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EXPONENTIAL SOLUTION OF A DIFFERENTIAL EQUATION

BETWEEN OPERATORS

H. LUNA-GARCÍA AND LUZ MARÍA GARCÍA-CRUZ

(Communicated by Xiao-Jun YANG)

Abstract. ABSTRACT: In this paper we obtain an authentically exponential

solution to the differential equation
dY (t)

dt
= A(t)Y (t), where Y (t) and A(t)

are linear operators with the initial condition Y (0) = I, and I is the identity

operator. Then, the solution was applied to calculate the vector triad: tangent,

normal and binormal in terms of the arc length of a curve.

1. INTRODUCTION

Studying a homogeneous system of differential equations, leads immediately to

the differential equationdY (t)
dt = A (t)Y (t). Examples of this relation are described

in the evolution equation and the Bloch equation in quantum mechanics. Also,
it can be found by studying the rotations in classical mechanics, as well as, other
topics of the mathematical physics. The evolution equation has previously solved by
J. Schwinger [1], F. J. Dyson [2], R. P. Feynman [3] among others. The solutions
found are not expressed as a true exponential form. However, H. Luna and O.
Chavoya [4], found a truly exponential solution in a particular case when A(t) is
independent of the parameter t.

Also, W. Magnus [5] solved the same equation in an approximate exponential
giving a solution where the exponent was expressed in terms of multiple commuta-
tors.

Its solution makes use of super multiple commutators operators {, } and the
derivative of polarization

(
y ∂
∂x

)
.

This paper is divided into five parts: This introduction, section 2 illustrates the
solution given by W. Magnus, in section 3, our solution is obtained truly exponen-
tial, and it is compared with that obtained by Magnus, being the nearest to our
solution; section 4 presents the application of our solution to a special case: the
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calculation of the triad of vectors tangent, normal and binormal in terms of the arc
length. Finally, section 5 presents conclusions and future projects.

2. SOLUTION OF W. MAGNUS

His method is as follows. Given the differential equation.

(2.1)
dY (t)

dt
= A (t)Y (t) ,

it seeks an operator Y (t) in terms of the linear operator Ω (t) so as to replace in
Eq. (2.1) the following is obtained:

(2.2)
deΩ(t)

dt
= A (t) eΩ(t).

It is known that the derivative with respect to t of eΩ(t) can be expressed in terms
of the polarization derivative of the exponential as follows:

(2.3)
deΩ(t)

dt
=

.

Ω

(
∂

∂Ω

)
eΩ(t).

Combining Eq. (2.2) and Eq. (2.3), we have

(2.4)

(
.

Ω
∂

∂Ω

)
eΩ = AeΩ.

The polarization derivative is then expressed in terms of the super multiple com-
mutators operators {, }

(2.5)

(
.

Ω
∂

∂Ω

)
eΩ =

{
eΩ − I

Ω
,
.

Ω

}
eΩ,

where
.

Ω = dΩ
dt . From Eq. (2.4) and Eq. (2.5) we obtain

(2.6)

{
eΩ − I

Ω
,
.

Ω

}
= A,

and multiplying by the inverse follows

(2.7)

{
Ω

eΩ − I
,

{
eΩ − I

Ω
,
.

Ω

}}
=

{
Ω

eΩ − I
, A

}
,

where

(2.8)
.

Ω =

{
Ω

eΩ − I
, A

}
.

By using in Eq. (2.8), and the well-known formula [6]

(2.9)
t

et − 1
=

∞∑
n=0

Bn
n!
tn,

where Bn are the Bernoulli numbers, it is possible to write

(2.10)
dΩ

dt
=

∞∑
n=0

Bn
n!
{Ωn, A} ,
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then integrating Eq. (2.10) from zero to t, finally we obtain

(2.11) Ω (t) =

∞∑
n=0

Bn
n!

t∫
0

dτ {Ωn (t) , A (τ)} .

It is evident from Eq. (2.11) that Ω (t) is expressed in terms of powers of Ω.
Iterating Eq. (2.11) can be found Ω (t) in terms of A (t) as follows:
(2.12)

Ω (t) =

t∫
0

dt1A1 +
1

2

t∫
0

dt2

t2∫
0

dt1 [A2, A1] +
1

4

t∫
0

dt3

t3∫
0

dt2

t2∫
0

dt1 [A3, [A2, A1]] + . . .

where [Aj , Ak] = AjAk −AkAj and Aj = A (tj).
While this method has the disadvantage of expressing Ω (t) always based on Ω (t)

and this difficulty cannot be removed, also has favorable property of displaying the
operator Ω (t) as a function of the multiple commutators of A (t).

Also, R. M. Wilcox [7] solved the differential equation at hand finding the first
terms of the previous series. Likewise, Mielnik and Plebañsky [8] solved the evo-
lution equation with an algorithm similar to that used for E. B. Dynkin [9] in
the search for a solution to the famous Campbell-Baker-Hausdorff’s problem. Un-
fortunately, the method of Mielnik and Plebañsky is very complicated, for this,
as mentioned in the summary, aims to provide a solution truly exponential given
differential equation.

3. OUR SOLUTION

Find the exponential solution of the differential equation

(3.1)
dY (t)

dt
= A (t)Y (t) ,

means finding an operator Ω (t) in terms of A (t) such that Y (t) = eΩ. Substituting
Y (t) in Eq. (3.1) we have

(3.2)
deΩ(t)

dt
= A (t) eΩ(t),

but, on the other hand, it is known that

(3.3)
deΩ(t)

dt
=

1∫
0

dλeλΩ
.

Ωe−λΩeΩ,

where λ is a t independent variable and |λ| ≤ 1. Comparing Eq. (3.2) and Eq.
(3.3) one has

(3.4)

1∫
0

dλeλΩ
.

Ωe−λΩ = A.

It is easy to show that

(3.5)
.

Ω = e−Ω

(
d

dt
−A

)
ΩeΩ.



EXPONENTIAL SOLUTION OF A DIFFERENTIAL EQUATION 121

For this purpose we replace Eq. (3.5) in Eq. (3.4) and multiplying on the left by
eΩ(t), lets the following results

(3.6)

1∫
0

dλeλΩ

(
d

dt
−A

)
Ωe−λΩeΩ = eΩA.

Using the anticommutative property between eΩ and A and introducing the unit
operator I, the Eq. (3.6) becomes

(3.7)

1∫
0

dλeλΩ

(
d

dt
−A

)
Ωe−λΩeΩ =

1∫
0

dλeλΩAe−λΩ

From the definition of the polarization derivative, the Eq. (3.7) becomes

(3.8)

(
d

dt
−A

)
Ω
∂

∂Ω
eΩ =

(
A
∂

∂Ω

)
eΩ

Identifying coefficients in Eq: (3.8), we obtain

(3.9)

(
d

dt
−A

)
Ω = A,

Therefore

(3.10) Ω (t) =

(
d

dt
−A

)−1

A.

Then, replacing x = d
dt − A, and using the polarization derivative, the Eq. (3.10)

can be expressed as

(3.11) x−1A = −A ∂

∂x
,

of which,

(3.12)
[
x, x−1A

]
= A.

Then, substituting x and x−1 in Eq. (3.12) we obtain

(3.13)

[
d

dt
−A,Ω

]
= A,

where this equation represents a differential equation of Ω (t). From the basic
identity

(3.14) Ω = eΩΩe−Ω,

and, deΩ

dt = AeΩ, de−Ω

dt = −e−ΩA, one has

(3.15)
.

Ω = [A,Ω] + eΩ
.

Ωe−Ω.

then, we proceed to exchange Ω by λΩ and integrate between zero to one, one has

(3.16)

1∫
0

dλeλΩ
.

Ωe−λΩ =
.

Ω + [Ω, A] ,
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Finally, identifying the left side of the Eq. (3.16) as

(3.17) A =

1∫
0

dλeλΩ
.

Ωe−λΩ,

then, the Eq. (3.13) can be written as

(3.18)
.

Ω = A+ [A,Ω] .

Now solve the Eq. (3.18) is a simple task. It can be shown by simple derivation
that the final solution is

(3.19) Ω (t) =

t∫
0

dt1A+

∞∑
j=2

dtj · · ·
t2∫
0

dt1 [Aj , [· · · [A2, A1] · · · ]] ,

where Aj = A (tj). The first terms of the Eq. (3.19) are

Ω (t) =

t∫
0

dt1A+

t∫
0

dt2

t2∫
0

dt1 [A2, A1] +

t∫
0

dt3

t3∫
0

dt2

t2∫
0

dt1 [A3, [A2, A1]] + . . .

Comparing Eq. (3.19) with Eq. (2.12) also shows that differ by the numerical
coefficients, and that Ω (t) is no longer more expressed in terms of Ω (t) . The
operator eΩ in Eq. (3.19) meets the criterion of Friederich [10], i. e., Ω (t) is an
element of Lie.

The solution Y (t) = eΩ(t) has many applications. For example, classical me-
chanics, quantum electrodynamics, quantum statistical mechanics,quantum field
theory and group theory.

4. EXAMPLE

This section develops an application example of the solution of the movement of
a particle in a curve, whose description is obtained from the Frenet-Serret equations
of differential geometry. The Frenet-Serret equations [11] are given by the following
differential equations

dt̂

ds
= κn̂,

(4.1)
dn̂

ds
= τ b̂− κt̂,

db̂

ds
= −τ n̂,

where, t̂, n̂ and b̂, are the tangent, normal, and binormal vectors in the curve,
respectively; κ and τ are the curvature and torsion of the curve and generally
depend on the parameter of arc length s.

The set of Eq. (4.1) can be written as a matrix differential equation of the form:

(4.2)
dY (s)

dt
= A (s)Y (s) ,

where

(4.3) A (s) =

 0 κ 0
−κ 0 τ
0 −τ 0

 ,
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and

(4.4) Y (s) =

 tx ty tz
nx ny nz
bx by bz

 .

Also, the matrix can be written in terms of the two matrix Mk known as the
infinitesimal generators of the three-dimensional rotations [12],

(4.5) A (s) = −κM3 + τM1,

where

(4.6) M1 =

 0 0 0
0 0 1
0 −1 0

 ;M2 =

 0 0 1
0 0 0
−1 0 0

 ;M1 =

 0 −1 0
1 0 0
0 0 0

 ,

which satisfy the following commutation rules:

(4.7) [Mi,Mj ] = εijkMk.

These define the Lie algebra of the group SO3.
Luna and Chavoya solved Eq. (3.18) as genuine exponential in the case where the

matrix A (s) not dependent on the parameter s, and also exploiting the property of
linear operators idempotent; as applied to a subgroup of the group single parameter
SO3corresponding to rotations about an axis fixed direction.

Consider now that the matrix A (s) itself depends on the parameter s but that
the torsion and curvature are equal; to exploit the property mentioned idempotent
operators.

If κ = τ , the Eq. (4.5) remains as

(4.8) A (s) = κ (M1 −M3)

The calculation of the matrix Ω (s) is as follows. Calculating the terms of Eq. (3.19)
we have

(4.9)

s∫
0

ds1A1 = (M1 −M3)

s∫
0

κ (s1) ds1 = (M1 −M3) g (s) ,

where g (s) =
s∫
0

κ (s1) ds1. Then,

s∫
0

ds2

s2∫
0

ds1 [A1, A2] =

s∫
0

ds2

s2∫
0

ds1 [κ1 (M1 −M3) , κ2 (M1 −M3)]

(4.10) =

s∫
0

ds2

s2∫
0

ds1 (κ2κ1)
[
(M1 −M3)

2 − (M1 −M3)
2
]

= 0,

therefore, the following terms in the series development of the Eq. (3.19) are also
zero.

Now the matrix Ω (s) is left on the form

(4.11) Ω (s) = g (s) (M1 −M3) =
A (s)

κ
g (s) = g (s) Ω1 (s) ,
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where

(4.12) Ω1 (s) =

 0 1 0
−1 0 1
0 −1 0

 .

It can be shown directly, the powers of Ω (s) in terms of the powers of g (s) fulfill
the properties given below

(4.13) a) Ω2n+1 (s) = (−2)
n
g2n+1 (s) Ω1;n = 0, 1, 2, . . . ,

(4.14) b) Ω2n+2 (s) = (−2)
n
g2n+2 (s) Ω2;n = 0, 1, 2, . . . ,

(4.15) c) Ω2 (s) = Ω2
1 (s) =

 −1 0 1
0 −2 0
1 0 −1

 ,

(4.16) d) [Ω1,Ω2] = 0.

Therefore, the series expansion of the exponential matrix Ω (s) becomes as
(4.17)

eΩ(s) =

∞∑
n=0

Ωn (s)

n!
= I + Ω1

∞∑
n=0

(−1)
n
g2n+1 (s)

(2n+ 1)!
2n + Ω2

∞∑
n=0

(−1)
n
g2n+2 (s)

(2n+ 2)!
2n.

Identifying with sine and cosine series, finally we have

(4.18) Y (s) = eΩ(s) = I +
1√
2

Ω1 sin
(√

2g (s)
)

+
1

2
Ω2

(
1− cos

(√
2g (s)

))
.

This expression that corresponds to the desired solution, and which when mul-
tiplied by Y (0), provides the tangent, normal and binormal vectors for all value of
the parameter s.

5. CONCLUSIONS

The present method has the virtue of allowing solve the differential equation
easily, displaying a Ω (t) as a function of A (t) and multiple commutators required
at all levels in the series. This series can be cut after some few terms of it depending
on the problem. If we also take advantage of the possibility of idempotent Ω (t),
series expansion of the exponential of this operator converges and the solution of
the differential equation remains a function of a matrix basis that leads to functions
sine, cosine or sometimes hyperbolic functions of sines and cosines. It is considered
that this method can potentially be particularly useful in many branches of the
physics, and the general solution of the Cambell-Baker-Hausdorff’s problem.
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[9] E. B. Dynkin, Doclady Akad. Nauk, SSSR (N. S.) 57(1947), 323-326.



EXPONENTIAL SOLUTION OF A DIFFERENTIAL EQUATION 125

[10] K. O. Friederich, Comm. Pure Appl. Math., Vol. VI, (1953),1-72.
[11] D. Danielson, Vectors and Tensors in Engineering and Physics, 2nd. Ed., Addison-Wesley,USA

(1992).

[12] H. Goldstein. Classical Mechanics, 2nd. Ed., Addison-Wesley,USA (2000).
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