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NUMERICAL SOLUTION OF FUZZY DIFFERENTIAL

EQUATIONS BY MILNE’S PREDICTOR-CORRECTOR METHOD

MINE AYLIN BAYRAK AND EMINE CAN

(Communicated by Xiao-Jun YANG)

Abstract. In this paper Milne’s predictor-corrector method to solve the fuzzy
first first-order initial value problem are investigated. Sufficiently conditions

for stability and convergence of the proposed algorithm are also proved. Their

applicability is illustrated by two examples.

1. Introduction

Fuzzy differential equation (FDE) models play a prominent role in a range of ap-
plication areas, including population models [1], particle systems [2],[3],[4],[5], quan-
tum optics and gravity [6], synchronize hyperchaotic systems [7], control chaotic
systems [8],[9], medicine [10],[11],[12],[13], to bioinformatics and computational bi-
ology [14],[15],[16],[17],[18],[19]. The first step which included applicable definitions
of fuzzy derivative and the fuzzy integral was followed by introducing FDE and es-
tablishing sufficient conditions for the existence of unique solutions to these equa-
tions [20],[21],[22],[23],[24]. Finally, numerical algorithms of calculating approxi-
mates to these solutions where designed. A theoretical research of fuzzy first-order
initial value problem was given by Kaleva [20],[21],[22],[23],[24], [25] Seikkala [22],
Quyang and Wu [26], Kloeden [21] and Wu [27]. Some applications of numerical
methods such as the fuzzy Euler, Adams-Bashforth, Adams-Moulton, Nyström and
predictor-corrector in FDE presented in [28],[29],[30],[31].
This paper is organized as follows:
In Section 2, some basic definitions are presented. Milne’s predictor-corrector
method for solving fuzzy differential equations is introduced and predictor-corrector
algorithm is discussed in Section 3. Convergence and stability of the mentioned
methods are proved in Section 4. Two examples are presented in Section 5, and
finally conclusion is drawn.
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2. Preliminaries

In this section, some basic definitions of ordinary differential equations (ODEs)
and the necessary notation used in fuzzy calculus are introduced. We begin by
defining the q-step method.

Definition 2.1. Consider the initial value problem

(2.1) y′(t) = f(t, y(t)), y(0) = y0

where f : [a, b] × Rn → Rn. A q-step method for solving Eq. (2.1) is one whose
difference equation for finding yi+1 as approximation y(ti+1) at the mesh point ti+1

can be represented by the following equation:

(2.2) yi+1 =

q−1∑
j=0

aq−j−1yi−j + h

q−1∑
j=0

bq−jf(ti−j+1, yi−j+1)

for i = q − 1, q, ..., N − 1 such that a = t0 ≤ t1 ≤, ...,≤ tN = b, h = b−a
n = ti+1 − ti

and a0, a1, ..., aq−1, b0, b1, ..., bq are constant with the starting values y0 = α0, y1 =
α1, y2 = α2, ..., yq−1 = αq−1.

When bq = 0, the method is known as explicit, since Eq.(2.2) gives yi+1 explicit
in terms of previously determined values. When bq 6= 0, the method is known as
implicit, since yi+1 occurs on both sides of Eq.(2) and is specified only implicitly.
The special case n = 2 is known as Milne’s predictor-corrector method:
Predictor(P): Adams-Basforth method of fourth order. The method requires the
starting values yi, yi−1, yi−2 and yi−3.

(2.3) y
(P )
i+1 = yi−3 +

4h

3
(2fi − fi−1 + 2fi−2)

where i = 3, 4, ..., N − 1.
Corrector(C): Milne-Simpson’s method of fourth order. The method requires the
starting values yi, yi−1.

(2.4) y
(C)
i+1 = yi−1 +

h

3
(f(ti+1, y

(P )
i+1) + 4fi + fi−1)

where i = 3, 4, ..., N − 1.
Thus, for Milne’s predictor-corrector (PC) method the combination requires the
starting values yi, yi−1, yi−2 and yi−3.

Definition 2.2. Associated with the difference equation

(2.5)
yi+1 = aq−1yi + aq−2yi−1 + ...+ a0yi+1−q + hF (ti, h, yi+1, yi, ..., yi+1−q),

y0 = α0, y1 = α1, ..., yq−1 = αq−1.

the following, called the characteristic polynomial of the method is P (λ) = λq −
aq−1λ

q−1−aq−2λ
q−2− ...−a1λ−a0. If |λi| ≤ 1 for each i = 1, 2, ..., q, and all roots

with absolute value 1 are simple roots, then the difference method is said to satisfy
the root condition. The next result is proved in [32].

Theorem 2.1. A multistep method of the form (2.2) is stable if and only if it
satisfies the root condition.

Proof. See [32]. �
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The remainder of this section is developed to introducing the notation we shall
be using in this paper and some definitions. All our fuzzy set will be fuzzy subsets
of the real numbers R. We place a tilde over a symbol to denote a fuzzy set so
α̃1, ũ1, .... all represent fuzzy subsets on R.
In what follows, according to the basic fuzzy calculus [33], we use the so-called
α-level setting to define a fuzzy number or interval, a fuzzy number (or interval)
u is completely determined by any pair u = (u, u) of functions u, u : [0, 1] → R,
defining the end point of the α-level, satisfying the three conditions:
1. u : α→ uαεR is a bounded monotonic increasing (nondecreasing) left-continuous
function ∀αε(0, 1] and right-continuous for α = 0.
2. u : α→ uαεR is a bounded monotonic decreasing (nonincreasing) left-continuous
function ∀αε(0, 1] and right-continuous for α = 0.
3. uα ≤ uα, 0 ≤ α ≤ 1.
If u1 < u1, we have a fuzzy interval and if u1 = u1, we have a fuzzy number; for
simplicity we refer to fuzzy numbers as intervals.
Let us denote by E the class of subsets of the real axis u : R→ [0, 1] satisfying the
following properties:
(i) u is normal, i.e. ∃x0εR with u(x0) = 1;
(ii) u is convex fuzzy set
(i.e. u(tx+ (1− t)y) ≥ min{u(x), u(y)}, ∀tε[0, 1], x, yεR);
(iii) u is upper semicontinuous on R;
(iv) {xεR;u(x) > 0} is compact, where A denote the clossure of A.
Then E is called the space of fuzzy numbers [34]. Meaning if vεE then the α-level
set
[v]α = {s|v(s) ≥ α}, 0 < α ≤ 1,
is a closed bounded interval which we denote by
[v]α = [vα, vα].
Let I be a real interval. A mapping y : I → E is called a fuzzy process and its
α-level set is denoted by [y(t)]α = [yα(t), yα(t)], tεI, αε(0, 1].

A triangular fuzzy number N is defined by an ordered triple (xl, xc, xr)εR3 with
xl ≤ xc ≤ xr where the graph of N(s) is a triangle with base on the interval [xl, xr]
and vertex at s = xc. An α-level of N is always a closed, bounded interval. We
write N = (xl, xc, xr), then

(2.6) [N ]α = [xc − (1− α)(xc − xl), xc + (1− α)(xr − xc)]

for any 0 ≤ α ≤ 1.

Definition 2.3. Let D : E×E→ R+∪{0}. The Hausdorff distance between fuzzy
numbers, where [u]α = [uα, uα], [v]α = [vα, vα] is defined by

D(u, v) = sup
αε[0,1]

max{|uα − vα|, |uα − vα|}

and (E, D) is a complete metric space.

Definition 2.4. A mapping F : T → E is Hukuhara differentiable at t0εT ⊆ R if
for some h0 > 0 the Hukuhara difference
F (t0 + ∆t) ∼h F (t0), F (t0) ∼h F (t0 −∆t), exist in E for all 0 < ∆t < h0 and if



140 MINE AYLIN BAYRAK AND EMINE CAN

there exist an F ′(t0)εE such that

lim
∆t→0+

D(
F (t0 + ∆t) ∼h F (t0)

∆t
, F ′(t0)) = 0

and

lim
∆t→0+

D(
F (t0) ∼h F (t0 −∆t)

∆t
, F ′(t0)) = 0

the fuzzy set F ′(t0) is called the Hukuhara derivative of F at t0.
Recall that U ∼h V = WεE are defined on level sets, where [U ]α ∼h [V ]α = [W ]α

for all 0 ≤ α ≤ 1. By consideration of definition of the metric D , all the level
set mappings [F (.)]α are Hukuhara differentiable at t0 by Hukuhara derivatives
[F ′(t0)]α for each 0 ≤ α ≤ 1, when F : T → E is Hukuhara differentiable at t0 by
Hukuhara derivative F ′(t0).

Definition 2.5. The fuzzy integral

b∫
a

y(t)dt, 0 ≤ a ≤ b ≤ 1

is defined by

[

b∫
a

y(t)dt]α = [

b∫
a

yα(t)dt,

b∫
a

yα(t)dt],

provided that the Lebesque integrals on the right exist.

Remark 2.1. If F : T → E is Hukuhara differentiable and its Hukukara derivative
F ′ is integrable over [0, 1], then

F (t) = F (t0) +

t∫
t0

F ′(s)ds

for all values of t0, t where 0 ≤ t0 ≤ t ≤ 1.

Definition 2.6. A mapping y : I → E is called a fuzzy process. We denote

[y(t)]α = [yα(t), yα(t)], tεI, αε(0, 1].

The Seikkala derivative y′(t) of a fuzzy process y is defined by

[y′(t)]α = [(yα)′(t), (yα)′(t)], αε(0, 1],

provided the equation defines a fuzzy number y′(t)εE.

Remark 2.2. If y : I → E is Seikkala differentiable and its Seikkala derivative y′ is
integrable over [0, 1], then

y(t) = y(t0) +

t∫
t0

y′(s)ds

for all values of t0, t where t0, tεI.
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2.1. A fuzzy Cauchy problem. Consider the first-order fuzzy differential equa-
tion y′ = f(t, y), where y is a fuzzy function of t, f(t, y) is a fuzzy function of crisp
variable t and fuzzy variable y, and y′ is Hukuhara or Seikkala fuzzy derivative of
y. If an initial value y(t0) = y0 is given, a fuzzy cauchy problem of first-order will
be obtained as follows:

(2.7) y′(t) = f(t, y(t)), t0 ≤ t ≤ T, y(t0) = y0.

Sufficient conditions for the existence of a unique solution to Eq. (2.7) are:
(i) Continuity of f
(ii) Lipschitz condition
D(f(t, x), f(t, y)) ≤ LD(x, y), L > 0.
By Theorem 5.2 in [35] we may replace Eq. (2.7) by equivalent system

(2.8)
y′(t) = f(t, y) = F (t, y, y), y(t0) = y

0
,

y′(t) = f(t, y) = G(t, y, y), y(t0) = y0,

which possesses a unique solution (y, y] which is a fuzzy function , i.e. for each t,
the pair [y(t;α), y(t;α)] is a fuzzy number.
The parametric form of Eq. (2.8) is given by

(2.9)
y′(t;α) = F (t, y(t;α), y(t;α)), y(t0;α) = yα

0
,

y′(t;α) = G(t, y(t;α), y(t;α)), y(t0;α) = yα0 ,

for 0 ≤ α ≤ 1. In some cases the system given by Eq. (2.9) can be solved an-
alytically [29]. In most cases, however analytically solutions may not be found
and a numerical approach must be considered. We know for every prefixed α, Eq.
(2.9) represents an ordinary Cauchy problem for which any convergence classical
numerical procedure can be applied. Some numerical methods such as the fuzzy Eu-
ler, Adams-Bashforth, Adams-Moulton, Nyström and predictor-corrector in FDE
presented in [28],[29],[30],[31].

2.2. Interpolation of fuzzy number. Suppose that at various time instant t
information f(t) is presented as fuzzy set. The aim is to approximate the function
f(t), for all t in the domain of f . Let t0 < t1 < ... < tn be n+ 1 distinct points in
R and let ũ0, ũ1, ..., ũn be n+ 1 fuzzy sets in E. A fuzzy polynomial interpolation
of the data is a fuzzy-value continuous function f : R→ E satisfying:
(i) f(ti) = ũi, i = 0, 1, ..., n,
(ii) If the data is crisp, then the interpolation f is a crisp polynomial.
A function f which fulfilling these condition may be constructed as follows.
Let Ciα = [ũi]

α for any αε[0, 1], i = 0, 1, ..., n. For each x = (x0, x1, ..., xn)εRn+1,
the unique polynomial of degree≤ n denoted by Px such that

Px(ti) = xi, i = 0, 1, ..., n, Px(t) =

n∑
i=0

xi(
∏
i 6=j

t− tj
ti − tj

).

Finally, for each tεR and ξεR is defined by f(t)εE by

(f(t))(ξ)=sup{αε[0, 1] : ∃xεC0
α × ...× Cnα such that Px(t) = ξ}.

The interpolation polynomial can be written level set wise as

[f(t)]α = {yεR : y = Px(t), xε[ũi]
α, i = 1, 2, ..., n},



142 MINE AYLIN BAYRAK AND EMINE CAN

for 0 ≤ α ≤ 1. When the data ũi, presents as triangular fuzzy numbers, values of
the interpolation polynomial are also triangular fuzzy numbers. Then f(t) has a
particular simple form that is well suited to computation. The next result is proved
in [36].

Theorem 2.2. Let (ti, ũi), i = 0, 1, ..., n be the observed data and suppose that

each of the ũi = (uli, u
c
i , u

r
i ) is an element of E. Then for each tε[t0, tn], f̃(t) =

(f l(t), f c(t), fr(t))εE,

f l(t) =
∑

li(t)≥0

li(t)u
l
i +

∑
li(t)<0

li(t)u
r
i ,

f c(t) =

n∑
i=0

li(t)u
c
i ,

fr(t) =
∑

li(t)≥0

li(t)u
r
i +

∑
li(t)<0

li(t)u
l
i,

such that

li(t) =
∏
i 6=j

t− tj
ti − tj

.

Proof. See [36]. �

3. Milne’s predictor-corrector method

We are going to solve fuzzy initial value problem y′(t) = f(t, y(t)) by Milne’s
predictor-corrector method. Let the fuzzy initial values be ỹ(ti−3), ỹ(ti−2), ỹ(ti−1), ỹ(ti),

i.e. f̃(ti−3, y(ti−3)), f̃(ti−2, y(ti−2)), f̃(ti−1, y(ti−1)), f̃(ti, y(ti)), which are triangu-
lar fuzzy numbers are shown by

{f l(ti−3, y(ti−3)), fc(ti−3, y(ti−3)), fr(ti−3, y(ti−3))}
{f l(ti−2, y(ti−2)), f c(ti−2, y(ti−2)), fr(ti−2, y(ti−2))}
{f l(ti−1, y(ti−1)), f c(ti−1, y(ti−1)), fr(ti−1, y(ti−1))}

{f l(ti, y(ti)), f
c(ti, y(ti)), f

r(ti, y(ti))}.

Firstly, considering the quadratic Lagrange polynomial interpolating P̃2(t) at point
ti−2, ti−1, ti and integrating over [ti−3, ti+1], we have

(3.1)

ỹ(ti+1) = ỹ(ti−3) +
ti+1∫
ti−3

f̃(t, y(t))dt

≈ ỹ(ti−3) +
ti+1∫
ti−3

P̃2(t)dt.

By taking f̃(ti−2, y(ti−2)), f̃(ti−1, y(ti−1)), f̃(ti, y(ti)), we get:

f lx(t, y(t)) =

i∑
j = i− 2
lj(t) ≥ 0

lj(t)f
l(tj , y(tj)) +

i∑
j = i− 2
lj(t) < 0

lj(t)f
r(tj , y(tj))
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f cx(t, y(t)) =

i∑
j = i− 2

lj(t)f
c(tj , y(tj))

frx(t, y(t)) =

i∑
j = i− 2
lj(t) ≥ 0

lj(t)f
r(tj , y(tj)) +

i∑
j = i− 2
lj(t) < 0

lj(t)f
l(tj , y(tj))

for ti−3 ≤ t ≤ ti+1:

li−2(t) =
(t− ti−1)(t− ti)

(ti−2 − ti−1)(ti−2 − ti)
≥ 0,

li−1(t) =
(t− ti−2)(t− ti)

(ti−1 − ti−2)(ti−1 − ti)
≤ 0,

li(t) =
(t− ti−2)(t− ti−1)

(ti − ti−2)(ti − ti−1)
≥ 0,

therefore the following results will be obtained:

(3.2)
f l(t, y(t)) = li−2(t)f l(ti−2, y(ti−2)) + li−1(t)fr(ti−1, y(ti−1)) + li(t)f

l(ti, y(ti))

(3.3)
f c(t, y(t)) = li−2(t)f c(ti−2, y(ti−2)) + li−1(t)f c(ti−1, y(ti−1)) + li(t)f

c(ti, y(ti))

(3.4)
fr(t, y(t)) = li−2(t)fr(ti−2, y(ti−2)) + li−1(t)f l(ti−1, y(ti−1)) + li(t)f

r(ti, y(ti))

From (2.6) and (3.1) it follows that:

ỹα(ti+1) = [yα(ti+1), yα(ti+1)]

where

(3.5) yα(ti+1) = yα(ti−3) +
ti+1∫
ti−3

{αf c(t, y(t)) + (1− α)f l(t, y(t))}dt

and

(3.6) yα(ti+1) = yα(ti−3) +
ti+1∫
ti−3

{αf c(t, y(t)) + (1− α)fr(t, y(t))}dt

If (3.2) and (3.3) are situated in (3.5) and (3.3), (3.4) in (3.6):

yα(ti+1) = yα(ti−3)+
ti+1∫
ti−3

{α[li−2(t)f c(ti−2, y(ti−2))+li−1(t)f c(ti−1, y(ti−1))+li(t)f
c(ti, y(ti))]

+ (1− α)[li−2(t)f l(ti−2, y(ti−2)) + li−1(t)fr(ti−1, y(ti−1)) + li(t)f
l(ti, y(ti))]}dt

and

yα(ti+1) = yα(ti−3)+
ti+1∫
ti−3

{α[li−2(t)f c(ti−2, y(ti−2))+li−1(t)f c(ti−1, y(ti−1))+li(t)f
c(ti, y(ti))]

+ (1− α)[li−2(t)fr(ti−2, y(ti−2)) + li−1(t)f l(ti−1, y(ti−1)) + li(t)f
r(ti, y(ti))]}dt

The following results will be obtained by integration:
yα(ti+1) = yα(ti−3) + 8h

3 [αf c(ti−2, y(ti−2)) + (1− α)f l(ti−2, y(ti−2))]

− 4h
3 [αf c(ti−1, y(ti−1))+(1−α)fr(ti−1, y(ti−1))]+ 8h

3 [αf c(ti, y(ti))+(1−α)f l(ti, y(ti))]
and
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yα(ti+1) = yα(ti−3) + 8h
3 [αf c(ti−2, y(ti−2)) + (1− α)fr(ti−2, y(ti−2))]

− 4h
3 [αf c(ti−1, y(ti−1))+(1−α)f l(ti−1, y(ti−1))]+ 8h

3 [αf c(ti, y(ti))+(1−α)fr(ti, y(ti))]
Thus
(3.7)

yα(ti+1) = yα(ti−3) + 4h
3 [2fα(ti−2, y(ti−2))− fα(ti−1, y(ti−1)) + 2fα(ti, y(ti))]

(3.8)

yα(ti+1) = yα(ti−3) + 4h
3 [2f

α
(ti−2, y(ti−2))− fα(ti−1, y(ti−1)) + 2f

α
(ti, y(ti))]

Therefore, in Milne’s method as a predictor formula is obtained as follows:
(3.9)

yα(ti+1) = yα(ti−3) + 4h
3 [2fα(ti−2, y(ti−2))− fα(ti−1, y(ti−1)) + 2fα(ti, y(ti))]

yα(ti+1) = yα(ti−3) + 4h
3 [2f

α
(ti−2, y(ti−2))− fα(ti−1, y(ti−1)) + 2f

α
(ti, y(ti))]

yα(ti−3) = α0, y
α(ti−2) = α1, y

α(ti−1) = α2, y
α(ti) = α3,

yα(ti−3) = α4, y
α(ti−2) = α5, y

α(ti−1) = α6, y
α(ti) = α7.

Secondly, considering the polynomial interpolating P̃2(t), which fits at points ti−1, ti, ti+1

and integrating over [ti−1, ti+1], we have

(3.10)

ỹ(ti+1) = ỹ(ti−1) +
ti+1∫
ti−1

f̃(t, y(t))dt

≈
ti+1∫
ti−1

ỹ(ti−1) + P̃2(t)dt

By taking f̃(ti−1, y(ti−1)), f̃(ti, y(ti)), f̃(ti+1, y(ti+1)), we get:

f l(t, y(t)) =

i+1∑
j = i− 1
lj(t) ≥ 0

lj(t)f
l(tj , y(tj))

f c(t, y(t)) =

i+1∑
j = i− 1

lj(t)f
c(tj , y(tj))

fr(t, y(t)) =

i+1∑
j = i− 1
lj(t) ≥ 0

lj(t)f
r(tj , y(tj))

for ti−1 ≤ t ≤ ti+1:

li−1(t) =
(t− ti)(t− ti+1)

(ti−1 − ti)(ti−1 − ti+1)
≥ 0,

li(t) =
(t− ti−1)(t− ti+1)

(ti − ti−1)(ti − ti+1)
≥ 0,

li+1(t) =
(t− ti−1)(t− ti)

(ti+1 − ti−1)(ti+1 − ti)
≥ 0

therefore the following results will be obtained:
(3.11)
f l(t, y(t)) = li−1(t)f l(ti−1, y(ti−1)) + li(t)f

l(ti, y(ti)) + li+1(t)f l(ti+1, y(ti+1))
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(3.12)
f c(t, y(t)) = li−1(t)f c(ti−1, y(ti−1)) + li(t)f

c(ti, y(ti)) + li+1(t)f c(ti+1, y(ti+1))

(3.13)
fr(t, y(t)) = li−1(t)fr(ti−1, y(ti−1)) + li(t)f

r(ti, y(ti)) + li+1(t)fr(ti+1, y(ti+1))

From (2.6) and (3.10) it follows that:

ỹα(ti+1) = [yα(ti+1), yα(ti+1)],

where

(3.14) yα(ti+1) = yα(ti−1) +
ti+1∫
ti−1

{αf c(t, y(t)) + (1− α)f l(t, y(t))}dt

and

(3.15) yα(ti+1) = yα(ti−1) +
ti+1∫
ti−1

{αf c(t, y(t)) + (1− α)fr(t, y(t))}dt

If (3.11) and (3.12) are situated in (3.14) and (3.12), (3.13) in (3.15):

yα(ti+1) = yα(ti−1)+
ti+1∫
ti−1

{α[li−1(t)f c(ti−1, y(ti−1))+li(t)f
c(ti, y(ti))+li+1(t)f c(ti+1, y(ti+1))]

+ (1− α)[li−1(t)f l(ti−1, y(ti−1)) + li(t)f
l(ti, y(ti)) + li+1(t)f l(ti+1, y(ti+1))]}dt

and

yα(ti+1) = yα(ti−1)+
ti+1∫
ti−1

{α[li−1(t)f c(ti−1, y(ti−1))+li(t)f
c(ti, y(ti))+li+1(t)f c(ti+1, y(ti+1))]

+ (1− α)[li−1(t)fr(ti−1, y(ti−1)) + li(t)f
r(ti, y(ti)) + li+1(t)fr(ti+1, y(ti+1))]}dt.

The following results will be obtained by integration:
yα(ti+1) = yα(ti−1) + h

3 [αf c(ti−1, y(ti−1)) + (1− α)f l(ti−1, y(ti−1))]

+ 4h
3 [αf c(ti, y(ti))+(1−α)f l(ti, y(ti))]+

h
3 [αf c(ti+1, y(ti+1))+(1−α)f l(ti+1, y(ti+1))]

and
yα(ti+1) = yα(ti−1) + h

3 [αf c(ti−1, y(ti−1)) + (1− α)fr(ti−1, y(ti−1))]

+ 4h
3 [αf c(ti, y(ti))+(1−α)fr(ti, y(ti))]+

h
3 [αf c(ti+1, y(ti+1))+(1−α)fr(ti+1, y(ti+1))]

Thus
(3.16)

yα(ti+1) = yα(ti−1) + h
3 [fα(ti−1, y(ti−1)) + 4fα(ti, y(ti)) + fα(ti+1, y(ti+1))]

(3.17)

yα(ti+1) = yα(ti−1) + h
3 [f

α
(ti−1, y(ti−1)) + 4f

α
(ti, y(ti)) + f

α
(ti+1, y(ti+1))]

Therefore, in Milne’s method as a corrector formula is obtained as follows:
(3.18)

yα(ti+1) = yα(ti−1) + h
3 [fα(ti−1, y(ti−1)) + 4fα(ti, y(ti)) + fα(ti+1, y(ti+1))]

yα(ti+1) = yα(ti−1) + h
3 [f

α
(ti−1, y(ti−1)) + 4f

α
(ti, y(ti)) + f

α
(ti+1, y(ti+1))]

yα(ti−1) = α0, y
α(ti) = α1, y

α(ti+1) = α2,
yα(ti−1) = α3, y

α(ti) = α4, y
α(ti+1) = α5.

The following algorithm is based on Adams-Bashforth method of fourth order as a
predictor and also Milne-Simpson method of fourth order as a corrector formula.
To approximate the solution of following fuzzy initial value problem

y′(t) = f(t, y(t)), t0 ≤ t ≤ T
yα(t0) = α0, y

α(t1) = α1, y
α(t2) = α2, y

α(t3) = α3

yα(t0) = α4, y
α(t1) = α5, y

α(t2) = α6, y
α(t3) = α7
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positive integer N is chosen.
Step 1. Let h = T−t0

N .
Compute starting values using fourth order Runge-Kutta method

wα(t0) = α0, w
α(t1) = α1,

wα(t2) = α2, w
α(t3) = α3

wα(t0) = α4, w
α(t1) = α5,

wα(t2) = α6, w
α(t3) = α7

(3.19)

Step 2. Let i = 1.
Step 3. Let
w(0)α(ti+1) = wα(ti−3)+ 4h

3 [2fα(ti−2, w(ti−2))−fα(ti−1, w(ti−1))+2fα(ti, w(ti))],

w(0)α(ti+1) = wα(ti−3)+ 4h
3 [2f

α
(ti−2, w(ti−2))−fα(ti−1, w(ti−1))+2f

α
(ti, w(ti))],

Step 4. Let
ti+2 = t0 + (i+ 2)h.
Step 5. Let
wα(ti+1) = wα(ti−1) + h

3 [fα(ti−1, w(ti−1)) + 4fα(ti, w(ti)) + fα(ti+1, w
(0)(ti+1))],

wα(ti+1) = wα(ti−1) + h
3 [f

α
(ti−1, w(ti−1)) + 4f

α
(ti, w(ti)) + f

α
(ti+1, w

(0)(ti+1))],
Step 6. i = i+ 1.
Step 7. if i ≤ N − 1 go to Step 3.
Step 8. Algorithm will be completed on (wα(T ), wα(T )) approximates real value of

(Y α(T ), Y
α

(T )).

4. Convergence and stability

To integrate the system given in Eq. (2.9) from to a prefixed T > t0, the interval
[t0, T ] will be replaced by a set of discrete equally spaced grid points t0 < t1 <
... < tN = T at which the exact solution (Y (t;α), Y (t;α)) is approximated by
some (y(t;α), y(t;α)). The exact and approximate solutions at tn, 0 ≤ n ≤ N are

denoted by Yn(α) = [Y n(α), Y n(α)], and yn(α) = [y
n
(α), yn(α)],respectively. The

grid points at which the solution is calculated are tn = t0 +nh, h = T−t0
N , 0 ≤ n ≤

N .
From Eq. (3.18) , the polygon curves

y(t;h;α) = {|t0, y0(α)|, |t1, y1(α)|, ..., |tN , yN (α)|},

y(t;h;α) = {|t0, y0(α)|, |t1, y1(α)|, ..., |tN , yN (α)|},

are the Milne’s predictor-corrector method approximates to Y (t, α) and Y (t, α),
respectively, over the interval t0 ≤ t ≤ tN . The following lemma will be applied to
show convergence of these approximates , i.e.

lim
h→0

y(t;h;α) = Y (t;α), lim
h→0

y(t;h;α) = Y (t;α).

Lemma 4.1. [28] Let a sequence of numbers {Wn}Nn=0 satisfy:

|Wn+1| ≤ A|Wn|+B|Wn−1|+ C, 0 ≤ n ≤ N − 1

for some given positive constants A,B and C. Then
|Wn| ≤ (An−1 + β1A

n−3B + β2A
n−5B2 + ...+ βsB

[ n2 ])|W1|
+ (An−2B + γ1A

n−4B2 + ...+ γtAB
[ n2 ])|W0|+ (An−2 +An−3 + ...+ 1)C
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+ (δ1A
n−4 + δ2A

n−5 + ...+ δmA+ 1)BC + (ξ1A
n−6 + ξ2A

n−7 + ...+ ξrA+ 1)B2C
+ (λ1A

n−8 + λ2A
n−9 + ...+ λpA+ 1)B3C + ..., n odd

and
|Wn| ≤ (An−1 + β1A

n−3B + β2A
n−5B2 + ...+ βsAB

[ n2 ]−1)|W1|
+ (An−2B + γ1A

n−4B2 + ...+ γtB
[ n2 ])|W0|+ (An−2 +An−3 + ...+ 1)C

+ (δ1A
n−4 + δ2A

n−5 + ...+ δmA+ 1)BC + (ξ1A
n−6 + ξ2A

n−7 + ...+ ξrA+ 1)B2C
+ (λ1A

n−8 + λ2A
n−9 + ...+ λpA+ 1)B3C + ..., n even

where βs, γt, δm, ξr, λp are constants for all s, t,m, r and p.
The proof, by using mathematical induction is straightforward.

Theorem 4.1. For arbitrary fixed α : 0 ≤ α ≤ 1, the Milne-Simpson of fourth order
approximates of Eq.(3.9) converge to the exact solutions Y (t;α), Y (t;α) , uniformly
in t, for Y , Y εC5[t0, T ].

Proof. It is sufficient to show

lim
h→0

y
n
(α) = Y (T ;α), lim

h→0
yn(α) = Y (T ;α)

(4.1)

By using Taylor’s theorem, we get
Y n+1(α) = Y n−1(α)+ h

3 f(tn−1, Y n−1(α))+ 4h
3 f(tn, Y n(α))+ h

3 f(tn+1, Y n+1(α))−
1
90h

5Y (V )(ξn),

Y n+1(α) = Y n−1(α)+ h
3 f(tn−1, Y n−1(α))+ 4h

3 f(tn, Y n(α))+ h
3 f(tn+1, Y n+1(α))−

1
90h

5Y
(V )

(ξn),

where tn−3 < ξ
n
, ξn < tn+1.

Consequently,
Y n+1(α)− y

n+1
(α) = Y n−1(α)− y

n−1
(α) + h

3 f(tn−1, Y n−1(α)) + 4h
3 f(tn, Y n(α)) +

h
3 f(tn+1, Y n+1(α))− 1

90h
5Y (V )(ξn),

Y n+1(α)− yn+1(α) = Y n−1(α)− yn−1(α) + h
3 f(tn−1, Y n−1(α)) + 4h

3 f(tn, Y n(α)) +
h
3 f(tn+1, Y n+1(α))− 1

90h
5Y

(V )
(ξn),

Denote Wn = Y n(α)− y
n
(α), Vn = Y n(α)− yn(α). Then

|Wn+1| ≤ (1 +
hL1

3
)|Wn−1|+ (

4hL2

3
)|Wn|+ (

hL3

3
)|Wn+1| −

1

90
h5M,

|Vn+1| ≤ (1 +
hL4

3
)|Vn−1|+ (

4hL5

3
)|Vn|+ (

hL6

3
)|Vn+1| −

1

90
h5M,

where

M = max
t0≤t≤T

|Y (V )(t;α)|

and

M = max
t0≤t≤T

|Y (V )
(t;α)|

and is put

L = max{L1, L2, L3, L4, L5, L6} <
3

h
,
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then

|Wn+1| ≤ (1 +
2hL

3− hL
)|Wn−1|+ (

4hL

3− hL
)|Wn|+ (

1

90− 30hL
h5M),

|Vn+1| ≤ (1 +
2hL

3− hL
)|Vn−1|+ (

4hL

3− hL
)|Vn|+ (

1

90− 30hL
h5M)

are resulted, where |Un| = |Wn| + |Vn| then by Lemma 4.1 and w0 = v0 = w1 =
v1 = 0:

|Un| ≤
( 4hL
3−hL )n−1−1

4hL
3−hL

× ( 1
90−30hLh

5(M +M)) + {δ1( 4hL
3−hL )n−4 + δ2( 4hL

3−hL )n−5 + ...

+δm( 4hL
3−hL )+1}(1+ 2hL

3−hL )2( 1
90−30hLh

5(M+M))+{ξ1( 4hL
3−hL )n−6+ξ2( 4hL

3−hL )n−7+...

+ξr(
4hL

3−hL )+1}(1+ 2hL
3−hL )3( 1

90−30hLh
5(M+M))+{λ1( 4hL

3−hL )n−8+λ2( 4hL
3−hL )n−9+...

+ λp(
4hL

3−hL ) + 1}(1 + 2hL
3−hL )4( 1

90−30hLh
5(M +M)) + ...

are obtained. If h→ 0 then Wn → 0, Vn → 0 which concludes the proof. �

Remark 4.1. Above theorem results that convergence order is O(h4).

Theorem 4.2. For arbitrary fixed α : 0 ≤ α ≤ 1, the Adams-Bashforth of fourth
order approximates of Eq.(3.9) converge to the exact solution Y (t;α), Y (t;α), for
Y , Y εC5[t0, T ].

Proof. Proof. Similar to Theorem 4.1. �

Remark 4.2. It is easy to show that convergence order of Adams-Bashforth of fourth
order is O(h4).

Theorem 4.3. Adams-Bashforth of fourth order is stable.

Proof. For Adams-Bashforth of fourth order exist only one characteristic polyno-
mial P (λ) = λ4−1 and it is clear that satisfies the root condition then by Theorem
2.1, the Adams-Bashforth of fourth order is stable. �

Theorem 4.4. Milne-Simpson of fourth order is stable.

Proof. Similar to Theorem 4.3. �

The reason of choosing the Adams-Bashforth of fourth order and Milne-Simpson
of fourth order as a predictor-corrector technique is that both of them are stable.

5. Numerical Examples

Example 5.1. Consider the initial value problem
ỹ′(t) = −ỹ(t), 0 ≤ t ≤ 1
ỹ(0) = (0.96 + 0.04α, 1.01− 0.01α)
ỹ(0.01) = (0.9504 + 0.0396α, 1− 0.0099α)
ỹ(0.02) = (0.9410 + 0.0392α, 0.99− 0.0098α)
ỹ(0.03) = (0.9316 + 0.0388α, 0.9801− 0.0097α)
The exact solution at t = 0.1 is given by

Y (0.1, α) = ((0.96 + 0.04α)e−0.1, (1.01− 0.01α)e−0.1),

The results of Example 5.1 are shown in Table 1 and 2 by using the predictor-
corrector method. In Figure 1, comparison between the exact solution, Adams PC
Method solution and Milne’s PC method solution of Example 5.1 is presented.
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Example 5.2. Consider a simple RL circuit (The ’RL-circuit’ is an abbreviation
of Resistance-Inductance circuit). The ordinary differential equation corresponding
to this electrical circuit is i′(t) = −RL i(t) + v(t), t0 ≤ t0 + a, subject to the initial

condition i(t0) = i0, where R is the circuit resistance, L is the coefficient corre-
sponding to the solenoid, and v is the voltage function. Environmental conditions,
in accuracy in element modeling, electrical noise, leakage,and other parameters
cause uncertainty in the aforementioned equation considering it instead as a fuzzy
initial value problem yields more realistic results. This innovation helps to detect
unknown conditions in circuit analysis [37],[38]. Consider an electrical RL circuit
with an AC source: i′(t) = −RL i(t) + v(t), 0 ≤ t ≤ 1
subject to the uncertain initial condition i(0) = u.
Suppose that R = 1 Ohm, L = 1 Henry,

v(t) = sin(t)

and

u(s) =

{ 25s− 24, 0.96 ≤ s < 1,
−100s+ 101, 1 ≤ s ≤ 1.01,

0,
(5.1)

Thus, the initial value problem has

ĩ′(t) = −ĩ(t) + sin(t)

subject to the initial conditions
ĩ(0) = (0.96 + 0.04α, 1.01− 0.01α)

ĩ(0.01) = (0.9505 + 0.0396α, 1− 0.0099α)

ĩ(0.02) = (0.9412 + 0.0392α, 0.9902− 0.0098α)

ĩ(0.03) = (0.9321 + 0.0388α, 0.9806− 0.0097α)
The exact solution at t = 0.1 is given by

I(0.1, α) = (
sin(0.1)− cos(0.1)

2
+

1

2
e−t + e−tu)

where

[u]α = [
24

25
+

1

25
α,

101

100
− 1

100
α]

The results of Example 5.2 are shown in Table 3 and 4 by using the predictor-
corrector method. In Figure 2, comparison between the exact solution, Adams PC
Method solution and Milne’s PC method solution of Example 5.2 is presented.
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Table 1. By using the predictor-corrector method with N = 10
the following results are obtained for Example 5.1.

α Y (Exact) y(Adams) y(Milne) y(Adams Error) y (Milne Error)

0 0.8686439 0.8689297 0.8686356 0.0002857 0.0000082
0.1 0.8722632 0.8725204 0.8722558 0.0002572 0.0000074
0.2 0.8758836 0.8761112 0.8758760 0.0002286 0.0000065
0.3 0.8795019 0.8797020 0.8794962 0.0002000 0.0000057
0.4 0.8831213 0.8832927 0.8831163 0.0001714 0.0000049
0.5 0.8867406 0.8868835 0.8867365 0.0001428 0.0000041
0.6 0.8903600 0.8904743 0.8903567 0.0001143 0.0000032
0.7 0.8939793 0.8940651 0.8939769 0.0000857 0.0000024
0.8 0.8975987 0.8976558 0.8975970 0.0000571 0.0000016
0.9 0.9012180 0.9012466 0.9012172 0.0000285 0.0000008
1 0.9048374 0.9048374 0.9048374 0.0000000 0.0000000

Table 2. By using the predictor-corrector method with N = 10
the following results are obtained for Example 5.1.

α (Exact) y(Adams) y(Milne) y(Adams Error) y(Milne Error)

0 0.9138857 0.9136000 0.9138940 0.0002857 0.0000082
0.1 0.9129809 0.9127237 0.9129883 0.0002572 0.0000074
0.2 0.9120761 0.9118474 0.9120827 0.0002286 0.0000065
0.3 0.9111712 0.9109712 0.9117180 0.0002000 0.0000052
0.4 0.9102664 0.9100949 0.9102713 0.0001714 0.0000049
0.5 0.9093616 0.9092187 0.9093657 0.0001428 0.0000041
0.6 0.9084567 0.9083424 0.9084600 0.0001143 0.0000032
0.7 0.9075519 0.9074661 0.9075543 0.0000857 0.0000024
0.8 0.9066470 0.9065899 0.9066487 0.0000571 0.0000016
0.9 0.9057422 0.9057136 0.9057430 0.0000285 0.0000008
1 0.9048374 0.9048374 0.9048374 0.0000000 0.0000000

Table 3. By using the predictor-corrector method with N = 10
the following results are obtained for Example 5.2.

α I(Exact) i(Adams) i(Milne) i(Adams Error) i(Milne Error)
0 0.8734772 0.8737630 0.87346902 0.0002857 0.0000082

0.1 0.8770966 0.8773538 0.87708919 0.0002572 0.0000074
0.2 0.8807159 0.8809445 0.88070937 0.0002286 0.0000065
0.3 0.8843353 0.8845353 0.88432954 0.0002000 0.0000057
0.4 0.8879546 0.8881261 0.88794971 0.0001714 0.0000049
0.5 0.8915740 0.8917169 0.89156988 0.0001428 0.0000041
0.6 0.8951933 0.8953076 0.89519006 0.0001143 0.0000032
0.7 0.8988127 0.8988984 0.89881023 0.0000857 0.0000024
0.8 0.9024320 0.9024892 0.90243040 0.0000571 0.0000016
0.9 0.9060514 0.9060799 0.90605058 0.0000285 0.0000008
1 0.9096707 0.9096707 0.90967075 0.0000000 0.0000000
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Table 4. By using the predictor-corrector method with N = 10
the following results are obtained for Example 5.2.

α I(Exact) i(Adams) i(Milne) i(Adams Error) i(Milne Error)
0 0.9187191 0.9184333 0.9187273 0.0002857 0.0000082

0.1 0.9178142 0.9175570 0.9178216 0.0002572 0.0000074
0.2 0.9169094 0.9166808 0.9169160 0.0002286 0.0000065
0.3 0.9160046 0.9158045 0.9160103 0.0002000 0.0000057
0.4 0.9150997 0.9149283 0.9151047 0.0001714 0.0000049
0.5 0.9141949 0.9140520 0.9141990 0.0001428 0.0000041
0.6 0.9132901 0.9131757 0.9132933 0.0001143 0.0000032
0.7 0.9123852 0.9122995 0.9123877 0.0000857 0.0000024
0.8 0.9114804 0.9114232 0.9114820 0.0000571 0.0000016
0.9 0.9105755 0.9105470 0.9105764 0.0000285 0.0000008
1 0.9096707 0.9096707 0.9096707 0.0000000 0.0000000

Figure 1. Comparison between the Exact (-), Adams PC
Method(–) and Milne’s PC method(...) of Example 5.1.
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Figure 2. Comparison between the Exact (-), Adams PC
Method(–) and Milne’s PC method(...) of Example 5.2.

6. Conclusions

In this paper, the Milne’s predictor corrector method is investigated for solving
of fuzzy differential equation. A consistency order with two examples is proved to
show the efficiency the predictor-corrector method.
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