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ABSTRACT. In this study we investigate some properties of the k-Fibonacci
and k-Lucas sequences which are generalize the classical Fibonacci and Lucas
sequences. Moreover, two efficient tests are introduced as to whether or not a
positive integer is k-Fibonacci or k-Lucas.

1. INTRODUCTION

Let k and t be nonzero real numbers such that k2+4¢ > 0. Generalized Fibonacci
sequence {U,} is defined by

(11) UO = 0, U1 =1 and Un+1 = k’Un + tUn_l for n Z 1,
and generalized Lucas sequence {V,,} is defined by
(1.2) Vo=2,Vi =k, and Vi1 = kV, +tV,_; for n > 1,

(see [3], and [9] for more details about these sequences).

Let k > 1 be any integer. In (1.1) and (1.2) if we take t = 1, we obtain k-
Fibonacci and k-Lucas numbers F} , and Ly ,, respectively. Basic properties of
these sequences were investigated in the several papers (see [1], [2], [12] and [2]).
After complex factorizations of these numbers for k£ = 1 were found by the autors in
[6], these results were generalized for k-Fibonacci and k-Lucas numbers in [10]. In
[7], using the Chebyshev polynomials of the first and second kinds, one-parameter
generalizations of the Fibonacci and Lucas numbers were given.

In this paper we introduce two tests as to whether or not a positive integer is
k-Fibonacci or k-Lucas. Our results generalize the results for the case k = 1 given
by I. Gessel, P. James and G. Wulczyn, respectively (see [8] and [4]).
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2. WHEN IS A NUMBER k-FIBONACCI?
Let r; and 7 be the roots of the characteristic equation 72 = kr+1 and 1 > ro.

It is known that
_k+VEr+4 . k—Vk?+4
N 2 ’ 2

] 2 =
and
(21) r1.12 = —1.

Before giving our results, we recall the following equations (see [8], [11], [12])

(2.2) Lk,n = Fk’nfl + Fk7n+1 forn > 1,
(2.3) Fin = —-—"2 (Binet’s Formula),
re — T2
(2.4) Lyn =17 +713,
and
(2.5) Fyom—rFiomtr — Flfn = (—1)"+1_TF,3’T (Catalan’s Identity).

We begin the following lemmas.
Lemma 2.1. The equation
(2.6) y? — kry —2? =F1
is satisfied by (z,y) = (Fin, Frnt1) for alln >0, z,y € N.
Proof. For n =0, using (Fy 0, F,1) = (0,1) we have
12-%k01-0%*=1,

that is, the equation (2.6) is true.
Now, suppose that the equation (2.6) is true for n. Then by definition we obtain

2 2
Fk,n—i—? - kaﬂ'i‘le,n"rQ - Fk,n—i—l

= (kFent1+ Frn)® = kFens1(kFpng1 + Fin) — F’i"“
= —(Ffni1 — kFent1Frn — FL )
= +1.
([l

Lemma 2.2. If (x,y) is a pair of positive integers satisfying the equation (2.6)
then (z,y) = (Fins Frnt1) or (2,y) = (Fipn, Flen—1) for some n > 0.

Proof. If we take kx = y, then substituting ¥ for 2 we get

2 2
2 2 2 2 ) Y —
v —key -2t =y" -y’ — (7 Z =T
hence setting (z,y) = (Fi1, Fi 2), satisfies this equation. Now assume that kz <y
and y? — kaxy — 2 = F1. We see that the pair of positive integers (a,b) = (y —

kx, ) satisfies the equation (2.6) since we have
b —kab—a® = 2° —k(y—kx)z — (y — kx)?
= —(y? —kay —2%) = FL.
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By induction, (a,b) = (Fin, Fkn+1) by some n. Thus we get
r=0b= Fk,n+1

and
y:kx+a:ka,n+1+Fk,n~

This means that (z,y) = (Fin+1, Finte). Similarly if kx > y then it can be seen
that the pair of positive integers (a,b) = (x, kx —y) satisfies the equation (2.6) since
we have

b2 —kab—a®* = (kx—y)? —k(kx —y)z — 2°
= 9? —kyx — 2% =F1.
Hence we get
r=a=Fy,
and
Yy=kr—b=FkFyn,— Finy1.
This means that (x,y) = (Fgn, Fin—1)- O

From [2], we have the following theorem.

Theorem 2.1. (See [2], Theorem 2.1) For any integer n, the number (k*+4)F7 , +
4(—1)™ is a perfect square.

Now we prove the converse of Theorem 2.1.

Theorem 2.2. Let n be a positive integer. If (k* +4)n?F4 is a perfect square then
n s a k-Fibonacci number.

Proof. We use Lemma 2.1. Using the equation (2.6), we get
kx++/(4 + k2)z2+4
y = 5 :

Assuming y is positive we simplify this to

kx + +/(4 + k2)x2+4
(2.7) Y= ( 5 ) .

Assume that (k?+4)n?+4 is a perfect square and that 2 = n. Since x is a positive
integer then we see that y must also be a positive integer using the following three
cases:

Case 1. If n and k are both odd then (k? +4) and n? must be both odd. Hence
the product (k? 4+ 4)n? is an odd number and so (k? + 4)n?F4 is an odd number
and perfect square. By (2.7) we get

% (kn 4+ odd value) .
Since kn is odd, the number (kn+ odd value) is divisible by 2 and then % (kn + odd value)
must be an integer. Thus under the assumption n and k are both odd y must be
an integer.
Case 2. If n and k are even then (k? + 4) and n? must be both even. Similarly
as for (k% + 4)n?F4 is an even number and perfect square, using (2.7) we have

5 (kn + even value) .
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Again as kn is even, the number (kn + even value) is divisible by 2 and so we obtain
%(kn + even value) must be an integer. Thus under the assumption n and k are
both even y must be an integer.

Case 3. If one of the numbers n and k is odd, (k% + 4)2%>+4 must be an even
number. Thus this case is equivalent to the Case 2.

Consequently, since y must be a positive integer, from Lemma 2.2, both =z =
n and y must be k-Fibonacci numbers. Namely, n is a k-Fibonacci number. ([

We note that it was given a different proof of Lemma 2.2 for the case k =
2sinh @ > 1 is an odd integer (6 > 0). Now combining Theorem 2.1 and Theorem
2.2 we obtain the following theorem.

Theorem 2.3. A positive integer n is a k-Fibonacci number if and only if (k* +
4)n2F4 is a perfect square.

For k = 1, our results coincide with the results obtained in [4]. On the other
hand, there is an alternative proof of Theorem 2.1. Let n = F}, ,,,. Using (2.2) and
the Catalan’s identity (2.5), we have

Fk,m—le,m+1 = Fk2,7n + (71)7”

and
L =4[+ F2,] = (Femt1+ Frm-1)® = 4Frms1 Frm1]
= (Femt1 — Fk,m—1)2
= (kFrm)®
= R,
Ly = (K+4)F;,,F4.

So, if n is a k-Fibonacci number Fj ,,, then (k? + 4)n?F4 is a perfect square.

3. WHEN IS A NUMBER k-LUCAS?
Now we continue our work with the following lemmas.
Lemma 3.1. The equation
(3.1) y? — kry — 22 = F(k* + 4)
is satisfied by (z,y) = (Lk,n, Lknt1) for alln >0, z,y € N.
Proof. For n =0, using (L0, Lk1) = (2, k) we have
k? -2k —4 = —(k? +4),

that is the equation (3.1) is true.
Now, suppose that the equation is true for n. Then by definition we obtain

L pio = kLkny1 Lk nro — LE i
= (kLk7n+1 + Lk,n)2 - kLk,nJrl(kLk,nJrl + Lk,n) - Li,nJrl
2kLknt1Lgn + Li,n —kFgni1Fpn — Li,n+1

_ 2 2
- _( kn+1 kLk,’ﬂJrlLk”ﬂ - Lk:,n)

= F(k*+4).
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O
Lemma 3.2. If (x,y) is a pair of positive integers satisfying the equation (3.1)
then (z,y) = (Li,n, Lknt1) or (2,y) = (Li,n, Lin—1) for some n > 0.
Proof. If we take kx = y then we get
v —kry — a2 =9 — oyt —2? = —2® = —(k® +4).

Hence there is no pair (x,y) which satisfies the equation (3.1). Let kz < y. We
see that the pair of positive integers (a,b) = (y — kx, ) satisfies the equation (3.1)
since we have

V> —kab—a® = 2% —k(y—ka)r — (y — ka)?
= 2% —kyr — y® + 2kyx
= —(y® —kay —2%) = F(k* + 4).
By induction, (a,b) = (L n, Lin+1) by some n. Thus we get
2=b=Lgpt1
and
y=kr+a=FkLrp1+ Lin.

This means that (z,y) = (Lgn+1, Lk nt2)-
Now let kx > y. It can be easily seen that the pair of positive integers (a,b) =
(x, kx — y) satisfies the equation (3.1) since we have

b —kab—a® = (kx—y)? — kax(kx —y) — 2
= y? —kxy — 2% = F(k* +4).
By induction, (a,b) = (L n, Lin+1) by some n. Thus we get
r=a=Lgy,

and
y=kr—b=FkLyy— Lipnt1 = Lin_1.
This means that (z,y) = (Lkn, Lkn—1)- 0

Theorem 3.1. A positive integer n is a k-Lucas number if and only if (k‘2 + 4) n?F4 (k;2 + 4)
is a perfect square.

Proof. The proof is similar to the proofs of Theorem 2.1 and Theorem 2.2 by Lemma
3.1 and Lemma 3.2. ]

There is an alternative proof of the first part of Theorem 3.1. Let n = Ly opm41.
Using (2.1) and (2.4) we find

(B +4)n? +4(2 +4) = (K +4) (2 4 rdm)? 44k +4)
= (k2 +4) [T‘llm+2 + 1"3"”'2 + 2(7’1r2)2m+1 + 4]
2
= (k*+4) (\/ k2 + 4Fk72m+1)
= (K + 4)2Fl€2,2m+1
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Now let n = Ly, 2,,. By a similar way we find

(B +4)n® —4(k> +4) = (K +4) (13" +r3")° —4(k* +4)
(K +4) [rf™ + 3™ + 2(rire) ™ — 4]
_ (k2 ) [T4m + 7n4m _ 2( )Zm]
— (K2 +4) (x/kQ n 4Fk72m)
= (K +4)°F o

4. Applications

In Section 2, we have introduced the algorithm as to whether or not a positive

integer is k-Fibonacci or k-Lucas. Using these tests we give an algorithm to realize
any given positive integer n whether or not a k-Fibonacci or k-Lucas number. This
algorithm is created by MATLAB [13].
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TABLE 1. The Algorithm

n= input(’n ’);
k= input(’k ’);
t1=(k"2+4)*n"2+4;
t2=(k"24+4)*n"2-4;
t3=(k"244)*n"2+4+4* (k" 2+4);
td=(k"24+4)*n"2-4*(k"24+4);
yes_no=0;
if round(sqrt(t1))==sqrt(t1),
yes_no=1;
end
yes_no2=0;
if round(sqrt(t2))==sqrt(t2),
yes_no2=1;
end
yes_-no3=0;
if round(sqrt(t3))==sqrt(t3),
yes_nod=1;
end
yes_nod=0;
if round(sqrt(t4))==sqrt(t4),
yes_nod=1;
end
if yes_no==
fprintf(’n is a k-Fibonacci number’ t1);
else if yes_no2==1
fprintf(’n is a k-Fibonacci number’t2);
else if yes_no3==1
fprintf(’n is a k-Lucas number’,t3);
else if yes_.nod==1
fprintf(’n is a k-Lucas number’,t4);
else fprintf('n is a neither k-Fibonacci number nor k-Lucas number’ t1);
end
end
end
end




