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Abstract: With the increasing concerns over carbon emissions and environmental sustainability, the share of renewable energy
sources in power systems has been steadily rising. These systems, which generate variable power depending on meteorological
conditions, cause fluctuations in the energy supply-demand balance. Such fluctuations can only be effectively managed through
smart grid infrastructure. While smart grids necessitate the integration of communication and information technologies, they
also transform power systems into cyber-physical structures, introducing new cybersecurity risks. The integration of distributed
generation sources into power systems brings additional cybersecurity threats. Among these threats, false data injection attacks
(FDIA) pose significant risks by misleading state estimators (SE), potentially creating severe security vulnerabilities and
operational risks. In this study, cyberattacks aiming to manipulate the energy supplied to the grid from photovoltaic (PV) panels
and to deceive smartmeter data were analyzed using machine learning-based binary classification methods. The variations in
generation levels under low, medium, and high-intensity cyberattack scenarios were modeled using widely adopted algorithms
in the literature, including Random Forest Classifier (RFC), XGBoost Classifier (XGBC), and Gradient Boosting Classifier
(GBC). The models achieved high accuracy rates, with 92.33% obtained from XGBC in the low-severity attack scenario and
68.59% from GBC in the high-severity attack scenario.
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Akill Sebeke Altyapisinda Fotovoltaik Sistemlere Yonelik Siber Saldirilarin Makine Ogrenmesi
Yontemleriyle Tespiti

Oz: Giiniimiizde karbon emisyonlarinin ve gevresel kaygilarm artmasiyla birlikte, yenilenebilir enerji kaynaklarmmn gii
sistemlerindeki pay1 da giderek artmaktadir. Meteorolojik kosullara bagli olarak degisken gii¢ iiretimi gerceklestiren bu
sistemlerin enerji arz-talep dengesinde olusturdugu dalgalanmalar, ancak akilli sebeke altyapisiyla etkin bir sekilde
yonetilebilmektedir. Akilli sebekeler, haberlesme ve bilgi teknolojilerinin entegrasyonunu zorunlu kilarken, gii¢ sistemlerini
siber-fiziksel yapilara doniistiirerek yeni siber giivenlik risklerini de beraberinde getirmektedir. Dagitik tiretim kaynaklarinin
gii¢ sistemine entegrasyonu, yeni siber giivenlik tehditlerini de beraberinde getirmektedir. Bu tehditlerin baginda gelen sahte
veri enjeksiyon saldirilar1 (False Data Injection Attacks- FDIA), durum tahminleyicilerini (State Estimators- SE) yaniltarak
sistemde ciddi giivenlik agiklarina ve operasyonel risklere yol acabilmektedir. Bu calismada, fotovoltaik (PV) panellerden
sebekeye aktarilan enerjinin manipiile edilmesi ve akilli sayag verilerinin yaniltilmas: yoluyla gergeklestirilen siber saldirilar,
makine 0grenmesi tabanli ikili siiflandirma yontemleriyle analiz edilmistir. Diisiik, orta ve yiiksek siddetli siber saldiri
senaryolarina gore degisen liretim miktarlari, literatiirde yaygin olarak kullanilan Rastegele Orman Algoritmas: (Random
Forest Classifier- RFC), Asir1 Gradyan Artirma Algoritmas: (eXtreme Gradient Boosting Algorithm- XGBC) ve Gradyan
Artirma Algoritmast (Gradient Boosting Classifier- GBC) ile modellenmistir ve yiiksek dogruluk oranlar elde edilmistir.
Modeller, diisiik siddetteki saldirt senaryosunda XGBC’den 92,33%, yiiksek siddetteki saldirt senaryosunda ise GBC’den
68,59% dogruluk orani elde ederek yiiksek dogruluk oranlarina ulagmistir.

Anahtar kelimeler: Siber saldir1, dagitik tiretim kaynaklari, makine 6grenmesi, PV iiretimi, akilli sebekeler.
1. Introduction
1.1. Motivation and background
Today’s energy systems are undergoing significant transformations due to the rapidly increasing integration
of renewable energy sources. In particular, photovoltaic (PV) systems play a crucial role in reducing carbon

emissions and promoting environmental sustainability. As of 2022, the global installed capacity of PV systems
reached approximately 1070 GW, significantly contributing to reducing dependence on fossil fuels for energy
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generation [1]. However, the increasing digitalization and integration of PV systems into smart grids have
introduced new cybersecurity threats.

Smart grids aim to make energy generation and distribution processes more efficient, reliable, and sustainable
by utilizing computer-based automation and remote control technologies [2]. However, as these systems become
increasingly dependent on internet-based communication technologies, their vulnerability to cyber-attacks also
grows. Smart grids face various cyber threats, such as False Data Injection Attacks (FDIA), Denial of Service
(DoS), and Replay Attacks [3].

PV farms, in particular, continuously exchange data with the grid through smart inverters, sensors, and
communication hardware. This situation creates new attack surfaces for malicious actors, threatening the stability
of energy systems [4]. Cyber-attacks can lead to severe performance degradation by manipulating energy
management strategies and disabling control mechanisms [3].

FDIAs are classified as attacks targeting data integrity. Although the destructive potential of such attacks
largely depends on the attacker’s knowledge of the power grid topology, real-world examples have repeatedly
demonstrated their damaging impact [5]. For instance, the 2015 cyber-attack on Ukraine’s power grid affected
approximately 200,000 customers and caused power outages lasting up to six hours [6]. Similarly, in 2019, an
attack targeting the control centers of hydroelectric plants in Venezuela resulted in blackouts across 18 states [7].
In 2010, an attack on Iran’s nuclear facilities caused disruptions lasting several hours [8], and the Davis-Besse
nuclear power plant in the USA experienced a similar cyber-attack in 2003 [9]. On the other hand, existing
algorithms for bad data detection are insufficient for identifying advanced and well-structured FDIA attacks [10].
In this context, data-driven approaches based on machine learning [11-13] have the potential to detect cyber-
attacks by directly learning from sensor and meter measurements [14]. However, effectively training these models
requires large-scale datasets.

1.2. Literature review

Recent academic studies reveal an increasing use of machine learning methods for detecting cyber-attacks in
energy systems. The preference for these methods primarily stems from their ability to directly learn from datasets
without requiring explicit mathematical models. For example, in reference [15], a PV system integrated with a
battery energy storage system was modeled using MATLAB, and low-magnitude FDIA and DoS attacks were
simulated. These attacks were successfully detected using ensemble learning techniques such as Adaptive Boosting
(AdaBoost) and Random Forest algorithms with high accuracy rates. In reference [16], historical generation data
from a real PV farm in Florida, USA, with a capacity of 1.4 MW, were utilized. Various cyber-attack scenarios
created in this study were detected using Support Vector Machines and Recurrent Neural Networks. Reference
[17] implemented an unsupervised learning-based recurrent neural network for binary classification to detect
cyber-attacks on simulated data from the IEEE 30-bus system.

Considering increasing data sharing and security concerns, reference [18] proposed a federated learning-
based approach to detect cyber-attacks targeting power electronics converters in PV farms. In this study, real
system data were modeled using OPAL RT software, and different sensor manipulation scenarios were evaluated.
Moradpour and Delkhosh [19] analyzed random ramp attacks on real production data, incorporating weather
impacts using symbolic regression methods based on genetic programming and a hybrid probabilistic approach. It
is known that manipulating converter input values negatively affects power quality and can lead to harmonic
disturbances. In reference [20], a PV system modeled with MATLAB Simulink analyzed the effects of harmonics
resulting from the manipulation of converter input values, proposing a detection approach using deep learning-
based evolutionary neural networks with transfer learning.

Zhang and Li [21] analyzed attack scenarios where sensor data at the inverter level were manipulated, using
Long Short-Term Memory (LSTM) models. Similarly, reference [22] employed data-driven methods based on
micro-phasor measurement units to detect cyber-attacks targeting DC/DC and DC/AC converters in a solar energy
farm modeled with MATLAB Simulink. In reference [23], deep sequential learning models classified multiple
cyber-attacks on converters using data obtained only from a single voltage and current sensor at a common
coupling point. This study used multi-layer LSTM networks to analyze the temporal structure of data streams and
provided comparative results with various machine learning models. Additionally, reference [24] developed a
detection mechanism using convolutional neural networks supported by micro-phasor measurement units and
sensor data, testing it across different IEEE bus systems.

Overall, these studies indicate that data-driven machine learning methods effectively detect various cyber-
attacks on PV systems. However, considering the dynamic nature of such attacks, it is evident that the adaptive
capabilities of current methods need further improvement.

446



Usame SAKKAR, Ayse Kiibra TATAR

1.3. Contributions and organization of the study

This study investigates the effectiveness of machine learning methods in detecting cyber-attacks targeting PV
systems integrated into smart grid infrastructure. Various attack intensities were modeled by creating scenarios
where power output data from PV panels and smart meter measurements were manipulated through FDIAs.
Commonly used algorithms in the literature, namely Random Forest Classifier (RFC), eXtreme Gradient Boosting
Algorithm (XGBC), and Gradient Boosting Classifier (GBC), were comparatively evaluated using datasets
obtained under different attack scenarios. This study contributes significantly to the literature by demonstrating
the effectiveness of data-driven approaches in securing renewable energy systems.

The remainder of this paper is organized as follows: The Section II provides detailed explanations of the
methodology and modeling approach used. In the third section, modeling results and performance analyses are
presented. Finally, the Section IV discusses the findings, summarizes the conclusions, and provides suggestions
for future research.

2. Methodology

LY 2 »
~42}- Cyber threat

Figure 1. Illustration of a neighborhood-scale smart area comprising residential end-users.

Within the scope of this study, the PV generation profiles of 150 residential customers are analyzed across
three distinct rooftop categories, small, medium, and large, corresponding to roof areas randomly selected from
the ranges [60, 70, 80, 90], [100, 110, 120], and [130, 140, 150] m?, respectively. For each rooftop category, the
PV panels are arranged in carefully designed series-parallel configurations that take into account the total available
rooftop area per customer. Specifically, rooftops in the small category (60-90 m?) employ 6 parallel groups with
2 panels connected in series, while medium rooftops (90—120 m?) use 6 parallel groups with 3 panels in series.
Large rooftops (120—150 m?) are configured with 6 parallel groups and 4 panels in series. This ensures consistency
in the electrical characteristics across installations and reflects realistic residential PV layouts.

To synthetically generate the dataset, historical solar irradiance and temperature measurements recorded
hourly from May 1, 2024, to May 31, 2024, were obtained from the NASA Prediction of Worldwide Energy
Resources database was utilized [25]. These meteorological inputs, combined with the electrical characteristics of
10 different PV panel types used across all residential customers and provided in Table 1, are substituted into
Equations (1)—(5) to compute the PV panel’s power output [26], which is later used as the target variable in the
problem.

The output power of each PV panel type (f) is calculated for each given time point (t) and geographical

cell

location (g). Equation (1) is used to calculate the PV cell temperature Ty ¢'¢ [°C], based on the ambient temperature
th‘f [°C], solar irradiance St’_’fc [kW /m?], and the nominal operating cell temperature Tygcr, 7 [°C]; the constants 20

and 0.8 represent the standard ambient temperature and the reference solar irradiance used to normalize the cell
temperature calculation, respectively.
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Table 1. Electrical characteristics of PV panels utilized in the study [27-29].

Model P.,om NOCT Vmp ImlJ Voc Igc Ky K, Areza Eff.

W) (©) ) 4 ) A  ®C) %°c) M) (%)

MAXEON-SPR-3-400 400 45 65.8 6.08 75.6 6.58 -0.236 0.058 1.76 22.6
MAXEON-SPR-3-395 395 45 65.1 6.07 75.4 6.56 -0.236 0.058 1.76 22.3
MAXEON-SPR-3-390 390 45 64.5 6.05 75.3 6.55 -0.236 0.058 1.76 22.1
CanadianSolar-CS3L-325P 325 42 32.0 10.16 39.0 10.74 -0.28 0.05 1.85 17.6
CanadianSolar-CS3L-340P 340 42 32.6 10.43 39.6 10.98 -0.28 0.05 1.85 18.4
CanadianSolar-CS3L-345P 345 42 32.8 10.52 39.8 11.06 -0.28 0.05 1.85 18.7
JA Solar-JAM72S30-530 530 45 41.31 12.83 49.30 13.72 -0.275 0.045 2.58 20.5
JA Solar-JAM72S30-540 540 45 41.64 12.97 49.60 13.86 -0.275 0.045 2.58 20.9
JA Solar-JAM72S30-545 545 45 41.80 13.04 49.75 13.93 -0.275 0.045 2.58 21.1
JA Solar-JAM72S30-550 550 45 41.96 13.11 49.90 14.00 -0.275 0.045 2.58 21.3

The open-circuit voltage Vg?tcl # [V] and the short-circuit current I; f s [A] are determined by considering both
their reference values at standard test conditions and their temperature dependence. Specifically, the open-circuit
voltage is calculated using Equation (2) as a function of the reference voltage V}OC and the voltage temperature
coefficient KfV [%/°C], adjusted for the difference between the actual cell temperature and the standard 25°C.
Similarly, the short-circuit current in Equation (3) depends on the solar irradiance ng}, the reference short-circuit
current I7¢, and the current temperature coefficient K; [%/°C], again adjusted relative to 25°C.

After calculating the fill factor FF; using Equation (4), defined as the ratio of the product of the voltage and
current at maximum power point (If'** and V/***) to the product of open-circuit voltage and short-circuit current,
the maximum power output of the PV cells P;_ 't/ s [W] is determined in Equation (5) by multiplying the fill factor,
open-circuit voltage, and short-circuit current.

T, —20 1
TE = Td + SIB x —”chfS M)
Tidr — 25 )
Vo, = VP¢ x (1 + kY x—g'“’ioo )
Tcell — 25 (3)
SC  _ cIR SC I gt.f
Ig_t,f = St_f X If X (1 + Kf x—100 )
MPP MPP
oo X (4)
f Vfoc % IfSC
Poty = FFr X Voiy x Igi, ®)

During the preprocessing phase, all categorical variables were converted into numerical form as an essential
initial step. Subsequently, data points with zero solar irradiance were removed to minimize potential bias and
ensure that only periods with active solar generation were considered during the training process. In the same
context, historical temperature and irradiance data were considered resistant to manipulation and were treated as
genuine by machine learning models. However, as depicted in Figure 1, PV generation data for residential users
were assumed to be vulnerable to cyber-attacks. Hence, temperature and irradiance served as independent
variables, while PV output was the target variable in this binary classification machine learning problem. To ensure
transparency, Table 2 presents a detailed description of the dataset features.

To manipulate PV generation data, three cyberattack scenarios with varying intensities and characteristics
were developed to simulate realistic actions of malicious customers who manipulate the smart meter data attached
to their PV system to falsely overstate their energy injection into the power grid. The attack scenarios are defined
as follows:

* Constant Increment Attack (Low Severity)
* Systematic Increment Attack (Medium Severity)
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* Random Increment Attack (High Severity)

Table 2. Description of dataset variables.

Variable Name Role Type Description
Customer ID Metadata Categorical Unique identifier assigned to each of the 150 residential customers.
Datetime Feature Datetime The date and hour when the measurement was recorded.

Amount of solar power per unit area (shortwave radiation) reaching

e e Feature IS (1) the surface, recorded at hourly intervals.
Air Temperature Feature Numeric (float) Ambient air temperature measureq 2 meters above ground, recorded
at hourly intervals.
. Panel ID ranging from 1 to 6, corresponding to six different types of
Panel ID Feature Cintgoit PV panels distributed across 150 residential customers.
Panel Size Feature Numeric (float) Nominal capacity or rated power for each type of the installed PV

panels obtained from Table 1.
Number of panels Feature Numeric (Int) Number of rooftop-installed PV panels.
Calculated photovoltaic power generated by the installed PV panels
for each recorded hour.
Roof Area Feature Numeric (float) Total rooftop area available for PV panel installation.
Binary label indicating whether the PV output is normal (0) or has
been manipulated/attacked (1).

PV Output Feature Numeric (float)

Attack Flag Target Binary (0/1)

Table 3. Functions utilized to model various cyber-attack scenarios.

Attack Type Attack Equation Nature Severity
Consta::tlallfement fi(PVis) = PV,; + y- PV, PV - Median value e . Low
Systematic Increment - .
g Attack fZ(PVt'f) = PVt'f Ty PV, Aep ~ U(@min, Xmax) T Medium
Random Increment .
Attack fs(PVeg) = PVer - (1 + Beg) By ~ U(Bmin Bmax) T High

As presented in Table 3, a total of three scenarios with varying severity and nature are analyzed, with each
attack altering half of the data points to maintain balanced classes. Although all attacks are designed to apply a
constant magnitude within each scenario, they also exhibit a degree of time dependency in how specific blocks of
data, corresponding to particular hours in the dataset’s hourly resolution, are selected for manipulation. This is
visually described in the Nature column of Table 3. In this visual representation, attacked points are represented
in red, and genuine points are uncolored, with each data point corresponding to a specific hour. Additionally, attack
magnitudes are randomly chosen from a carefully predefined range and are added to the original data according to
the nature of the attack. Randomization in the temporal pattern of attacked blocks or points increases proportionally
with attack severity, reflecting the attack’s nature. Meanwhile, the magnitude of the added value decreases as
severity increases, ensuring that high-severity attacks result in only minimal data disturbances.

In the first scenario, Constant Increment Attack (low severity), a value equal to 0.1 times the median is added
to the original data points, targeting only the hours that correspond to even-indexed data points. In the second
scenario (medium severity), attacks are applied repeatedly in blocks of equal length, each consisting of two hours
of readings, adding a randomly selected value from a uniform distribution ranging between 0.075 and 0.115 times
the median to the genuine smart meter readings. Finally, in the high-severity attack scenario, randomly selected
blocks of data points, with randomly determined lengths, are manipulated by adding a value drawn uniformly from
the range 0.05 and 0.09 times the median.

Python’s scikit-learn library is used to develop the machine learning-based attack detection systems. The
dataset is split into two sets: 75% for training, and 25% for testing. Out of a total of 66,137 data points, 49,602 are
utilized for training, and 16,535 are reserved for testing.

RFC, XGBC, and GBC were selected as the primary machine learning algorithms employed in this study.
These algorithms rely on ensemble learning methods, which are known for their high performance and reliable
predictive capabilities in classification problems. Ensemble learning combines multiple base estimators to form a
single model, resulting in more generalizable and robust predictions.
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RFC is a robust ensemble learning method that prevents overfitting by utilizing multiple decision trees trained
on various subsets of data and combining the predictions from all trees to make a final classification decision [30].
XGBC and GBC are boosting-based methods that use an iterative approach. Initially, a single decision tree is
created, and subsequent trees are iteratively added, each trained to minimize the residuals of predictions made in
the previous step. This process continuously enhances model performance, especially for classification problems
[31]. To ensure optimal performance, hyperparameter tuning for all models was performed using the
GridSearchCV method, with the hyperparameter grid for each classifier thoroughly presented in Table 4.

Table 4. Hyperparameter search grids for all classifiers.

Model Name Hyperparameter Type Search Space
n estimators Inp.random.randint(100, 300, size=5)
max_depth [None, 10, 15, 20, 25]
min_samples_split np.random.randint(2, 30, size=5)
RandomForestClassifier min_samples leaf np.random.randint(1, 10, size=5)
max_features [‘sqrt’, ‘log2’, 0.3, 0.5, 0.7]
max_samples [0.5,0.75, 1.0]
n_estimators np.array([100, 250, 400])
max_depth np.random.randint(3, 15, size=5)
learning_rate Inp.random.uniform(0.001, 0.3, size=5),
XGBClassifier Gamma [0,0.5,1.0,2.0]
reg lambda [0,0.1, 1.0, 5.0,20.0]
subsample np.random.uniform(0.5, 1.0, size=5)
colsample_bytree np.random.uniform(0.5, 1.0, size=5)
n_estimators [50, 100, 200]
learning_rate [0.01,0.1, 0.5]
GradientBoostingClassifier I;e;:s;?relglt: {3?85,’07.]9, 1.0]
min_samples_split [2,5,10]
min_samples_leaf [1,2,4]

4. Test and Results

In this study, three different cyber-attack scenarios targeting PV systems—low-severity, medium-severity,
and high-severity—are examined. The performance of machine learning models is comperatively analyzed based
on the nature and severity of each scenario. For a comprehensive evaluation, the Receiver Operating Characteristic
(ROC) curve is used, and the optimal classification threshold is determined using Youden’s J statistic.
Additionally, the metrics of accuracy, precision, recall, and F1 score metrics are employed. All evaluations are
conducted using 5-fold cross-validation [32]. The mathematical expressions of the evaluation metrics used are
presented in Table 5. To obtain reliable results regarding model performance, a comprehensive testing process is
carried out using multiple evaluation criteria. The results obtained from the evaluation metrics for all designed
attack scenarios are presented in tables in a structured and sequential manner.

Table 5. Mathematical formulations of applied evaluation metrics.

Evaluation metric Equation
Accuracy t, + &y
t, + fi, +t, + fa
Precision ty
b + /o
F1 Score 2 XpXr
p+r
Recall ty
ty + tn
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Table 6. Evaluation metrics for the first attack scenario.

Model Accuracy Precision Recall F1 Score
RFC 0.906133 0.906631 0.906133 0.906104
XGBC 0.923330 0.923482 0.923330 0.923323
GBC 0.882202 0.882544 0.882202 0.882176

The performance evaluation results for the low-severity (Constant Increment) attack scenario are presented
in Table 6. In this scenario, the XGBC model achieved the highest performance with an accuracy rate of 92.33%.
Moreover, as illustrated in the ROC curve in Figure 2.a), both the XGBC and GBC models demonstrated indentical
AUC scores of 0.94, while the RFC model followed with a lower AUC of 0.90.

Table 7. Evaluation metrics for the second attack scenario.

Model Accuracy Precision Recall F1 Score
RFC 0.789283 0.789461 0.789283 0.789250
XGBC 0.804564 0.804630 0.804564 0.804554
GBC 0.802810 0.802958 0.802810 0.802786
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Figure 2. Results obtained from the ROC curve: a) Results derived for the first attack scenario; b) Results
derived for the second attack scenario; c) Results derived for the third attack scenario.
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Performance evaluation results for the medium-severity (Systematic Increment) attack scenario are provided
in Table 7. In this scenario, XGBC and GBC models delivered the best performances, demonstrating superior
effectiveness against systematic but partially predictable data manipulations. Upon examining the ROC curve
presented in Figure 2.b), it was observed that the XGBC and GBC models achieved the same high AUC values,
whereas the performance of the RFC model was notably lower.

Table 8. Evaluation metrics for the third attack scenario.

Model Accuracy Precision Recall F1 Score
RFC 0.659066 0.659066 0.659066 0.659066
XGBC 0.673602 0.673609 0.673602 0.673598
GBC 0.685859 0.685861 0.685859 0.685859

The results for the high-severity (Random Increment) attack scenario are presented in Table 8. In this
randomly and intensively manipulated data scenario, all models exhibited relatively low performance levels;
however, GBC model still delivered the best performance. This outcome demonstrates that. The XGBC model
ranked second, while the RFC model trailed with the lowest performance. As clearly seen from the ROC curve in
Figure 2.c), the performance of all models decreased significantly under this attack scenario.

Boosting algorithm models consistently demonstrated superior performance in all attack scenarios,
outperforming tree-based RFC model. This demonstrastes that Boosting algorithms maintain stronger
generalization capability when dealing with highly random attacks. In essence, this study highlights the potential
of machine learning-based approaches for detecting cyber-attacks of varying intensities and emphasizes the critical
importance of selecting appropriate models, particularly in highly complex scenarios.

4. Conclusions, Discussions and Future Work

This study investigated the effectiveness of machine learning-based methods for detecting low, medium, and
high-severity cyber-attacks targeting smart meter readings of PV systems integrated into smart grids. RFC, XGBC,
and GBC algorithms were selected to analyze attack scenarios categorized as constant increment, systematic
increment, and random increment attacks.

Analyses conducted on large-scale datasets generated using real-time meteorological data demonstrated that
model performance in attack detection deteriorates as the intensity and randomness of attacks increase.
Specifically, a degradation of up to 65.88% for the RFC was observed in the high-severity attack scenario. This
highlights both model limitations and the unpredictability of attacks. In practical deployments, modern SCADA
and DERMS systems integrate both signal-based and data-driven detection mechanisms that function
collaboratively in a complementary manner. Data-driven approaches are particularly vital for detecting attacks that
cause minimal signal disturbances but involve significant data manipulation, as seen in Constant Increment and
Systematic Increment Attacks. In contrast, when the original data pattern is almost unchanged and no tangible
harm is achievable unless attacks are repeated with high frequency—as in high-severity (random increment) attack
scenario—the data-driven detection mechanism should be kept active as a backup, while the signal-based detection
mechanism operates as the primary system.

The proposed detection mechanism is particularly effective when attacks involve significant data
manipulation are launched. It functions alongside other anomaly detection mechanisms already embedded in
SCADA environments. Specifically, it can be integrated as a data driven monitoring layer by leveraging existing
real-time data streams through standard protocols such as OPC UA or Modbus. The detection algorithm is
performed on a systen with 4.60 GHz CPU and 32 GB RAM, showing relatively consistent runtimes across
different models, with an average runtime of 223.68 seconds.

For future studies, it is recommended to perform tests on real-time data streams, explore hybrid combinations
of different machine learning models to further enhance performance, and evaluate data security for other
distributed energy resources and electric vehicle charging stations integrated into smart grid infrastructures, in
addition to PV systems.
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