MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES VOLUME 3 NO. 1 PP. 103–107 (2015) ©MSAEN

WEAK INSERTION OF A PERFECTLY CONTINUOUS FUNCTION BETWEEN TWO REAL-VALUED FUNCTIONS

MAJID MIRMIRAN

(Communicated by Ishak ALTUN)

ABSTRACT. A sufficient condition in terms of lower cut sets are given for the weak insertion of a perfectly continuous function between two comparable real-valued functions on such topological spaces that Λ -sets are open.

1. INTRODUCTION

A generalized class of closed sets was considered by Maki in 1986 [11]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i. e., sets that are intersection of open sets are called Λ -sets [11].

Recall that a real-valued function f defined on a topological space X is called A-continuous [13] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subset of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [2, 6].

Hence, a real-valued function f defined on a topological space X is called *perfectly* continuous[12] (resp. contra-continuous [3]) if the preimage of every open subset of \mathbb{R} is a clopen (i. e., open and closed) (resp. closed) subset of X.

A function is perfectly continuous if and only if it is continuous and contracontinuous.

A real-valued function f defined on a topological space X is called *regular set*connected [4] if the preimage of every regular open subset of \mathbb{R} is a clopen subset of X.

Recall, a subset A is said to be regular open (resp. regular closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))).

If a function is perfectly continuous then it is regular set-connected.

Date: Received: June 1, 2014; Accepted: October 1, 2014.

²⁰¹⁰ Mathematics Subject Classification. Primary 54C08, 54C10, 54C50; Secondary 26A15, 54C30.

Key words and phrases. Weak insertion, Strong binary relation, Perfectly continuous function, Regular set-connected function, Contra-continuous function, Clopen sets, Λ -sets, Lower cut set.

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

MAJID MIRMIRAN

Results of Katětov [7, 8] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [1], are used in order to give a sufficient condition for the weak insertion of a perfectly continuous function between two comparable real-valued functions on the topological spaces that Λ -sets are open [11].

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.

The following definitions are modifications of conditions considered in [9].

A property P defined relative to a real-valued function on a topological space is a pc-property provided that any constant function has property P and provided that the sum of a function with property P and any perfectly continuous function also has property P. If P_1 and P_2 are pc-property, the following terminology is used: A space X has the weak pc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f$, g has property P_1 and f has property P_2 , then there exists a perfectly continuous function h such that $g \leq h \leq f$.

In this paper, a sufficient condition for the weak pc-insertion property is given. Several insertion theorems are obtained as corollaries of these results.

2. The Main Result

Before giving a sufficient condition for insertability of a perfectly continuous function, the necessary definitions and terminology are stated.

Let (X, τ) be a topological space, the family of all open, closed and clopen will be denoted by $O(X, \tau)$, $C(X, \tau)$ and $Clo(X, \tau)$, respectively.

Definition 2.1. Let A be a subset of a topological space (X, τ) . We define the subsets A^{Λ} and A^{V} as follows: $A^{\Lambda} = \bigcap \{O : O \supseteq A, O \in O(X, \tau)\}$ and $A^{V} = \bigcup \{F : F \subseteq A, F \in C(X, \tau)\}.$

 $A^{*} = \bigcup \{O : O \supseteq A, O \in O(X, \tau)\}$ and $A^{*} = \bigcup \{F : F \subseteq A, F \in I \}$ In [5, 10], A^{Λ} is called the *kernel* of A.

Definition 2.2. Let A be a subset of a topological space (X, τ) . Respectively, we define the *closure*, *interior*, *clo-closure* and *clo-interior* of a set A, denoted by Cl(A), Int(A), clo(Cl(A)) and clo(Int(A)) as follows:

 $Cl(A) = \cap \{F : F \supseteq A, F \in C(X, \tau)\},\$

 $Int(A) = \cup \{ O : O \subseteq A, O \in O(X, \tau) \},\$

 $clo(Cl(A)) = \cap \{F: F \supseteq A, F \in Clo(X, \tau)\}$ and

 $clo(Int(A)) = \cup \{ O : O \subseteq A, O \in Clo(X, \tau) \}.$

If (X, τ) is a topological space whose Λ -sets are open, then respectively, we have $A^V, clo(Cl(A))$ are closed, clopen and $A^\Lambda, clo(Int(A))$ are open, clopen.

The following first two definitions are modifications of conditions considered in [7, 8].

Definition 2.3. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.4. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

104

1) If $A_i \ \rho B_j$ for any $i \in \{1, \ldots, m\}$ and for any $j \in \{1, \ldots, n\}$, then there exists a set C in P(X) such that $A_i \ \rho C$ and $C \ \rho B_j$ for any $i \in \{1, \ldots, m\}$ and any $j \in \{1, \ldots, n\}$.

2) If $A \subseteq B$, then $A \bar{\rho} B$.

3) If $A \ \rho \ B$, then $clo(Cl(A)) \subseteq B$ and $A \subseteq clo(Int(B))$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [1] as follows:

Definition 2.5. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f,\ell) \subseteq \{x \in X : f(x) \le \ell\}$ for a real number ℓ , then $A(f,\ell)$ is called a *lower indefinite cut set* in the domain of f at the level ℓ .

We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on a topological space X, in which Λ -sets are open, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$, then there exists a perfectly continuous function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by F(t) = A(f, t) and G(t) = A(g, t). If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then $F(t_1) \ \bar{\rho} \ F(t_2), G(t_1) \ \bar{\rho} \ G(t_2)$, and $F(t_1) \ \rho \ G(t_2)$. By Lemmas 1 and 2 of [8] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \ \rho \ H(t_2), H(t_1) \ \rho \ H(t_2)$ and $H(t_1) \ \rho \ G(t_2)$.

For any x in X, let $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$

We first verify that $g \le h \le f$: If x is in H(t) then x is in G(t') for any t' > t; since x is in G(t') = A(g,t') implies that $g(x) \le t'$, it follows that $g(x) \le t$. Hence $g \le h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f,t') implies that f(x) > t', it follows that $f(x) \ge t$. Hence $h \le f$.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = clo(Int(H(t_2))) \setminus clo(Cl(H(t_1)))$. Hence $h^{-1}(t_1, t_2)$ is a clopen subset of X, i. e., h is a perfectly continuous function on X. The above proof used the technique of proof of Theorem 1 of [7].

3. Applications

The abbreviations c, pc, rc and cc are used for continuous, perfectly continuous, regular set-connected and contra-continuous, respectively.

Before stating the consequences of Theorem 2.1, we suppose that X is a topological space that Λ -sets are open.

Corollary 3.1. If for each pair of disjoint closed (resp. open) sets F_1, F_2 of X, there exist clopen sets G_1 and G_2 of X such that $F_1 \subseteq G_1, F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X has the weak *pc*-insertion property for (c, c) (resp. (cc, cc)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are c (resp. cc), and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $Cl(A) \subseteq Int(B)$ (resp. $A^{\Lambda} \subseteq B^{V}$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is a closed (resp. open) set and since $\{x \in X : g(x) < t_2\}$ is an open (resp. closed) set, it follows that $Cl(A(f,t_1)) \subseteq Int(A(g,t_2))$ (resp. $A(f,t_1)^{\Lambda} \subseteq A(g,t_2)^{V}$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint closed (resp. open) sets F_1, F_2 , there exist clopen sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then every continuous (resp. contra-continuous) function is perfectly continuous.

Proof. Let f be a real-valued continuous (resp. contra-continuous) function defined on the X. By setting g = f, then by Corollary 3.1, there exists a perfectly continuous function h such that g = h = f.

Corollary 3.3. If for each pair of disjoint subsets F_1, F_2 of X, such that F_1 is closed and F_2 is open, there exist clopen subsets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X have the weak *pc*-insertion property for (c, cc) and (cc, c).

Proof. Let g and f be real-valued functions defined on the X, such that g is c (resp. cc) and f is cc (resp. c), with $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $A^{\Lambda} \subseteq Int(B)$ (resp. $Cl(A) \subseteq B^{V}$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is an open (resp. closed) set and since $\{x \in X : g(x) < t_2\}$ is an open (resp. closed) set, it follows that $A(f,t_1)^{\Lambda} \subseteq Int(A(g,t_2))$ (resp. $Cl(A(f,t_1)) \subseteq A(g,t_2)^{V}$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Corollary 3.4. X has the weak pc-insertion property for (rc, rc).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are rc, and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $clo(Cl(A)) \subseteq clo(Int(B))$, then ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ and $\{x \in X : g(x) < t_2\}$ are clopen set, it follows that $clo(Cl(A(f, t_1))) \subseteq clo(Int(A(g, t_2)))$. Hence $t_1 < t_2$ implies that $A(f, t_1) \rho A(g, t_2)$. The proof follows from Theorem 2.1.

Corollary 3.5. Every regular set-connected function is perfectly continuous.

Proof. Let f be a regular set-connected function defined on the X. By setting g = f, then by Corollary 3.4, there exists a perfectly continuous function h such that g = h = f.

Corollary 3.6. X has the weak pc-insertion property for (c, rc), (rc, c), (cc, rc) and (rc, cc).

Proof. The proof follows from Corollary 3.5.

References

- [1] Brooks, F., Indefinite cut sets for real functions. Amer. Math. Monthly 78 (1971), 1007-1010.
- [2] Dontchev, J., The characterization of some peculiar topological space via α and β -sets. Acta Math. Hungar. 69 (1995), No.1-2, 67-71.
- [3] Dontchev, J., Contra-continuous functions and strongly S-closed space. Intrnat. J. Math. Math. Sci. 19 (1996), No.2, 303-310.
- [4] Dontchev, J., Ganster, M., Reilly, I., More on almost s-continuity. *Topology Atlas*, Preprint No. 212.
- [5] Dontchev, J., Maki, H., On sg-closed sets and semi-λ-closed sets. Questions Answers Gen. Topology 15 (1997), No.2, 259-266.
- [6] Ganster, M., Reilly, I., A decomposition of continuity. Acta Math. Hungar. 56 (1990), No.3-4, 299-301.
- [7] Katětov, M., On real-valued functions in topological spaces. Fund. Math. 38 (1951), 85-91.
- [8] Katětov, M., Correction to, "On real-valued functions in topological spaces". Fund. Math. 40 (1953), 203-205.
- [9] Lane, E., Insertion of a continuous function. Pacific J. Math. 66 (1976), 181-190.
- [10] Maheshwari, S. N., Prasad, R., On R_{Os}-spaces. Portugal. Math. 34 (1975), 213-217.
- [11] Maki, H., Generalized Λ-sets and the associated closure operator. The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement (1986), 139-146.
- [12] Noiri, T., Super-continuity and some strong forms of continuity. Indian J. Pure Appl. Math. 15 (1984), 241-250.
- [13] Przemski, M., A decomposition of continuity and α -continuity. Acta Math. Hungar. 61(1993), No.1-2, 93-98.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ISFAHAN, ISFAHAN 81746-73441, IRAN. *E-mail address:* mirmir@sci.ui.ac.ir