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ON THE RATE OF CONVERGENCE OF THE STANCU TYPE

BERNSTEIN OPERATORS FOR FUNCTIONS OF BOUNDED

VARIATION

RÜYA ÜSTER AND ERTAN İBİKLİ

(Communicated by Xiao-Jun YANG)

Abstract. In this paper, we estimate the rate of pointwise convergence of the

Stancu type Bernstein operators for functions defined on the interval. To prove
our main result, we have used some methods and techniques from probability

theory.

1. INTRODUCTION

Let BV (I) denote the class of functions that are of bounded variation on a
set I ⊂ R. Recently, some authors studied some linear positive operators and
obtained the rate of convergence for functions in BV (I). For example, Bojanic
and Vuilleumier [1] estimated the rate of convergence of Fourier-Legendre series for
functions of bounded variation on the interval [0, 1], Cheng [2] estimated the rate
of convergence of Bernstein polynomials for functions bounded variation on [0, 1],
and Zeng and Chen [3] and Guo [4] estimated the rate of convergence of Durrmeyer
type operators for functions of bounded variation again on [0, 1].

For a function defined on the interval [0, 1], Bernstein operators Bn (f), n ≥ 1,
are defined by

(1) Bn (f ;x) =

n∑
k=0

f

(
k

n

)
pnk (x) , n ≥ 1
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where pnk (x) =

(
n

k

)
xk (1− x)

n−k
is the Bernstein basis (0 ≤ x ≤ 1).

The operators defined by (1) were introduced by Bernstein [5] and studied by
many authors.

The Stancu polynomials studied in this paper are given [6] by

(2) B(α,β)
n (f, x) =

n∑
k=0

pnk (x) f

(
k + α

n+ β

)
where α, β are real parameters (0 ≤ α ≤ β) and x ∈ [0, 1].

In this paper, by means of techniques of probability theory and methods of
Bojanic and Vuilleumier [1], Cheng [2], Zeng and Chen [3] we shall estimate the

rate of convergence of the operators B
(α,β)
n (f, x) for functions of bounded variation.

Theorem 1.1. Let f be a function of bounded variation on [0, 1]. Then for every
x ∈ (0, 1), we have∣∣∣∣B(α,β)

n (f, x)− 1

2
(f (x+) + f (x−))

∣∣∣∣ ≤ 3
(α− βx)

2
+ nx (1− x)

(n+ β)
2
x2 (1− x)

2

×


n∑
k=1

x+(1−x)/
√
k∨

x−x/
√
k

(gx)


+

1√
nx (1− x)

[|f (x+)− f (x−)|

+ |f (x)− f (x−)| en (x)
1√
2e

]
(1.1)

where en (x) =

{
1, x = k

′
for some k′ ∈ N

0, x 6= k
′
for all k′ ∈ N

, e = 2.71... and
b∨
a

(gx) is the total

variation of gx on [a, b],

gx (t) =

 f (t)− f (x+) x < t ≤ 1
0 t = x

f (t)− f (x−) 0 ≤ t < x.
.

2. AUXILIARY RESULT

In this section, we give certain results that are neccessary to prove our main
theorems.

Lemma 2.1. For B
(α,β)
n (ts;x), s = 0, 1, 2, one has

B(α,β)
n (1, x) = 1

B(α,β)
n (t, x) = x+

α− βx
n+ β

(3) B(α,β)
n

(
t2, x

)
= x2 +

(α− βx) (2nx+ βx+ α) + nx (1− x)

(n+ β)
2 .

Proof.

B(α,β)
n (1, x) =

n∑
k=0

pnk (x) = Bn (1, x) = 1
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B(α,β)
n (t, x) =

n∑
k=0

k + α

n+ β
pnk (x)

=
n

n+ β

n∑
k=0

k

n
pnk (x) +

α

n+ β

n∑
k=0

pnk (x)

=
n

n+ β
Bn (t, x) +

α

n+ β
Bn (1, x)

=
nx

n+ β
+

α

n+ β
= x+

α− βx
n+ β

B(α,β)
n

(
t2, x

)
=

n∑
k=0

(
k + α

n+ β
)2pnk (x)

=
n2

(n+ β)
2

n∑
k=0

(
k

n

)2

pnk (x)

+
2αn

(n+ β)
2

n∑
k=0

k

n
pnk (x) +

α2

(n+ β)
2

n∑
k=0

pnk (x)

=
n2

(n+ β)
2Bn

(
t2, x

)
+

2αn

(n+ β)
2Bn (t, x)

+
α2

(n+ β)
2Bn (1, x)

= x2 +
(α− βx) (2nx+ βx+ α) + nx (1− x)

(n+ β)
2 .

By direct calculation, we also find the following equalities;

(4) B(α,β)
n

(
(t− x)

2
, x
)

=
(α− βx)

2
+ nx (1− x)

(n+ β)
2 .

�

Lemma 2.2. For all x ∈ (0, 1), we have

(5) λn (x, t) :=

t∫
0

Kn (x, u) du ≤ 1

(x− t)2
(α− βx)

2
+ nx (1− x)

(n+ β)
2 ,0 < t < x

and

(6) 1− λn (x, z) :=

1∫
z

Kn (x, u) du ≤ 1

(z − x)
2

(α− βx)
2

+ nx (1− x)

(n+ β)
2 ,x ≤ z < 1

where

(7) Kn (x, t) =

{ ∑
k+α≤(n+β)t

Pnk (x) 0 < t ≤ 1

0 t = 0
.
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Proof. First we prove (5)

λn (x, t) =

t∫
0

Kn (x, u) du

≤
t∫

0

Kn (x, u)

(
x− u
x− t

)2

du

=
1

(x− t)2
B(α,β)
n

(
(u− x)

2
, x
)

.

By (4), we get

λn (x, t) ≤ 1

(x− t)2
(α− βx)

2
+ nx (1− x)

(n+ β)
2 .

The proof of (6) is similar. �

Lemma 2.3. Let ξ1 be a sequence of independent random variables with two point

binomial distribution P (ξ1 = k) := xk (1− x)
1−k

(k = 0, 1, and 0 ≤ x ≤ 1 being a
parameter). Then

a1 = Eξ1 = x, E (ξ1 − a1)
2

= x (1− x)

and

E (ξ1 − a1)
3

= x (1− x)
(
2x2 − 2x+ 1

)
.

Proof. Let {ξ1}∞k=1 be a sequence of independent random variables identically dis-

tributed with ξ1, ηn =
n∑
k=1

ξk. Then the probability distributions of the random

variable ηn is

P (µn = k) = pnk (x) =

(
n

k

)
xk (1− x)

1−k
, (0 ≤ k ≤ n).

For Mi (x) =
1∑
k=0

kixk (1− x)
1−k

, we find that

M0 (x) = 1, M1 (x) = x, M2 (x) = x, M3 (x) = x.

From the definition of expectation, we get E (ξ1) = M1 (x) = x. Also

E (ξ1 − a1)
2

=

2∑
j=0

(
2

j

)
(−1)

j
M2−j [M1 (x)]

j
= x (1− x)

E (ξ1 − a1)
3

=

3∑
j=0

(
3

j

)
(−1)

j
M3−j [M1 (x)]

j
= x (1− x)

(
2x2 − 2x+ 1

)
.

�

Lemma 2.4. (Berry-Esseen). Let {ξ1}∞k=1 be a sequence of independent and iden-
tically distributed random variable with finite variance such that the expectation
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E (ξ1) := a1 ∈ R, the variance V ar (ξ1) := E (ξ1 − a1)
2

= b21 > 0 and E |ξ1 − E (ξ1)|3 <
∞. Then there exist a constant C, 1√

2π
≤ C < 0.82, such that for all n and t∣∣∣∣∣∣P

(
1

b1
√
n

n∑
k=1

(ξ1 − a1) ≤ t

)
− 1√

2π

t∫
−∞

e−u
2/2du

∣∣∣∣∣∣ < C
E |ξ1 − E (ξ1)|3

b31
√
n

.

Its proof can be found in Shiryayev [7].

Lemma 2.5. For all x ∈ [0, 1] , we have∣∣∣∣∣∣
 ∑

(n+β)x<k+α≤n

pnk (x)

− 1

2

∣∣∣∣∣∣ ≤ 0, 8
(
2x2 − 2x+ 1

)√
nx (1− x)

≤ 1√
nx (1− x)

.

Proof. From Lemma 2.3 for P (µn = k) = pnk (x) =
(
n
k

)
xk (1− x)

1−k
, (0 ≤ k ≤ n)∑

(n+β)x<k+α≤n

pnk (x) = P ((n+ β)x < µn ≤ n)

= 1− P (µn ≤ (n+ β)x)

= 1− P

(
µn − (n+ β)x√

nx (1− x)
≤ 0

)
then ∣∣∣∣∣∣

 ∑
(n+β)x<k+α≤n

Pnk (x)

− 1

2

∣∣∣∣∣∣ =

∣∣∣∣∣P
(
µn − (n+ β)x√

nx (1− x)
≤ 0

)
− 1

2

∣∣∣∣∣
< C

E |ξ1 − E (ξ1)|3

b31
√
n

<
0.8
(
2x2 − 2x+ 1

)√
nx (1− x)

≤ 1√
nx (1− x)

.

�

Lemma 2.6. For all x ∈ [0, 1], we have

B(α,β)
n (sgn (t− x) , x) = 2

∑
(n+β)x<k+α≤n

Pnk (x)− 1 + en (x)Pnk (x) .

Proof. One has

B(α,β)
n (sgn (t− x) , x) =

n∑
k=0

sgn

(
k + α

n+ β
− x
)
pnk (x)

=
∑

(n+β)x<k+α≤n

pnk (x)−
∑

0<k+α≤(n+β)x

pnk (x)

and from (3), we can write

1 = B(α,β)
n (1, x) =

∑
(n+β)x<k+α≤n

pnk (x) +
∑

0<k+α≤(n+β)x

pnk (x)

+en (x) pnk (x) .
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Thus there follows

B(α,β)
n (sgn (t− x) , x) =

∑
(n+β)x<k+α≤n

pnk (x)

−

1−
∑

(n+β)x<k+α≤n

pk (x)− en (x) pnk (x)


= 2

∑
(n+β)x<k+α≤n

Pnk (x)− 1 + en (x)Pnk (x) .

�

Lemma 2.7. There holds the inequality∣∣∣∣f (x+)− f (x−)

2
B(α,β)
n (sgn (t− x) , x)

+

[
f (x)− 1

2
f (x+)− 1

2
f (x−)

]
B(α,β)
n (δx, x)

∣∣∣∣
≤ 1√

nx (1− x)

[
|f (x+)− f (x−)|+ |f (x)− f (x−)| en (x)

1√
2e

]
.(2.1)

Proof. We have∣∣∣∣f (x+)− f (x−)

2
Bα,βn (sgn (t− x) , x)

+

[
f (x)− 1

2
f (x+)− 1

2
f (x−)

]
Bα,βn (δx, x)

∣∣∣∣
=

∣∣∣∣∣∣f (x+)− f (x−)

2

2
∑

(n+β)x<k+α≤n

Pnk (x)− 1 + en (x)Pnk (x)


+

[
f (x)− 1

2
f (x+)− 1

2
f (x−)

]
en (x) pnk (x)

∣∣∣∣
≤

∣∣∣∣∣∣f (x+)− f (x−)

2

2
∑

(n+β)x<k+α≤n

Pnk (x)− 1

∣∣∣∣∣∣
+ |[f (x)− f (x−)] en (x) pnk (x)| .

�

3. PROOF OF THE THEOREM

Now we can establish the theorem.
For any f (t) ∈ BV [0, 1], we decompose f (t) into four parts as

f (t) =
f (x+) + f (x−)

2
+ gx (t)

+
f (x+)− f (x−)

2
sgn (t− x)

+δx (t)

(
f (x)− f (x+) + f (x−)

2

)
(3.1)
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where

δx (t) =

{
1, x = t
0, x 6= t

.

If we apply B
(α,β)
n to both sides of (3.1), we have

B(α,β)
n (f, x) =

1

2
(f (x+) + f (x−))B(α,β)

n (1, x)

+B(α,β)
n (gx, x) +

f (x+)− f (x−)

2
B(α,β)
n (sgn (t− x) , x)

+

[
f (x)− 1

2
(f (x+) + f (x−))

]
B(α,β)
n (δx, x) .(3.2)

If we take the absolute values of the inequality (3.2) and note B
(α,β)
n (1, x) = 1

by (4), we have ∣∣∣∣B(α,β)
n (f, x)− 1

2
(f (x+) + f (x−))B(α,β)

n (1, x)

∣∣∣∣
≤

∣∣∣B(α,β)
n (gx, x)

∣∣∣
+

∣∣∣∣f (x+)− f (x−)

2
B(α,β)
n (sgn (t− x) , x)

+

(
f (x)− 1

2
(f (x+) + f (x−))

)
B(α,β)
n (δx, x)

∣∣∣∣ .(3.3)

First we estimate B
(α,β)
n (gx, x) as follows:

(8)
∣∣∣B(α,β)

n (gx, x)
∣∣∣ =

∣∣∣∣∣∣
1∫

0

gx (t) dtKn (x, t) dt

∣∣∣∣∣∣ ,
with the kernel Kn (x, t) of (7).To estimate the integral of (8), we decompose it into
three parts, as follows

1∫
0

gx (t) dtKn (x, t) dt

=

∣∣∣∣∣∣∣
 x−x/

√
n∫

0

+

x+(1−x)/
√
n∫

x−x/
√
n

+

1∫
x+(1−x)/

√
n

 gx (t) dtKn (x, t) dt

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
x−x/

√
n∫

0

gx (t) dtKn (x, t) dt

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
x+(1−x)/

√
n∫

x−x/
√
n

gx (t) dtKn (x, t) dt

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
1∫

x+(1−x)/
√
n

gx (t) dtKn (x, t) dt

∣∣∣∣∣∣∣
: = |I1 (n, x)|+ |I2 (n, x)|+ |I3 (n, x)| .
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|I1 (n, x)| =

∣∣∣∣∣∣∣
x−x/

√
n∫

0

gx (t) dt (λn (x, t)) dt

∣∣∣∣∣∣∣ ,

|I2 (n, x)| =

∣∣∣∣∣∣∣
x+(1−x)/

√
n∫

x−x/
√
n

gx (t) dt (λn (x, t)) dt

∣∣∣∣∣∣∣
and

|I3 (n, x)| =

∣∣∣∣∣∣∣
1∫

x+(1−x)/
√
n

gx (t) dt (λn (x, t)) dt

∣∣∣∣∣∣∣ ,
λn (x, t) being defined in (5).First we estimate I2 (n, x). For t ∈ [x− x/

√
n, x+ (bn − x) /

√
n],

we have, as gx (x) = 0

|I2 (n, x)| =

∣∣∣∣∣∣∣
x+(1−x)/

√
n∫

x−x/
√
n

(gx (t)− gx (x)) dt (λn (x, t)) dt

∣∣∣∣∣∣∣
≤

x+(1−x)/
√
n∨

x−x/
√
n

(gx) ≤ 1

n− 1

n∑
k=2

x+(1−x)/
√
k∨

x−x/
√
k

(gx) .(3.4)

Next, we estimate I1 (n, x). Using partial Lebesgue-Stieltjes integration, we obtain

I1 (n, x) =

x−x/
√
n∫

0

gx (t) dt (λn (x, t)) dt

= gx

(
x− x√

n

)
λn
(
x, x− x/

√
n
)
− gx (0)λn (x, 0)

−
x−x/

√
n∫

0

λn (x, t) dt (gx (t)) dt.

Because
∣∣∣gx (x− x√

n

)∣∣∣ =
∣∣∣gx (x− x√

n

)
− gx (x)

∣∣∣ ≤ x∨
x−x/

√
n

(gx), it follows that

|I1 (n, x)| ≤
x∨

x−x/
√
n

(gx)
∣∣λn (x, x− x/√n)∣∣

+

x−x/
√
n∫

0

λn (x, t) dt

(
−

x∨
t

(gx)

)
dt

≤
x∨

x−x/
√
n

(gx)
(α− βx)

2
+ nx (1− x)

(n+ β)
2
(

x√
n

)2
+

(α− βx)
2

+ nx (1− x)

(n+ β)
2

x−x/
√
n∫

0

1

(x− t)2
dt

(
−

x∨
t

(gx)

)
dt.
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Furthermore, again by partial integration,

x−x/
√
n∫

0

1

(x− t)2
dt

(
−

x∨
t

(gx)

)
dt = − 1(

x√
n

)2 x∨
x−x/

√
n

(gx) +
1

x2

x∨
0

(gx)

+

x−x/
√
n∫

0

2

(x− t)3
x∨
t

(gx) dt.

Putting t = x− x√
u

in the last integral, we obtain

x−x/
√
n∫

0

2

(x− t)3
x∨
t

(gx) dt =
1

x2

n∫
1

x∨
x−x/

√
u

(gx) du =
1

x2

n∑
k=1

x∨
x−x/

√
k

(gx) .

Consequently,

|I1 (n, x)| ≤
x∨

x−x/
√
n

(gx)
(α− βx)

2
+ nx (1− x)

(n+ β)
2
(

x√
n

)2
+

(α− βx)
2

+ nx (1− x)

(n+ β)
2

×

− 1(
x√
n

)2 x∨
x−x/

√
n

(gx) +
1

x2

x∨
0

(gx)

+
1

x2

n∑
k=1

x∨
x−x/

√
k

(gx)


≤ (α− βx)

2
+ nx (1− x)

(n+ β)
2
x2


x∨
0

(gx) +

n∑
k=1

x∨
x−x/

√
k

(gx)

 .(3.5)

Using a similar method as for estimating |I3 (n, x)|, we get

(3.6) |I3 (n, x)| ≤ (α− βx)
2

+ nx (1− x)

(n+ β)
2

(1− x)
2


1∨
x

(gx) +

n∑
k=1

x+(1−x)/
√
n∨

x

(gx)

 .
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Hence from (3.4)-(3.6), it follows that∣∣∣B(α,β)
n (gx, x)

∣∣∣ ≤ |I1 (n, x)|+ |I2 (n, x)|+ |I3 (n, x)|

≤ 1

n− 1

n∑
k=2

x+(1−x)/
√
k∨

x−x/
√
k

(gx)

+
(α− βx)

2
+ nx (1− x)

(n+ β)
2
x2


x∨
0

(gx) +

n∑
k=1

x∨
x−x/

√
k

(gx)


+

(α− βx)
2

+ nx (1− x)

(n+ β)
2

(1− x)
2

×


1∨
x

(gx) +

n∑
k=1

x+(1−x)/
√
k∨

x−x/
√
k

(gx)

 .

Because 1
x2 + 1

(1−x)2 ≤
1

x2(1−x)2 , x ∈ [0, 1]

∣∣∣B(α,β)
n (gx, x)

∣∣∣ ≤ (α− βx)
2

+ nx (1− x)

(n+ β)
2

(1− x)
2
x2


1∨
0

(gx) +

n∑
k=1

x+(1−x)/
√
k∨

x−x/
√
k

(gx)


+

1

n− 1

n∑
k=2

x+(1−x)/
√
k∨

x−x/
√
k

(gx) .(3.7)

On the other hand, note that
1∨
0

(gx) ≤
n∑
k=1

x+(1−x)/
√
k∨

x−x/
√
k

(gx), so that

∣∣∣B(α,β)
n (gx, x)

∣∣∣ ≤ 2

[
(α− βx)

2
+ nx (1− x)

(n+ β)
2

(1− x)
2
x2

]
n∑
k=1

x+(1−x)/
√
k∨

x−x/
√
k

(gx)


+

1

n− 1

n∑
k=2

x+(1−x)/
√
k∨

x−x/
√
k

(gx) .

Noting that 1
n−1 ≤

(α−βx)2+nx(1−x)
(n+β)2(1−x)2x2 , for n > 1, we have

(9)
∣∣∣B(α,β)

n (gx, x)
∣∣∣ ≤ 3

(α− βx)
2

+ nx (1− x)

(n+ β)
2

(1− x)
2
x2


n∑
k=1

x+(1−x)/
√
k∨

x−x/
√
k

(gx)

 .

Putting (2.1) and (3.6) in (3.3), we deduce the required result (1.1). Thus the
proof of our theorem is finally complete.
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[3] Zeng. X. M. and Chen, W. On the rate of convergence of the generalized Durrmeyer type
operators for functions of bounded variation. J. Approx. Theory 102:1-12, 2000.

[4] Guo, S. S. On the rate of convergence of Durrmeyer operator for functions of bounded vari-

ation. Journal of Approximation Theory 51, 183-197, 1987.
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