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Abstract: With the increasing concerns over carbon emissions and environmental sustainability, the share of renewable energy 
sources in power systems has been steadily rising. These systems, which generate variable power depending on meteorological 
conditions, cause fluctuations in the energy supply-demand balance. Such fluctuations can only be effectively managed through 
smart grid infrastructure. While smart grids necessitate the integration of communication and information technologies, they 
also transform power systems into cyber-physical structures, introducing new cybersecurity risks. The integration of distributed 
generation sources into power systems brings additional cybersecurity threats. Among these threats, false data injection attacks 
(FDIA) pose significant risks by misleading state estimators (SE), potentially creating severe security vulnerabilities and 
operational risks. In this study, cyberattacks aiming to manipulate the energy supplied to the grid from photovoltaic (PV) panels 
and to deceive smartmeter data were analyzed using machine learning-based binary classification methods. The variations in 
generation levels under low, medium, and high-intensity cyberattack scenarios were modeled using widely adopted algorithms 
in the literature, including Random Forest Classifier (RFC), XGBoost Classifier (XGBC), and Gradient Boosting Classifier 
(GBC). The models achieved high accuracy rates, with 92.33% obtained from XGBC in the low-severity attack scenario and 
68.59% from GBC in the high-severity attack scenario. 
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Akıllı Şebeke Altyapısında Fotovoltaik Sistemlere Yönelik Siber Saldırıların Makine Öğrenmesi 
Yöntemleriyle Tespiti 

 
Öz: Günümüzde karbon emisyonlarının ve çevresel kaygıların artmasıyla birlikte, yenilenebilir enerji kaynaklarının güç 
sistemlerindeki payı da giderek artmaktadır. Meteorolojik koşullara bağlı olarak değişken güç üretimi gerçekleştiren bu 
sistemlerin enerji arz-talep dengesinde oluşturduğu dalgalanmalar, ancak akıllı şebeke altyapısıyla etkin bir şekilde 
yönetilebilmektedir. Akıllı şebekeler, haberleşme ve bilgi teknolojilerinin entegrasyonunu zorunlu kılarken, güç sistemlerini 
siber-fiziksel yapılara dönüştürerek yeni siber güvenlik risklerini de beraberinde getirmektedir. Dağıtık üretim kaynaklarının 
güç sistemine entegrasyonu, yeni siber güvenlik tehditlerini de beraberinde getirmektedir. Bu tehditlerin başında gelen sahte 
veri enjeksiyon saldırıları (False Data Injection Attacks- FDIA), durum tahminleyicilerini (State Estimators- SE) yanıltarak 
sistemde ciddi güvenlik açıklarına ve operasyonel risklere yol açabilmektedir.  Bu çalışmada, fotovoltaik (PV) panellerden 
şebekeye aktarılan enerjinin manipüle edilmesi ve akıllı sayaç verilerinin yanıltılması yoluyla gerçekleştirilen siber saldırılar, 
makine öğrenmesi tabanlı ikili sınıflandırma yöntemleriyle analiz edilmiştir. Düşük, orta ve yüksek şiddetli siber saldırı 
senaryolarına göre değişen üretim miktarları, literatürde yaygın olarak kullanılan Rastegele Orman Algoritması (Random 
Forest Classifier- RFC), Aşırı Gradyan Artırma Algoritması (eXtreme Gradient Boosting Algorithm- XGBC) ve Gradyan 
Artırma Algoritması (Gradient Boosting Classifier- GBC) ile modellenmiştir ve yüksek doğruluk oranları elde edilmiştir. 
Modeller, düşük şiddetteki saldırı senaryosunda XGBC’den 92,33%, yüksek şiddetteki saldırı senaryosunda ise GBC’den 
68,59% doğruluk oranı elde ederek yüksek doğruluk oranlarına ulaşmıştır. 
 
Anahtar kelimeler: Siber saldırı, dağıtık üretim kaynakları, makine öğrenmesi, PV üretimi, akıllı şebekeler. 
 
1. Introduction 
 
1.1. Motivation and background 
 

Today’s energy systems are undergoing significant transformations due to the rapidly increasing integration 
of renewable energy sources. In particular, photovoltaic (PV) systems play a crucial role in reducing carbon 
emissions and promoting environmental sustainability. As of 2022, the global installed capacity of PV systems 
reached approximately 1070 GW, significantly contributing to reducing dependence on fossil fuels for energy 
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generation [1]. However, the increasing digitalization and integration of PV systems into smart grids have 
introduced new cybersecurity threats. 

Smart grids aim to make energy generation and distribution processes more efficient, reliable, and sustainable 
by utilizing computer-based automation and remote control technologies [2]. However, as these systems become 
increasingly dependent on internet-based communication technologies, their vulnerability to cyber-attacks also 
grows. Smart grids face various cyber threats, such as False Data Injection Attacks (FDIA), Denial of Service 
(DoS), and Replay Attacks [3]. 

PV farms, in particular, continuously exchange data with the grid through smart inverters, sensors, and 
communication hardware. This situation creates new attack surfaces for malicious actors, threatening the stability 
of energy systems [4]. Cyber-attacks can lead to severe performance degradation by manipulating energy 
management strategies and disabling control mechanisms [3]. 

FDIAs are classified as attacks targeting data integrity. Although the destructive potential of such attacks 
largely depends on the attacker’s knowledge of the power grid topology, real-world examples have repeatedly 
demonstrated their damaging impact [5]. For instance, the 2015 cyber-attack on Ukraine’s power grid affected 
approximately 200,000 customers and caused power outages lasting up to six hours [6]. Similarly, in 2019, an 
attack targeting the control centers of hydroelectric plants in Venezuela resulted in blackouts across 18 states [7]. 
In 2010, an attack on Iran’s nuclear facilities caused disruptions lasting several hours [8], and the Davis-Besse 
nuclear power plant in the USA experienced a similar cyber-attack in 2003 [9]. On the other hand, existing 
algorithms for bad data detection are insufficient for identifying advanced and well-structured FDIA attacks [10]. 
In this context, data-driven approaches based on machine learning [11-13] have the potential to detect cyber-
attacks by directly learning from sensor and meter measurements [14]. However, effectively training these models 
requires large-scale datasets. 
 
1.2. Literature review 

 
Recent academic studies reveal an increasing use of machine learning methods for detecting cyber-attacks in 

energy systems. The preference for these methods primarily stems from their ability to directly learn from datasets 
without requiring explicit mathematical models. For example, in reference [15], a PV system integrated with a 
battery energy storage system was modeled using MATLAB, and low-magnitude FDIA and DoS attacks were 
simulated. These attacks were successfully detected using ensemble learning techniques such as Adaptive Boosting 
(AdaBoost) and Random Forest algorithms with high accuracy rates. In reference [16], historical generation data 
from a real PV farm in Florida, USA, with a capacity of 1.4 MW, were utilized. Various cyber-attack scenarios 
created in this study were detected using Support Vector Machines and Recurrent Neural Networks. Reference 
[17] implemented an unsupervised learning-based recurrent neural network for binary classification to detect 
cyber-attacks on simulated data from the IEEE 30-bus system. 

Considering increasing data sharing and security concerns, reference [18] proposed a federated learning-
based approach to detect cyber-attacks targeting power electronics converters in PV farms. In this study, real 
system data were modeled using OPAL_RT software, and different sensor manipulation scenarios were evaluated. 
Moradpour and Delkhosh [19] analyzed random ramp attacks on real production data, incorporating weather 
impacts using symbolic regression methods based on genetic programming and a hybrid probabilistic approach. It 
is known that manipulating converter input values negatively affects power quality and can lead to harmonic 
disturbances. In reference [20], a PV system modeled with MATLAB Simulink analyzed the effects of harmonics 
resulting from the manipulation of converter input values, proposing a detection approach using deep learning-
based evolutionary neural networks with transfer learning. 

Zhang and Li [21] analyzed attack scenarios where sensor data at the inverter level were manipulated, using 
Long Short-Term Memory (LSTM) models. Similarly, reference [22] employed data-driven methods based on 
micro-phasor measurement units to detect cyber-attacks targeting DC/DC and DC/AC converters in a solar energy 
farm modeled with MATLAB Simulink. In reference [23], deep sequential learning models classified multiple 
cyber-attacks on converters using data obtained only from a single voltage and current sensor at a common 
coupling point. This study used multi-layer LSTM networks to analyze the temporal structure of data streams and 
provided comparative results with various machine learning models. Additionally, reference [24] developed a 
detection mechanism using convolutional neural networks supported by micro-phasor measurement units and 
sensor data, testing it across different IEEE bus systems. 

Overall, these studies indicate that data-driven machine learning methods effectively detect various cyber-
attacks on PV systems. However, considering the dynamic nature of such attacks, it is evident that the adaptive 
capabilities of current methods need further improvement. 



Usame SAKKAR, Ayşe Kübra TATAR 

447 
 

1.3. Contributions and organization of the study 
 

This study investigates the effectiveness of machine learning methods in detecting cyber-attacks targeting PV 
systems integrated into smart grid infrastructure. Various attack intensities were modeled by creating scenarios 
where power output data from PV panels and smart meter measurements were manipulated through FDIAs. 
Commonly used algorithms in the literature, namely Random Forest Classifier (RFC), eXtreme Gradient Boosting 
Algorithm (XGBC), and Gradient Boosting Classifier (GBC), were comparatively evaluated using datasets 
obtained under different attack scenarios. This study contributes significantly to the literature by demonstrating 
the effectiveness of data-driven approaches in securing renewable energy systems. 

The remainder of this paper is organized as follows: The Section II provides detailed explanations of the 
methodology and modeling approach used. In the third section, modeling results and performance analyses are 
presented. Finally, the Section IV discusses the findings, summarizes the conclusions, and provides suggestions 
for future research. 
 
2. Methodology 
 
 

 

Figure 1. Illustration of a neighborhood-scale smart area comprising residential end-users. 
 

Within the scope of this study, the PV generation profiles of 150 residential customers are analyzed across 
three distinct rooftop categories, small, medium, and large, corresponding to roof areas randomly selected from 
the ranges [60, 70, 80, 90], [100, 110, 120], and [130, 140, 150] m², respectively. For each rooftop category, the 
PV panels are arranged in carefully designed series-parallel configurations that take into account the total available 
rooftop area per customer. Specifically, rooftops in the small category (60–90 m²) employ 6 parallel groups with 
2 panels connected in series, while medium rooftops (90–120 m²) use 6 parallel groups with 3 panels in series. 
Large rooftops (120–150 m²) are configured with 6 parallel groups and 4 panels in series. This ensures consistency 
in the electrical characteristics across installations and reflects realistic residential PV layouts. 

 To synthetically generate the dataset, historical solar irradiance and temperature measurements recorded 
hourly from May 1, 2024, to May 31, 2024, were obtained from the NASA Prediction of Worldwide Energy 
Resources database was utilized [25]. These meteorological inputs, combined with the electrical characteristics of 
10 different PV panel types used across all residential customers and provided in Table 1, are substituted into 
Equations (1)–(5) to compute the PV panel’s power output [26], which is later used as the target variable in the 
problem. 

The output power of each PV panel type (f) is calculated for each given time point (t) and geographical 
location (g). Equation (1) is used to calculate the PV cell temperature 𝑇!,#,$%&'' 	[°C], based on the ambient temperature 
𝑇#,$( [°C], solar irradiance 𝑆#,$)* 	[𝑘𝑊/𝑚²], and the nominal operating cell temperature 𝑇+,-.,$	[°C]; the constants 20 
and 0.8 represent the standard ambient temperature and the reference solar irradiance used to normalize the cell 
temperature calculation, respectively. 
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Table 1. Electrical characteristics of PV panels utilized in the study [27-29]. 
 

Model 𝑷𝒏𝒐𝒎
(W) 

NOCT 
(𝑪°) 

𝑽𝒎𝒑 
(𝑽) 

𝑰𝒎𝒑 
(𝑨) 

𝑽𝑶𝑪 
(𝑽) 

𝑰	𝑺𝑪 
(𝑨) 

𝑲	𝑽	
(%°𝑪	) 

𝑲	𝑰 
(%°𝑪	) 

Area 
(𝒎𝟐) 

Eff.
(%) 

MAXEON-SPR-3-400 400 45 65.8 6.08 75.6 6.58 -0.236 0.058 1.76 22.6 
MAXEON-SPR-3-395 395 45 65.1 6.07 75.4 6.56 -0.236 0.058 1.76 22.3 
MAXEON-SPR-3-390 390 45 64.5 6.05 75.3 6.55 -0.236 0.058 1.76 22.1 
CanadianSolar-CS3L-325P 325 42 32.0 10.16 39.0 10.74 -0.28 0.05 1.85 17.6 
CanadianSolar-CS3L-340P 340 42 32.6 10.43 39.6 10.98 -0.28 0.05 1.85 18.4 
CanadianSolar-CS3L-345P 345 42 32.8 10.52 39.8 11.06 -0.28 0.05 1.85 18.7 
JA Solar-JAM72S30-530 530 45 41.31 12.83 49.30 13.72 -0.275 0.045 2.58 20.5 
JA Solar-JAM72S30-540 540 45 41.64 12.97 49.60 13.86 -0.275 0.045 2.58 20.9 
JA Solar-JAM72S30-545  545 45 41.80 13.04 49.75 13.93 -0.275 0.045 2.58 21.1 
JA Solar-JAM72S30-550 550 45 41.96 13.11 49.90 14.00 -0.275 0.045 2.58 21.3 

 
The open-circuit voltage 𝑉!,#,$,- 	[V] and the short-circuit current  𝐼!,#,$	3- [𝐴] are determined by considering both 

their reference values at standard test conditions and their temperature dependence. Specifically, the open-circuit 
voltage is calculated using Equation (2) as a function of the reference voltage 𝑉$,- and the voltage temperature 
coefficient 𝐾$4[%/°C], adjusted for the difference between the actual cell temperature and the standard 25°C. 
Similarly, the short-circuit current in Equation (3) depends on the solar irradiance 𝑆#,$)* , the reference short-circuit 
current 𝐼$3-, and the current temperature coefficient 𝐾$)[%/°C], again adjusted relative to 25°C. 

After calculating the fill factor 𝐹𝐹$ using Equation (4), defined as the ratio of the product of the voltage and 
current at maximum power point (𝐼$566 and  𝑉$566) to the product of open-circuit voltage and short-circuit current, 
the maximum power output of the PV cells 𝑃!,#,$64 	[W]	 is determined in Equation (5) by multiplying the fill factor, 
open-circuit voltage, and short-circuit current. 
 

𝑇!,#,$%&'' 	= 	𝑇#,$( 	+	𝑆#,$)* ×	
𝑇+,-.,$ 	− 20

0.8	  
(1) 

 

𝑉!,#,$,- 	= 	𝑉$,- 	× 	>1	 +	𝐾$4 	×
𝑇!,#,$%&'' 	− 	25

100 A 
(2) 

 

𝐼!,#,$3- 	= 	 𝑆#,$)* 	× 	 𝐼$3- ×	>1	 +	𝐾$) 	×
𝑇!,#,$%&'' 	− 	25

100 A 
(3) 

 

𝐹𝐹$ 	=
𝑉$566 	× 	 𝐼$566

𝑉$,- 	× 	 𝐼$3-
 

(4) 

 
𝑃!,#,$64 	= 	𝐹𝐹$ 	× 	𝑉!,#,$,- 	× 	 𝐼!,#,$3-  (5) 

 
During the preprocessing phase, all categorical variables were converted into numerical form as an essential 

initial step. Subsequently, data points with zero solar irradiance were removed to minimize potential bias and 
ensure that only periods with active solar generation were considered during the training process. In the same 
context, historical temperature and irradiance data were considered resistant to manipulation and were treated as 
genuine by machine learning models. However, as depicted in Figure 1, PV generation data for residential users 
were assumed to be vulnerable to cyber-attacks. Hence, temperature and irradiance served as independent 
variables, while PV output was the target variable in this binary classification machine learning problem. To ensure 
transparency, Table 2 presents a detailed description of the dataset features. 

To manipulate PV generation data, three cyberattack scenarios with varying intensities and characteristics 
were developed to simulate realistic actions of malicious customers who manipulate the smart meter data attached 
to their PV system to falsely overstate their energy injection into the power grid. The attack scenarios are defined 
as follows: 
• Constant Increment Attack (Low Severity) 
• Systematic Increment Attack (Medium Severity)  
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• Random Increment Attack (High Severity) 
 

Table 2. Description of dataset variables. 
 

Variable Name Role Type Description 
Customer ID Metadata Categorical Unique identifier assigned to each of the 150 residential customers. 

Datetime Feature Datetime The date and hour when the measurement was recorded. 

Solar Irradiance Feature Numeric (float) Amount of solar power per unit area (shortwave radiation) reaching 
the surface, recorded at hourly intervals. 

Air Temperature Feature Numeric (float) Ambient air temperature measured 2 meters above ground, recorded 
at hourly intervals. 

Panel ID Feature Categorical Panel ID ranging from 1 to 6, corresponding to six different types of 
PV panels distributed across 150 residential customers. 

Panel Size Feature Numeric (float) Nominal capacity or rated power for each type of the installed PV 
panels obtained from Table 1. 

Number of panels Feature  Numeric (Int) Number of rooftop-installed PV panels. 

PV Output Feature Numeric (float) Calculated photovoltaic power generated by the installed PV panels 
for each recorded hour. 

Roof Area Feature Numeric (float) Total rooftop area available for PV panel installation. 

Attack Flag Target Binary (0/1) Binary label indicating whether the PV output is normal (0) or has 
been manipulated/attacked (1). 

 
Table 3. Functions utilized to model various cyber-attack scenarios. 

 
Attack Type Attack Equation Nature Severity 

Constant Increment 
Attack 

𝑓,-𝑃𝑉-,/	0 = 	𝑃𝑉-,/ 	+ 	𝛾 · 	𝑃𝑉5,								𝑃𝑉5 → 𝑀𝑒𝑑𝑖𝑎𝑛	𝑣𝑎𝑙𝑢𝑒	  Low 

Systematic Increment 
Attack 

𝑓0-𝑃𝑉-,/0 = 	𝑃𝑉-,/ 	+ 	𝛼-,/ 	 · 	𝑃𝑉B , 𝛼-,/ ∼ 	𝑈(𝛼123, 𝛼145)  Medium 

Random Increment 
Attack 

𝑓6-𝑃𝑉-,/0 = 	𝑃𝑉-,/ 	 · 	 -1	 + 	𝛽-,/0, 𝛽-,/ 	 ∼ 	𝑈(	𝛽123, 𝛽145)  High 

 
As presented in Table 3, a total of three scenarios with varying severity and nature are analyzed, with each 

attack altering half of the data points to maintain balanced classes. Although all attacks are designed to apply a 
constant magnitude within each scenario, they also exhibit a degree of time dependency in how specific blocks of 
data, corresponding to particular hours in the dataset’s hourly resolution, are selected for manipulation. This is 
visually described in the Nature column of Table 3. In this visual representation, attacked points are represented 
in red, and genuine points are uncolored, with each data point corresponding to a specific hour. Additionally, attack 
magnitudes are randomly chosen from a carefully predefined range and are added to the original data according to 
the nature of the attack. Randomization in the temporal pattern of attacked blocks or points increases proportionally 
with attack severity, reflecting the attack’s nature. Meanwhile, the magnitude of the added value decreases as 
severity increases, ensuring that high-severity attacks result in only minimal data disturbances. 

In the first scenario, Constant Increment Attack (low severity), a value equal to 0.1 times the median is added 
to the original data points, targeting only the hours that correspond to even-indexed data points. In the second 
scenario (medium severity), attacks are applied repeatedly in blocks of equal length, each consisting of two hours 
of readings, adding a randomly selected value from a uniform distribution ranging between 0.075 and 0.115 times 
the median to the genuine smart meter readings. Finally, in the high-severity attack scenario, randomly selected 
blocks of data points, with randomly determined lengths, are manipulated by adding a value drawn uniformly from 
the range 0.05 and 0.09 times the median. 

Python’s scikit-learn library is used to develop the machine learning-based attack detection systems. The 
dataset is split into two sets: 75% for training, and 25% for testing. Out of a total of 66,137 data points, 49,602 are 
utilized for training, and 16,535 are reserved for testing. 

RFC, XGBC, and GBC were selected as the primary machine learning algorithms employed in this study. 
These algorithms rely on ensemble learning methods, which are known for their high performance and reliable 
predictive capabilities in classification problems. Ensemble learning combines multiple base estimators to form a 
single model, resulting in more generalizable and robust predictions.  
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RFC is a robust ensemble learning method that prevents overfitting by utilizing multiple decision trees trained 
on various subsets of data and combining the predictions from all trees to make a final classification decision [30]. 
XGBC and GBC are boosting-based methods that use an iterative approach. Initially, a single decision tree is 
created, and subsequent trees are iteratively added, each trained to minimize the residuals of predictions made in 
the previous step. This process continuously enhances model performance, especially for classification problems 
[31]. To ensure optimal performance, hyperparameter tuning for all models was performed using the 
GridSearchCV method, with the hyperparameter grid for each classifier thoroughly presented in Table 4. 
 

Table 4. Hyperparameter search grids for all classifiers. 
 

Model Name Hyperparameter Type Search Space 

 
RandomForestClassifier 

n_estimators np.random.randint(100, 300, size=5) 
max_depth [None, 10, 15, 20, 25] 

min_samples_split np.random.randint(2, 30, size=5) 
min_samples_leaf np.random.randint(1, 10, size=5) 

max_features [‘sqrt’, ‘log2’, 0.3, 0.5, 0.7] 
max_samples [0.5, 0.75, 1.0] 

XGBClassifier 

n_estimators np.array([100, 250, 400]) 
max_depth np.random.randint(3, 15, size=5) 

learning_rate np.random.uniform(0.001, 0.3, size=5), 
Gamma [0, 0.5, 1.0, 2.0] 

reg_lambda [0, 0.1, 1.0, 5.0, 20.0] 
subsample np.random.uniform(0.5, 1.0, size=5) 

colsample_bytree np.random.uniform(0.5, 1.0, size=5) 

GradientBoostingClassifier 

n_estimators [50, 100, 200] 
learning_rate [0.01, 0.1, 0.5] 
max_depth [3, 5, 7] 
subsample [0.8, 0.9, 1.0] 

min_samples_split [2, 5, 10] 
min_samples_leaf [1, 2, 4] 

 
4. Test and Results 
 

In this study, three different cyber-attack scenarios targeting PV systems—low-severity, medium-severity, 
and high-severity—are examined. The performance of machine learning models is comperatively analyzed based 
on the nature and severity of each scenario. For a comprehensive evaluation, the Receiver Operating Characteristic 
(ROC) curve is used, and the optimal classification threshold is determined using Youden’s J statistic. 
Additionally, the metrics of accuracy, precision, recall, and F1 score metrics are employed. All evaluations are 
conducted using 5-fold cross-validation [32]. The mathematical expressions of the evaluation metrics used are 
presented in Table 5. To obtain reliable results regarding model performance, a comprehensive testing process is 
carried out using multiple evaluation criteria. The results obtained from the evaluation metrics for all designed 
attack scenarios are presented in tables in a structured and sequential manner. 

 
Table 5. Mathematpcal formulatpons of applped evaluatpon metrpcs. 

 
Evaluation metric Equation 

Accuracy 𝑡7 +	𝑡8
𝑡7 		+	𝑓7 +	𝑡8 	+	𝑓8

 

Precision 𝑡7
𝑡7 		+	𝑓7

 

F1 Score 2	 × 𝑝 × 𝑟
𝑝	 + 	𝑟  

Recall 𝑡7
𝑡7 		+	𝑡8
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Table 6. Evaluation metrics for the first attack scenario. 
 

Model Accuracy Precision Recall F1 Score 
RFC 0.906133 0.906631 0.906133 0.906104 

XGBC 0.923330 0.923482 0.923330 0.923323 
GBC 0.882202 0.882544 0.882202   0.882176 

 
The performance evaluation results for the low-severity (Constant Increment) attack scenario are presented 

in Table 6. In this scenario, the XGBC model achieved the highest performance with an accuracy rate of 92.33%. 
Moreover, as illustrated in the ROC curve in Figure 2.a), both the XGBC and GBC models demonstrated indentical 
AUC scores of 0.94, while the RFC model followed with a lower AUC of 0.90. 
 

Table 7. Evaluation metrics for the second attack scenario. 
 

Model Accuracy Precision Recall F1 Score 
RFC 0.789283 0.789461 0.789283   0.789250 

XGBC 0.804564 0.804630 0.804564 0.804554 
GBC 0.802810 0.802958  0.802810   0.802786 

 

  
a) b) 

 
c) 

 
Figure 2. Results obtained from the ROC curve: a) Results derived for the first attack scenario; b) Results 

derived for the second attack scenario; c) Results derived for the third attack scenario. 
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Performance evaluation results for the medium-severity (Systematic Increment) attack scenario are provided 
in Table 7. In this scenario, XGBC and GBC models delivered the best performances, demonstrating superior 
effectiveness against systematic but partially predictable data manipulations. Upon examining the ROC curve 
presented in Figure 2.b), it was observed that the XGBC and GBC models achieved the same high AUC values, 
whereas the performance of the RFC model was notably lower. 

 
Table 8. Evaluation metrics for the third attack scenario. 

 
Model Accuracy Precision Recall F1 Score 
RFC 0.659066 0.659066 0.659066 0.659066 

XGBC 0.673602 0.673609   0.673602   0.673598 
GBC 0.685859 0.685861   0.685859 0.685859 

 
The results for the high-severity (Random Increment) attack scenario are presented in Table 8. In this 

randomly and intensively manipulated data scenario, all models exhibited relatively low performance levels; 
however, GBC model still delivered the best performance. This outcome demonstrates that. The XGBC model 
ranked second, while the RFC model trailed with the lowest performance. As clearly seen from the ROC curve in 
Figure 2.c), the performance of all models decreased significantly under this attack scenario. 

Boosting algorithm models consistently demonstrated superior performance in all attack scenarios, 
outperforming tree-based RFC model. This demonstrastes that Boosting algorithms maintain stronger 
generalization capability when dealing with highly random attacks. In essence, this study highlights the potential 
of machine learning-based approaches for detecting cyber-attacks of varying intensities and emphasizes the critical 
importance of selecting appropriate models, particularly in highly complex scenarios. 
 
4. Conclusions, Discussions and Future Work 
 

This study investigated the effectiveness of machine learning-based methods for detecting low, medium, and 
high-severity cyber-attacks targeting smart meter readings of PV systems integrated into smart grids. RFC, XGBC, 
and GBC algorithms were selected to analyze attack scenarios categorized as constant increment, systematic 
increment, and random increment attacks. 

Analyses conducted on large-scale datasets generated using real-time meteorological data demonstrated that 
model performance in attack detection deteriorates as the intensity and randomness of attacks increase. 
Specifically, a degradation of up to 65.88% for the RFC was observed in the high-severity attack scenario. This 
highlights both model limitations and the unpredictability of attacks. In practical deployments, modern SCADA 
and DERMS systems integrate both signal-based and data-driven detection mechanisms that function 
collaboratively in a complementary manner. Data-driven approaches are particularly vital for detecting attacks that 
cause minimal signal disturbances but involve significant data manipulation, as seen in Constant Increment and 
Systematic Increment Attacks. In contrast, when the original data pattern is almost unchanged and no tangible 
harm is achievable unless attacks are repeated with high frequency—as in high-severity (random increment) attack 
scenario—the data-driven detection mechanism should be kept active as a backup, while the signal-based detection 
mechanism operates as the primary system. 

The proposed detection mechanism is particularly effective when attacks involve significant data 
manipulation are launched. It functions alongside other anomaly detection mechanisms already embedded in 
SCADA environments. Specifically, it can be integrated as a data driven monitoring layer by leveraging existing 
real-time data streams through standard protocols such as OPC UA or Modbus. The detection algorithm is 
performed on a systen with 4.60 GHz CPU and 32 GB RAM, showing relatively consistent runtimes across 
different models, with an average runtime of 223.68 seconds. 

For future studies, it is recommended to perform tests on real-time data streams, explore hybrid combinations 
of different machine learning models to further enhance performance, and evaluate data security for other 
distributed energy resources and electric vehicle charging stations integrated into smart grid infrastructures, in 
addition to PV systems. 
 
Acknowlegment 

A.K.E-T. contributed to the development of the concept, writing and editing of the manuscript. O.S. 
performed the simulation studies, interpretation of results and wrote. 

 



Usame SAKKAR, Ayşe Kübra TATAR 

453 
 

References 
 

[1] The International Renewable Energy Agency "IRENA", https://www.irena.org/Publications/2023/Jul/Renewableenergy-
statistics-2023. Erişim tarihi: “05.03.2025”. 

[2] Fang X, Misra S, Xue G, Yang D. Smart Grid — The New and Improved Power Grid: A Survey. IEEE Commun Surv 
Tut 2012; 14(4): 944-980. 

[3] Guo L, Zhang J, Ye J, Coshatt SJ, Song W. Data-Driven Cyber-Attack Detection for PV Farms via Time-Frequency 
Domain Features. IEEE T Smart Grid 2022; 13(2): 1582-1597. 

[4] Ye J, et al. A Review of Cyber–Physical Security for Photovoltaic Systems. IEEE J Em Sel Top P 2022; 10(4): 4879-
4901. 

[5] Nguyen T, Wang S, Alhazmi M, Nazemi M, Estebsari A, Dehghanian P. Electric Power Grid Resilience to Cyber 
Adversaries: State-of-the Art. IEEE Access 2020; 8: 87592-87608. 

[6] Eldahshan N, Asif M, Baajaj T, Shaaban MF, Osman AH, Tariq U. A new theft detection approach for cyberattacks in 
PV generation. 4th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE); 17-
19 March 2022; Moscow, Russian Federation. 1-6. 

[7] Dehghanian P, Zhang B, Dokic T, Kezunovic M. Predictive Risk Analytics for Weather-Resilient Operation of Electric 
Power Systems. IEEE T Sustain Energ 2019; 10(1): 3-15. 

[8] Wei F, Wan Z, He H. Cyber-attack Recovery Strategy for Smart Grid Based on Deep Reinforcement Learning. IEEE T 
Smart Grid 2020; 11(3): 2476-2486. 

[9] Haimes YY. On the Definition of Resilience in Systems. Risk Analysis: An International Journal 2009; 29(4): 498-501. 
[10] Liu Y, Ning P, Reiter MK. False data injection attacks against state estimation in electric power grids. ACM T Inform 

Syst Secur 2011; 14(1): 1-33. 
[11] Chaojun G, Jirutitijaroen P, Motani M. Detecting False Data Injection Attacks in AC State Estimation. IEEE T Smart Grid 

2015; 6(5): 2476-2483. 
[12] Ozay M, Esnaola I, Vural FTY, Kulkarni SR, Poor HV. Machine Learning Methods for Attack Detection in the Smart 

Grid. IEEE T Neur Net Lear Syst 2016; 27(8): 1773-1786. 
[13] Yu, J. J. Q., Hou, Y., & Li, V. O. K. Online False Data Injection Attack Detection with Wavelet Transform and Deep 

Neural Networks. IEEE T Ind Inform 2018; 14(7): 3271-3280. 
[14] Li F, Xie R, Wang Z, Guo L, Ye J, Ma P, Song WZ. Online Distributed IoT Security Monitoring with Multidimensional 

Streaming Big Data. IEEE Internet Things 2020; 7(5): 4387-4394. 
[15] Saiara SA, Ali MH. An ensemble learning based cyber attack detection technique for BESS integrated PV system. 

SoutheastCon; 15-24 March 2024; Atlanta, GA, USA. 392-397. 
[16] Riggs H, Tufail S, Khan M, Parvez I, Sarwat AI. Detection of false data injection of PV production. 2021 IEEE Green 

Technologies Conference (GreenTech); 7-9 April 2021; Denver, CO, USA. 7-12. 
[17] Ayad A, Farag HEZ, Youssef A, El-Saadany EF. Detection of false data injection attacks in smart grids using Recurrent 

Neural Networks. 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT); 19-22 
Feb. 2018; Washington, DC, USA. 1-5. 

[18] Zhao L, Li J, Li Q, Li F. A Federated Learning Framework for Detecting False Data Injection Attacks in Solar Farms. 
IEEE T Power Electr 2022; 37(3): 2496-2501. 

[19] Moradpour AM, Alizadeh MH, Delkhosh H. A new method based on symbolic regression to detect the probability of false 
data injection attacks on PV generation. 2023 13th Smart Grid Conference (SGC); 05-06 Dec. 2023; Tehran, Islamic 
Republic of Iran. 1-7. 

[20] Li Q, Zhang J, Ye J, Song W. Data-driven cyber-attack detection for photovoltaic systems: A transfer learning approach. 
2022 IEEE Applied Power Electronics Conference and Exposition (APEC); 20-25 March 2022; Houston, TX, USA. 1926-
1930. 

[21] Zhang J, Li Q, Ye J, Guo L. Cyber-physical security framework for Photovoltaic Farms. 2020 IEEE CyberPELS 
(CyberPELS); 13-13 Oct. 2020; Miami, FL, USA. 1-7. 

[22] Li Q, Li F, Zhang J, Ye J, Song W, Mantooth A. Data-driven cyberattack detection for photovoltaic (PV) systems through 
analyzing micro-PMU data. 2020 IEEE Energy Conversion Congress and Exposition (ECCE); 11-15 Oct. 2020; Detroit, 
MI, USA. 431-436. 

[23] Li F, Li Q, Zhang J, Kou J, Ye J, Song WZ, Mantooth HA. Detection and Diagnosis of Data Integrity Attacks in Solar 
Farms Based on Multilayer Long Short-Term Memory Network. IEEE T Power Electr 2021; 36(3): 2495-2498. 

[24] Zhang J, Guo L, Ye J, Giani A, Elasser A, Song W. Machine Learning-Based Cyber-Attack Detection in Photovoltaic 
Farms. IEEE Open J Power El 2023; 4: 658-673. 

[25] NASA Prediction Of Worldwide Energy Resources (POWER), http://www.ilo.org/global/topics/safety-and-
healthatwork/lang--en/index.htm. Accessed: “14.01.2025”. 

[26] Masters GM, Renewable and Efficient Electric Power Systems, Wiley Interscience, 2013; 2nd ed. Hoboken, NJ, USA. 
[27] Maxeon Solar Technologies, https://sunpower.global/au/sites/default/files/2022-03/sp_max3_112c_blk_410-

420_res_dc_ds_en_a4_544456.pdf. Accessed: “16.01.2025”. 
[28] Canadian Solar Power, https://www.canadiansolar.com/wp-content/uploads/2019/12/Canadian_Solar-Datasheet-

HiKu_CS3L-P_EN.pdf. Accessed: “16.01.2025”. 
[29] JA Solar, https://www.jasolar.com/uploadfile/2021/0706/20210706053524693.pdf. Accessed: “16.01.2025”. 



Detection of Cyberattacks on Photovoltaic Systems in Smart Grid Infrastructure Using Machine Learning Methods 

454 
 

[30] Parmar A, Katariya R, Patel V. A review on random forest: An ensemble classifier. International conference on intelligent 
data communication technologies and internet of things (ICICI); 07–08 Aug. 2018; Coimbatore, India. 758-763. 

[31] Scikit learn API, https://scikit-learn.org/stable/api/sklearn.ensemble.html/lang--en/index.htm. Accessed: “09.01.2025”. 
[32] Hossin M, Sulaiman M. A Review on Evaluation Metrics for Data Classification Evaluations. Int J Data Mın Model 2015; 

5(2): 01-11. 


