2θ + sin2
T 2θ

+ i
sinT 2θ√

cos2
T 2θ + sin2

T 2θ

 z.

�
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The isometries of taxicab plane in terms of complex numbers can be summarized
in the following theorem by using the above lemmas.

Theorem 4.1. The isometries of taxicab plane all have the form

f(z) =

 cosT θ√
cos2

T θ + sin2
T θ

+ i
sinT θ√

cos2
T θ + sin2

T θ

 z + c

or

f(z) =

 cosT
θ

2√
cos2

T

θ

2
+ sin2

T

θ

2

+ i
sinT

θ

2√
cos2

T

θ

2
+ sin2

T

θ

2

 z + c,

where θ ∈
{
kπ
2 : k ∈ Z

}
and c is an arbitrary complex number. Conversely, every

function of either of these forms is an isometry of the taxicab plane.

Proof. We know that the isometries of the taxicab plane are the compositions of
translations, the rotations with the angles θ and the reflections in lines with incli-

nation angles
θ

2
, θ ∈

{
kπ
2 : k ∈ Z

}
. By using the above Lemma 4.1 and Lemma

4.2, the composition of the rotation with θ, θ ∈
{
kπ
2 : k ∈ Z

}
and a translation in

taxicab plane is obtained as

f(z) =

 cosT θ√
cos2

T θ + sin2
T θ

+ i
sinT θ√

cos2
T θ + sin2

T θ

 z + c.

Similarly, from the above Lemma 4.1 and Lemma 4.3, the composition of the re-
flection in the line with inclination angle θ

2 , θ ∈
{
kπ
2 : k ∈ Z

}
and a translation in

taxicab plane is obtained as

f(z) =

 cosT
θ

2√
cos2

T

θ

2
+ sin2

T

θ

2

+ i
sinT

θ

2√
cos2

T

θ

2
+ sin2

T

θ

2

 z + c.

Conversely, we know that every function of the first form is either a rotation
with the angles θ or a translation, and every function of the second form is the
composition of a translation with a reflection. �
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[4] Kaya, R., Gelişgen, Ö., Ekmekçi, S., Bayar, A. : On the Group of Isometries of the Plane
with Generalized Absolute Value Metric, Rocky Mountain Journal Of Mathematics, 39, 2,
591-603 (2009).
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