SPACELIKE CURVES OF CONSTANT BREADTH ACCORDING TO BISHOP FRAME IN MINKOWSKI 3-SPACE

HÜSEYİN KOCAYİĞİT, MUHAMMED ÇETİN

(Communicated by Bayram SAHIN)

ABSTRACT. In this paper, the spacelike curves of constant breadth according to Bishop frame in Minkowski 3-space are studied. The differential equations characterizing the spacelike curves of constant breadth in E_1^3 are obtained. Furthermore, It is shown that the spacelike curves of constant breadth are connected with slant helix in Minkowski 3-space E_1^3 .

1. INTRODUCTION

Firstly, the curves of constant breadth were introduced by Euler [1]. After him, many mathematicians studied about the curves of constant breadth [2-12]. Reuleaux gave the obtaining method some curves of constant breadth and used in kinematics of machinery [13]. The differential equations characterizing space curves of constant breadth were established and a criterion for these curves were given in [14]. Önder and et al gave the differential equations characterizing the timelike and spacelike curves of constant breadth in Minkowski 3-space in [15]. Furthermore, they gave a criterion for a timelike or spacelike curve to be curve of constant breadth in E_1^3 . Also, Kocayiğit and Önder showed that in E_1^3 spacelike and timelike curves of constant breadth were normal curves, helices and spherical curves in some special cases [16].

In this paper, we study the spacelike curves of constant breadth according to Bishop frame in E_1^3 . We obtain the differential equations characterizing the spacelike curves of constant breadth. In addition, we demostrate that spacelike curves of constant breadth are connected with slant helix.

2. Preliminaries

The Minkowski 3-space E_1^3 is the real vector space \mathbb{R}^3 provided with the standart flat metric given by

$$\langle,\rangle = -dx_1^2 + dx_2^2 + dx_3^2$$

Date: Received: June 12, 2014, Accepted: February 20, 2015.

²⁰¹⁰ Mathematics Subject Classification. 53A04, 14H50.

Key words and phrases. Bishop frame, Curve of constant breadth, Differential characterizations of curve, Minkowski space, Spacelike Curve .

where (x_1, x_2, x_3) is a rectangular coordinate system of E_1^3 . An arbitrary vector $\overrightarrow{a} = (a_1, a_2, a_3)$ in E_1^3 can have one of three Lorentzian characters; it can be spacelike if $\langle \overrightarrow{a}, \overrightarrow{a} \rangle > 0$ or $\overrightarrow{a} = 0$, timelike if $\langle \overrightarrow{a}, \overrightarrow{a} \rangle < 0$ and null (lightlike) if $\langle \overrightarrow{a}, \overrightarrow{a} \rangle = 0$ and $\overrightarrow{a} \neq 0$. Similarly, an arbitrary curve $\overrightarrow{a} = \overrightarrow{a}(s)$ can be spacelike, timelike or null (lightlike), if all of its velocity vectors \overrightarrow{a}' are spacelike, timelike or null (lightlike). In addition, a timelike vector is future pointing or past pointing if the first compound of the vector is positive or negative, respectively.

For any vectors $\vec{x} = (x_1, x_2, x_3)$ and $\vec{y} = (y_1, y_2, y_3)$ in E_1^3 , the vector product of \vec{x} and \vec{y} is defined by

$$\overrightarrow{x} \wedge \overrightarrow{y} = \begin{vmatrix} \overrightarrow{e_1} & -\overrightarrow{e_2} & -\overrightarrow{e_3} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = (x_2y_3 - x_3y_2, x_1y_3 - x_3y_1, x_2y_1 - x_1y_2)$$

where $\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$, and $\overrightarrow{e_i} = (\delta_{i1}, \delta_{i2}, \delta_{i3})$ and $\overrightarrow{e_1} \wedge \overrightarrow{e_2} = -\overrightarrow{e_3}, \overrightarrow{e_2} \wedge \overrightarrow{e_3} = \overrightarrow{e_1},$ $\overrightarrow{e_3} \wedge \overrightarrow{e_1} = -\overrightarrow{e_2}$ (See for details [17]).

The parallel transport frame is an allternative approach to defining a moving frame that is well-defined even when the curve has vanishing second derivative. We can parallel transport an orthonormal frame along a curve simply by parallel transporting each component of the frame [18].

Its mathematical properties derive from the observation that, while $\overrightarrow{T}(s)$ for a given curve model is unique, we may choose any convenient arbitrary basis $(\overrightarrow{N_1}(s), \overrightarrow{N_2}(s))$ for the remainder of the frame, so long as it is in the normal plane perpendicular to $\overrightarrow{T}(s)$ at each point. If the derivatives of $(\overrightarrow{N_1}(s), \overrightarrow{N_2}(s))$ depend only on $\overrightarrow{T}(s)$ and not each other, we can make $\overrightarrow{N_1}(s)$ and $\overrightarrow{N_2}(s)$ vary smoothly throughout the path regardless of the curvature. We may therefore choose the alternative frame equations

$$\begin{bmatrix} \overrightarrow{T} \\ \overrightarrow{T} \\ \overrightarrow{N_1} \\ \overrightarrow{N_2} \end{bmatrix} = \begin{bmatrix} 0 & k_1 & k_2 \\ -k_1 & 0 & 0 \\ -k_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} \overrightarrow{T} \\ \overrightarrow{N_1} \\ \overrightarrow{N_2} \end{bmatrix}$$

where $\left\langle \overrightarrow{T}, \overrightarrow{T} \right\rangle = \left\langle \overrightarrow{N_1}, \overrightarrow{N_1} \right\rangle = \left\langle \overrightarrow{N_2}, \overrightarrow{N_2} \right\rangle = 1$ and $\left\langle \overrightarrow{T}, \overrightarrow{N_1} \right\rangle = \left\langle \overrightarrow{N_1}, \overrightarrow{N_2} \right\rangle = \left\langle \overrightarrow{T}, \overrightarrow{N_2} \right\rangle = 0$ [19,20].

One can show that [19]

$$\kappa(s) = \sqrt{k_1^2 + k_2^2}, \qquad \theta(s) = \arctan\left(\frac{k_2}{k_1}\right), \qquad \tau(s) = \frac{d\theta(s)}{ds}$$

so that k_1 and k_2 effectively correspond to a Cartesian coordinate system for the polar coordinates κ, θ with $\theta = \tau(s)ds$. A fundamental ambiguity in the parallel transport frame compared to the Frenet frame thus arises from the arbitrary choice of an integration constant for θ_0 , which disappears from τ due to the differentiation [20].

Denote by $\{\overrightarrow{T}, \overrightarrow{N_1}, \overrightarrow{N_2}\}$, k_1 and k_2 the moving Bishop frame, the first curvature and the second curvature along the curve $\overrightarrow{\alpha}(s)$, respectively in Minkowski 3-space

 E_1^3 . If $\overrightarrow{\alpha}(s)$ is a spacelike curve in E_1^3 , then Bishop frame is given by

(2.1)
$$\begin{bmatrix} \dot{\cdot} \\ \vec{T} \\ \cdot \\ \vec{N_1} \\ \cdot \\ \vec{N_2} \end{bmatrix} = \begin{bmatrix} 0 & k_1 & -k_2 \\ \epsilon k_1 & 0 & 0 \\ \epsilon k_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} \vec{T} \\ \vec{N_1} \\ \vec{N_2} \end{bmatrix}$$

where $\left\langle \overrightarrow{T}, \overrightarrow{T} \right\rangle = 1$, $\left\langle \overrightarrow{N_1}, \overrightarrow{N_1} \right\rangle = -\epsilon$ and $\left\langle \overrightarrow{N_2}, \overrightarrow{N_2} \right\rangle = \epsilon$, and [21,22]. Here, ϵ determines the kind of spacelike curve $\overrightarrow{\alpha}(s)$. If $\epsilon = 1$, then $\overrightarrow{\alpha}(s)$ is a spacelike curve with timelike principal normal and spacelike binormal. If $\epsilon = -1$, then $\overrightarrow{\alpha}(s)$ is a spacelike curve with spacelike principal normal and timelike binormal. The relations between κ, τ, θ and k_1, k_2 are given by as follows.

$$\kappa(s) = \sqrt{|k_1^2 - k_2^2|}, \qquad \theta(s) = \arctan h\left(\frac{k_2}{k_1}\right), \qquad \tau(s) = \frac{d\theta(s)}{ds}.$$

Also, Bishop curvatures are defined by

 $k_1 = \kappa \cosh(\theta), \qquad k_2 = \sinh(\theta)$

and

$$\overrightarrow{T} = \overrightarrow{T}, \qquad \overrightarrow{N_1} = \overrightarrow{N}\cosh(\theta) - \overrightarrow{B}\sinh(\theta), \qquad \overrightarrow{N_2} = \overrightarrow{N}\sinh(\theta) - \overrightarrow{B}\cosh(\theta)$$

[21, 22].

Theorem 2.1. Let $\alpha : I \longrightarrow E_1^3$ be a unit speed spacelike curve with non-zero natural curvatures. Then $\overrightarrow{\alpha}(s)$ is a spacelike slant helix if and only if $\frac{k_1}{k_2}$ is constant [23].

3. The Spacelike Curves of Constant Breadth

In this section, we give differential equations characterizing the spacelike curves of constant breadth according to Bishop frame in Minkowski 3-space. In addition, we show that the spacelike curves of constant breadth are related to slant helix in Minkowski 3-space E_1^3 .

Definition 3.1. Let (C) be a spacelike curve. If (C) has parallel tangents in opposite directions at the opposite points $\alpha(s)$ and $\alpha^*(s)$, and if the distance between these points is always constant, then (C) is called a spacelike curve of constant breadth. Moreover, a pair of spacelike curves (C) and (C^*) for which the tangents at the corresponding points $\alpha(s)$ and $\alpha^*(s^*)$ are parallel and in opposite directions, and the distance between these points is always constant are called a spacelike curve pair of constant breadth [16].

Let (C) and (C^*) be a pair of unit-speed spacelike curves with non-zero Bishop curvatures in E_1^3 and let those curves have parallel tangents in opposite directions at the corresponding points $\alpha(s)$ and $\alpha^*(s^*)$, respectively. The position vector of the curve (C^*) at the point $\alpha^*(s^*)$ can be expressed as

(3.1)
$$\overrightarrow{\alpha^*}(s^*) = \overrightarrow{\alpha}(s) + \lambda_1(s)\overrightarrow{T}(s) + \lambda_2(s)\overrightarrow{N_1}(s) + \lambda_3(s)\overrightarrow{N_2}(s)$$

where $\lambda_i(s)$ (i = 1, 2, 3) are differentiable functions of s which is arc lenght of (C). Denote by $\{\overrightarrow{T}, \overrightarrow{N_1}, \overrightarrow{N_2}\}$, k_1 and k_2 the moving Bishop frame, Bishop curvatures along the curve (C) respectively. And denote by $\left\{\overrightarrow{T^*}, \overrightarrow{N_1^*}, \overrightarrow{N_2^*}\right\}$, k_1^* and k_2^* the moving Bishop frame, Bishop curvatures along the curve (C^*) , respectively.

Differentiating Eq.(3.1) with respect to s and using the Bishop formulae given by (2.1), we obtain (3.2)

$$\frac{d\vec{\alpha^*}}{ds} = \vec{T^*} \frac{ds^*}{ds} = \left(1 + \frac{d\lambda_1}{ds} + \epsilon k_1 \lambda_2 + \epsilon k_2 \lambda_3\right) \vec{T} + \left(k_1 \lambda_1 + \frac{d\lambda_2}{ds}\right) \vec{N_1} + \left(-k_2 \lambda_1 + \frac{d\lambda_3}{ds}\right) \vec{N_2}$$

Since $\overrightarrow{T} = -\overrightarrow{T^*}$ at the corresponding points of (C) and (C^*) , we gain the following differential equations system

(3.3)
$$\begin{cases} \frac{d\lambda_1}{ds} = -\frac{ds^*}{ds} - 1 - \epsilon k_1 \lambda_2 - \epsilon k_2 \lambda_3 \\ \frac{d\lambda_2}{ds} = -k_1 \lambda_1 \\ \frac{d\lambda_3}{ds} = k_2 \lambda_1 \end{cases}$$

It is well known that the curvature $\kappa(s)$ of the curve (C) is

$$\lim_{\Delta s \to 0} \frac{\Delta \varphi}{\Delta s} = \frac{d\varphi}{ds} = \kappa$$

where φ is the angle between the tangent of the spacelike curve (C) and a given fixed direction at the point $\alpha(s)$.

Hence, we can rewrite the system (3.3) as follow.

(3.4)
$$\begin{cases} \frac{d\lambda_1}{ds} = -\epsilon\mu_1\lambda_2 - \epsilon\mu_2\lambda_3 - f\\ \frac{d\lambda_2}{ds} = -\mu_1\lambda_1\\ \frac{d\lambda_3}{ds} = \mu_2\lambda_1 \end{cases}$$

where

$$\mu_1 = \rho k_1 = \frac{k_1}{\kappa} = \cosh(\theta), \qquad \mu_2 = \rho k_2 = \frac{k_2}{\kappa} = \sinh(\theta), \qquad (\theta = \tau ds)$$

and

$$f(\varphi) = \rho + \rho^*, \qquad \rho = \frac{1}{\kappa}, \qquad \rho^* = \frac{1}{\kappa^*}.$$

Here, ρ and ρ^* indicates the radius of curvatures at the points $\alpha(s)$ and $\alpha^*(s^*)$, respectively.

Eliminating λ_2 , λ_3 and their derivatives from the system (3.4), we obtain the following differential equation of third order with respect to λ_1 .

(3.5)
$$a_1 \lambda_1''' + b_1 \lambda_1'' + c_1 \lambda_1' + d_1 \lambda_1 = e_1$$

where

$$\begin{aligned} a_{1} &= -\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{3} - \mu_{1}^{\prime\prime}\mu_{2}^{3}\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{2}\right) + \mu_{2}^{\prime\prime}\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{2}\right] \\ b_{1} &= -\mu_{2}\left[\left(\mu_{1}^{\prime\prime}\right)^{2}\mu_{2}^{3} + \mu_{1}^{\prime\prime}\left(-\mu_{2}^{2}\mu_{1}\mu_{2}^{\prime\prime} + \left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{2}\right) + \mu_{2}^{\prime\prime}\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{2}\right] \\ c_{1} &= \mu_{1}^{\prime\prime}\left[-\mu_{2}^{3}\mu_{2}^{\prime\prime}\mu_{1}^{\prime} + \left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)\left(\epsilon\mu_{2}^{3}\mu_{1}^{2} + \mu_{1}(\mu_{2}^{\prime})^{2} - \mu_{2}\mu_{1}^{\prime}\mu_{2}^{\prime} - \epsilon\mu_{2}^{5}\right)\right] \\ &\quad + \left(\mu_{1}^{\prime\prime}\right)^{2}\mu_{2}^{3}\mu_{2}^{\prime} + \left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{2}\left(\mu_{2}^{\prime\prime}\mu_{2}^{\prime} + \epsilon\left(\mu_{1}^{2} - \mu_{2}^{2}\right)\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)\right) \\ d_{1} &= \epsilon\mu_{2}\mu_{1}^{\prime\prime}\left[\left(\mu_{2}^{4}\mu_{1} - \mu_{2}^{2}\mu_{1}^{3}\right)\mu_{2}^{\prime\prime} + \left(\left(\mu_{1}^{3} + \mu_{1}^{2}\mu_{2} - 3\mu_{2}^{3}\right)\mu_{2}^{\prime\prime} - \mu_{1}\mu_{2}\mu_{1}^{\prime}\left(-2\mu_{2} + \mu_{1}\right)\right)\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)\right] \\ &\quad + \epsilon\left(\mu_{2}^{4}\mu_{1}^{2} - \mu_{2}^{6}\right)\left(\mu_{1}^{\prime\prime}\right)^{2} + \epsilon\left[\left(\mu_{1}^{2}\mu_{2} - \mu_{2}^{3}\right)\mu_{2}^{\prime\prime} + 3\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)\left(\mu_{1}\mu_{1}^{\prime} - \mu_{2}\mu_{2}^{\prime}\right)\right]\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{2} \\ e_{1} &= -\mu_{1}^{\prime\prime}\left[-\mu_{2}^{3}\left(f\mu_{1}^{\prime} - f^{\prime}\mu_{1}\right)\mu_{2}^{\prime\prime} + \left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)\left(-\mu_{2}^{3}f^{\prime\prime} + \left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)\left(-\mu_{2}f^{\prime} + \mu_{2}^{\prime}f\right)\right)\right] \\ &\quad - \left(\mu_{1}^{\prime\prime}\right)^{2}\left(\mu_{2}^{3}\mu_{2}^{\prime}f - \mu_{2}^{4}f^{\prime}\right) - \left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{2}\left[\left(-\mu_{2}f^{\prime} + \mu_{2}^{\prime}f\right)\mu_{2}^{\prime\prime} - f^{\prime\prime}\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)\right]. \end{aligned}$$

Here and later (') denotes the differentiation with respect to " φ ". Similarly, eliminating λ_1 , λ_3 and their derivatives from the system (3.4) we obtain the following differential equation of third order with respect to λ_2 .

(3.6)
$$a_2 \lambda_2''' + b_2 \lambda_2'' + c_2 \lambda_2' + d_2 \lambda_2 = e_2$$

where

$$\begin{aligned} a_2 &= -\mu_1^2 \mu_2 \\ b_2 &= 2\mu_1' \mu_1 \mu_2 + \mu_2' \mu_1^2 \\ c_2 &= \mu_1'' \mu_1 \mu_2 - 2(\mu_1')^2 \mu_2 + \epsilon \mu_1^4 \mu_2 - \mu_2' \mu_1' \mu_1 - \epsilon \mu_2^3 \mu_1^2 \\ d_2 &= \epsilon \mu_1^3 (\mu_1' \mu_2 - \mu_2' \mu_1) \\ e_2 &= \mu_1^3 (\mu_2' f - f' \mu_2) \,. \end{aligned}$$

Furthermore, eliminating λ_1 , λ_2 and their derivatives from the system (3.4) we gain the following differential equation of third order with respect to λ_3 .

(3.7)
$$a_3\lambda_3''' + b_3\lambda_3'' + c_3\lambda_3' + d_3\lambda_3 = e_3$$

where

$$\begin{aligned} a_3 &= -\mu_2^2 \mu_1 \\ b_3 &= 2\mu'_2 \mu_2 \mu_1 + \mu'_1 \mu_2^2 \\ c_3 &= \mu''_2 \mu_2 \mu_1 - 2(\mu'_2)^2 \mu_1 - \mu'_1 \mu'_2 \mu_2 + \epsilon \mu_1^3 \mu_2^2 - \epsilon \mu_2^4 \mu_1 \\ d_3 &= \epsilon \mu_2^3 \left(-\mu'_2 \mu_1 + \mu_2 \mu'_1 \right) \\ e_3 &= -\mu_2^3 \left(\mu'_1 f - f' \mu_1 \right). \end{aligned}$$

When the curve (C) and the function $f(\varphi)$ are given, from the solving the systems (3.3), (3.4) or the Eqs.(3.5), (3.6), (3.7), we can find the values of λ_i (i = 1, 2, 3). Eqs.(3.5), (3.6) and (3.7) express the differential characterizations for the spacelike curves (C) and (C^*) according to coefficients λ_i .

When the curves (C) and (C^*) are a spacelike curve pair of constant breadth, then the distance d between the corresponding points $\alpha(s)$ and $\alpha^*(s^*)$ is constant. Hence,

(3.8)
$$d^{2} = \left\| \overrightarrow{d} \right\|^{2} = \left\| \overrightarrow{\alpha^{*}}(s^{*}) - \overrightarrow{\alpha}(s) \right\|^{2} = \left| \lambda_{1}^{2} - \epsilon \lambda_{2}^{2} + \epsilon \lambda_{3}^{2} \right| = k^{2}, \qquad k \in \mathbb{R}$$

Differentiating Eq.(3.8) with respect to φ , we gain

(3.9)
$$\frac{1}{2}\frac{d}{d\varphi}\left\|\overrightarrow{d}\right\|^2 = \lambda_1\lambda_1' - \epsilon\lambda_2\lambda_2' + \epsilon\lambda_3\lambda_3' = 0$$

Substituting the equalities given by the system (3.4) into the Eq.(3.9) we obtain the following equality.

$$\lambda_1 f = 0.$$

This relation express to be spacelike curve pair of constant breadth of the spacelike curves (C) and (C^*) in E_1^3 . Here, there are two main cases.

Case 1. Let $f(\varphi) = 0$ $\left(\frac{ds^*}{ds} + 1 = 0\right)$. This means that the spacelike curve (C^*) is a translation of the spacelike curve (C) by the constnat vector

(3.11)
$$\overrightarrow{d} = \lambda_1 \overrightarrow{T} + \lambda_2 \overrightarrow{N_1} + \lambda_3 \overrightarrow{N_3}.$$

In fact, if $f(\varphi) = 0$ then the vector \overrightarrow{d} is constant. To verify this fact, differentiate Eq.(3.11) with respect to φ and use the equalities given by (3.4) for f = 0 and Bishop formulae given by (2.1). Hence, we obtain $\frac{d\overrightarrow{d}}{d\varphi} = 0$. Consequently, if $\frac{d\overrightarrow{d}}{d\varphi} = 0$ then the vector \overrightarrow{d} is constant. In this case we can rewrite the systems (3.3), (3.4) and the Eqs.(3.5), (3.6) and (3.7) as follows:

(3.12)
$$\begin{cases} \frac{d\lambda_1}{ds} = -\epsilon k_1 \lambda_2 - \epsilon k_2 \lambda_3 \\ \frac{d\lambda_2}{ds} = -k_1 \lambda_1 \\ \frac{d\lambda_3}{ds} = k_2 \lambda_1 \end{cases}$$

(3.13)
$$\begin{cases} \frac{d\lambda_1}{ds} = -\epsilon\mu_1\lambda_2 - \epsilon\mu k_2\lambda_3\\ \frac{d\lambda_2}{ds} = -\mu_1\lambda_1\\ \frac{d\lambda_3}{ds} = \mu_2\lambda_1 \end{cases}$$

(3.14)
$$a_1 \lambda_1'' + b_1 \lambda_1'' + c_1 \lambda_1' + d_1 \lambda_1 = 0$$

where

$$\begin{aligned} a_{1} &= -\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{3} - \mu_{1}^{\prime\prime}\mu_{2}^{3}\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right) \\ b_{1} &= -\mu_{2}\left[\left(\mu_{1}^{\prime\prime}\right)^{2}\mu_{2}^{3} + \mu_{1}^{\prime\prime}\left(-\mu_{2}^{2}\mu_{1}\mu_{2}^{\prime\prime} + \left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{2}\right) + \mu_{2}^{\prime\prime}\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{2}\right] \\ c_{1} &= \mu_{1}^{\prime\prime}\left[-\mu_{2}^{3}\mu_{2}^{\prime\prime}\mu_{1}^{\prime} + \left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)\left(\epsilon\mu_{2}^{3}\mu_{1}^{2} + \mu_{1}(\mu_{2}^{\prime})^{2} - \mu_{2}\mu_{1}^{\prime}\mu_{2}^{\prime} - \epsilon\mu_{2}^{5}\right)\right] \\ &+ \left(\mu_{1}^{\prime\prime}\right)^{2}\mu_{2}^{3}\mu_{2}^{\prime} + \left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{2}\left(\mu_{2}^{\prime\prime}\mu_{2}^{\prime} + \epsilon\left(\mu_{1}^{2} - \mu_{2}^{2}\right)\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)\right) \\ d_{1} &= \epsilon\mu_{2}\mu_{1}^{\prime\prime}\left[\left(\mu_{2}^{4}\mu_{1} - \mu_{2}^{2}\mu_{1}^{3}\right)\mu_{2}^{\prime\prime} + \left(\left(\mu_{1}^{3} + \mu_{1}^{2}\mu_{2} - 3\mu_{2}^{3}\right)\mu_{2}^{\prime\prime} - \mu_{1}\mu_{2}\mu_{1}^{\prime}\left(-2\mu_{2} + \mu_{1}\right)\right)\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)\right] \\ &+ \epsilon\left(\mu_{2}^{4}\mu_{1}^{2} - \mu_{2}^{6}\right)\left(\mu_{1}^{\prime\prime}\right)^{2} + \epsilon\left[\left(\mu_{1}^{2}\mu_{2} - \mu_{2}^{3}\right)\mu_{2}^{\prime\prime} + 3\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)\left(\mu_{1}\mu_{1}^{\prime} - \mu_{2}\mu_{2}^{\prime}\right)\right]\left(\mu_{1}\mu_{2}^{\prime} - \mu_{2}\mu_{1}^{\prime}\right)^{2} \end{aligned}$$

(3.15)
$$a_2 \lambda_2''' + b_2 \lambda_2'' + c_2 \lambda_2' + d_2 \lambda_2 = 0$$

where

$$\begin{aligned} a_2 &= -\mu_1^2 \mu_2 \\ b_2 &= 2\mu_1' \mu_1 \mu_2 + \mu_2' \mu_1^2 \\ c_2 &= \mu_1'' \mu_1 \mu_2 - 2(\mu_1')^2 \mu_2 + \epsilon \mu_1^4 \mu_2 - \mu_2' \mu_1' \mu_1 - \epsilon \mu_2^3 \mu_1^2 \\ d_2 &= \epsilon \mu_1^3 \left(\mu_1' \mu_2 - \mu_2' \mu_1 \right). \end{aligned}$$

(3.16)
$$a_3\lambda_3''' + b_3\lambda_3'' + c_3\lambda_3' + d_3\lambda_3 = 0$$

2

where

$$\begin{aligned} a_3 &= -\mu_2^2 \mu_1 \\ b_3 &= 2\mu_2' \mu_2 \mu_1 + \mu_1' \mu_2^2 \\ c_3 &= \mu_2'' \mu_2 \mu_1 - 2(\mu_2')^2 \mu_1 - \mu_1' \mu_2' \mu_2 + \epsilon \mu_1^3 \mu_2^2 - \epsilon \mu_2^4 \mu_1 \\ d_3 &= \epsilon \mu_2^3 \left(-\mu_2' \mu_1 + \mu_2 \mu_1' \right). \end{aligned}$$

Theorem 3.1. The general differential equations and systems characterizing spacelike curve pair of constant breadth according to Bishop frame in E_1^3 are given by (3.12), (3.13) and (3.14), (3.15), (3.16).

Case 2. Let $\lambda_1 = 0$. Then, there are three cases here.

i) We can take $\lambda_2 = const.$ and $\lambda_3 = 0$ (from (3.4)). Then, $f(\varphi) = -\epsilon \mu_1 \lambda_2$.

ii) We can take $\lambda_2 = 0$ and $\lambda_3 = const.$ (from (3.4)). Then, $f(\varphi) = -\epsilon \mu_2 \lambda_3$.

iii) Now, we consider the third and important case $\lambda_2 = \text{const.}$ and $\lambda_3 = \text{const.}$ If $\lambda_2 = \text{const.}$, $\lambda_3 = \text{const.}$ and $f(\varphi) = 0$ (from (3.4)), then we obtain $\frac{k_1}{k_2} = -\frac{\lambda_3}{\lambda_2} = \text{const.}$ This means that the curve (C) is a spacelike slant helix according to Bishop frame. Thus we can give following theorem.

Theorem 3.2. Let consider the spacelike curve pair of constant breadth which has the sum of curvature radius at corresponding points is zero according to Bishop frame in E_1^3 . If the first normal component $\lambda_2 = \text{const.}$ and the second normal component $\lambda_3 = \text{const.}$ given by Eq.(3.1), then the spacelike curve (C) is a spacelike slant helix in E_1^3 .

References

- [1] Euler, L., De Curvis Triangularibus, Acta Acad. Petropol., 3-30, 1778 (1780).
- [2] Barbier, E., Note Sur le Probléme de l'aiguille et le jeu du Joint Couvert, Journal de Mathématiques Pures et Appliquées, 2 (1860), no. 5, 273-286.
- [3] Fujiwara, M., On space Curves of Constant Breadth, Tohoku Mathematical Journal, 5 (1914), 180-184.
- [4] Blaschke, W., Leibziger Berichte, 67 (1917), 290.
- [5] Ball, N.H., On Ovals, American Mathematical Monthly, 37 (1930), no. 7, 348-353.
- [6] Mellish, A.P., Notes on Differential Geometry, Annals of Mathematics, 32 (1931), no. 1, 181-190.
- [7] Hammer, P.C., Constant Breadth Curves in the Plane, Proceedings of the American Mathematical Society, 6 (1955), no. 2, 333-334.
- [8] Smakal, S., Curves of Constant Breadth, Czechoslovak Mathematical Journal, 23 (1973), no. 1, 86-94.
- Köse, Ö., Düzlemde Ovaller ve Sabit Genişlikli Eğrilerin Bazı Özellikleri, Doğa Bilim Dergisi, Seri B, 8 (1984), no. 2, 119-126.
- [10] Köse, Ö., On Space Curves of Constant Breadth, Doğa Tr. J. Math, 10 (1986), no. 1, 11-14.

92

- [11] Mağden, A., and Köse, Ö., On the Curves of Constant Breadth in E⁴ Space, Tr. J. of Mathematics, 21 (1997), 277-284.
- [12] Akdoğan, Z., and Mağden, A., Some Characterization of Curves of Constant Breadth in Eⁿ Space, Turk J Math, 25 (2001), 433-444.
- [13] Reuleaux, F., The Kinematics of Machinery, Translated by A. B. W. Kennedy, Dover Pub. New York, 1963.
- [14] Sezer, M., Differential Equations Characterizing Space Curves of Constant Breadth and a Criterion for These Curves, *Turkish J. of Math*, 13 (1989), no. 2, 70-78.
- [15] Önder, M., Kocayiğit, H. and Candan, E., Differential Equations Characterizing Timelike and Spacelike Curves of Constant Breadth in Minkowski 3-Space E_1^3 , J. Korean Math. Soc. 48 (2011), no. 4, 849-866.
- [16] Kocayiğit, H. and Önder, M., Space Curves of Constant Breadth in Minkowski 3-Space, Annali di Matematica, 192 (2013), no. 5, 805-814.
- [17] O'Neill, B., Semi Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- [18] Hanson, A.J. and Ma, H., Parallel Transport Approach to Curve Framing, Indiana University, *Technical Report TR425*, January 11, 1995.
- [19] Bishop, R.L., There is More Than One Way to Frame a Curve, American Mathematical Monthly, 82 (1975), no. 3, 246-251.
- [20] Hanson, A.J., and Ma, H., Quaternion Frame Approach to Streamline Visualization, *IEEE Transactions on Visulation and Computer Graphics*, 1 (1995), no.2, 164-174.
- [21] B. Bükçü and M.K. Karacan, Bishop frame of the spacelike curve with a spacelike principal normal in Minkowski 3-space, *Commun. Fac. Sci. Univ. Ank. Series A1*, 57 (2008), no. 1, 13-22.
- [22] B. Bükçü and M.K. Karacan, Bishop frame of the spacelike curve with a spacelike binormal in Minkowski 3-space, *Selçuk J. Appl. Math*, 11 (2010), no. 1, 15-25.
- [23] Bükcü, B. and Karacan, M.K., The Slant Helices according to Bishop Frame of the Spacelike Curve in Lorentzian Space, *Journal of Interdisciplinary Mathematics*, 12 (2009), no. 5, 691-700.

Celal Bayar University, Faculty of Sciences, Department of Mathematics, Manisa, TURKEY

E-mail address: huseyin.kocayigit@cbu.edu.tr *E-mail address*: mat.mcetin@hotmail.com