ON DETERMINATION OF k-FIBONACCI AND k-LUCAS NUMBERS

NİHAL YILMAZ ÖZGÜR AND ÖZNUR ÖZTUNÇ KAYMAK
(Communicated by İrfan ŞİAP)

Abstract

In this study we investigate some properties of the k-Fibonacci and k-Lucas sequences which are generalize the classical Fibonacci and Lucas sequences. Moreover, two efficient tests are introduced as to whether or not a positive integer is k-Fibonacci or k-Lucas.

1. Introduction

Let k and t be nonzero real numbers such that $k^{2}+4 t>0$. Generalized Fibonacci sequence $\left\{U_{n}\right\}$ is defined by

$$
\begin{equation*}
U_{0}=0, U_{1}=1 \text { and } U_{n+1}=k U_{n}+t U_{n-1} \text { for } n \geq 1 \tag{1.1}
\end{equation*}
$$

and generalized Lucas sequence $\left\{V_{n}\right\}$ is defined by

$$
\begin{equation*}
V_{0}=2, V_{1}=k, \text { and } V_{n+1}=k V_{n}+t V_{n-1} \text { for } n \geq 1, \tag{1.2}
\end{equation*}
$$

(see [3], and [9] for more details about these sequences).
Let $k \geq 1$ be any integer. In (1.1) and (1.2) if we take $t=1$, we obtain k Fibonacci and k-Lucas numbers $F_{k, n}$ and $L_{k, n}$, respectively. Basic properties of these sequences were investigated in the several papers (see [1], [2], [12] and [2]). After complex factorizations of these numbers for $k=1$ were found by the autors in [6], these results were generalized for k-Fibonacci and k-Lucas numbers in [10]. In [7], using the Chebyshev polynomials of the first and second kinds, one-parameter generalizations of the Fibonacci and Lucas numbers were given.

In this paper we introduce two tests as to whether or not a positive integer is k-Fibonacci or k-Lucas. Our results generalize the results for the case $k=1$ given by I. Gessel, P. James and G. Wulczyn, respectively (see [8] and [4]).

[^0]
2. When is a number k-Fibonacci?

Let r_{1} and r_{2} be the roots of the characteristic equation $r^{2}=k r+1$ and $r_{1}>r_{2}$. It is known that

$$
r_{1}=\frac{k+\sqrt{k^{2}+4}}{2}, r_{2}=\frac{k-\sqrt{k^{2}+4}}{2}
$$

and

$$
\begin{equation*}
r_{1} \cdot r_{2}=-1 \tag{2.1}
\end{equation*}
$$

Before giving our results, we recall the following equations (see [8], [11], [12])

$$
\begin{gather*}
L_{k, n}=F_{k, n-1}+F_{k, n+1} \text { for } n \geq 1 \tag{2.2}\\
F_{k, n}=\frac{r_{1}^{n}-r_{2}^{n}}{r_{1}-r_{2}}(\text { Binet's Formula }), \tag{2.3}\\
L_{k, n}=r_{1}^{n}+r_{2}^{n} \tag{2.4}
\end{gather*}
$$

and

$$
\begin{equation*}
F_{k, n-r} F_{k, n+r}-F_{k, n}^{2}=(-1)^{n+1-r} F_{k, r}^{2} \text { (Catalan's Identity). } \tag{2.5}
\end{equation*}
$$

We begin the following lemmas.
Lemma 2.1. The equation

$$
\begin{equation*}
y^{2}-k x y-x^{2}=\bar{\mp} 1 \tag{2.6}
\end{equation*}
$$

is satisfied by $(x, y)=\left(F_{k, n}, F_{k, n+1}\right)$ for all $n \geq 0, x, y \in \mathbb{N}$.
Proof. For $n=0$, using $\left(F_{k, 0}, F_{k, 1}\right)=(0,1)$ we have

$$
1^{2}-k \cdot 0 \cdot 1-0^{2}=1,
$$

that is, the equation (2.6) is true.
Now, suppose that the equation (2.6) is true for n. Then by definition we obtain

$$
\begin{aligned}
& F_{k, n+2}^{2}-k F_{k, n+1} F_{k, n+2}-F_{k, n+1}^{2} \\
= & \left(k F_{k, n+1}+F_{k, n}\right)^{2}-k F_{k, n+1}\left(k F_{k, n+1}+F_{k, n}\right)-F_{k, n+1}^{2} \\
= & -\left(F_{k, n+1}^{2}-k F_{k, n+1} F_{k, n}-F_{k, n}^{2}\right) \\
= & \mp 1 .
\end{aligned}
$$

Lemma 2.2. If (x, y) is a pair of positive integers satisfying the equation (2.6) then $(x, y)=\left(F_{k, n}, F_{k, n+1}\right)$ or $(x, y)=\left(F_{k, n}, F_{k, n-1}\right)$ for some $n \geq 0$.
Proof. If we take $k x=y$, then substituting $\frac{y}{k}$ for x we get

$$
y^{2}-k x y-x^{2}=y^{2}-y^{2}-\left(\frac{y}{k}\right)^{2}=-\frac{y^{2}}{k^{2}}=\mp 1,
$$

hence setting $(x, y)=\left(F_{k, 1}, F_{k, 2}\right)$, satisfies this equation. Now assume that $k x<y$ and $y^{2}-k x y-x^{2}=\overline{+}$. We see that the pair of positive integers $(a, b)=(y-$ $k x, x)$ satisfies the equation (2.6) since we have

$$
\begin{aligned}
b^{2}-k a b-a^{2} & =x^{2}-k(y-k x) x-(y-k x)^{2} \\
& =-\left(y^{2}-k x y-x^{2}\right)=\overline{+} 1
\end{aligned}
$$

By induction, $(a, b)=\left(F_{k, n}, F_{k, n+1}\right)$ by some n. Thus we get

$$
x=b=F_{k, n+1}
$$

and

$$
y=k x+a=k F_{k, n+1}+F_{k, n} .
$$

This means that $(x, y)=\left(F_{k, n+1}, F_{k, n+2}\right)$. Similarly if $k x>y$ then it can be seen that the pair of positive integers $(a, b)=(x, k x-y)$ satisfies the equation (2.6) since we have

$$
\begin{aligned}
b^{2}-k a b-a^{2} & =(k x-y)^{2}-k(k x-y) x-x^{2} \\
& =y^{2}-k y x-x^{2}=\bar{\mp} 1
\end{aligned}
$$

Hence we get

$$
x=a=F_{k, n}
$$

and

$$
y=k x-b=k F_{k, n}-F_{k, n+1} .
$$

This means that $(x, y)=\left(F_{k, n}, F_{k, n-1}\right)$.
From [2], we have the following theorem.
Theorem 2.1. (See [2], Theorem 2.1) For any integer n, the number $\left(k^{2}+4\right) F_{k, n}^{2}+$ $4(-1)^{n}$ is a perfect square.

Now we prove the converse of Theorem 2.1.
Theorem 2.2. Let n be a positive integer. If $\left(k^{2}+4\right) n^{2} \overline{+} 4$ is a perfect square then n is a k-Fibonacci number.

Proof. We use Lemma 2.1. Using the equation (2.6), we get

$$
y=\frac{k x \mp \sqrt{\left(4+k^{2}\right) x^{2} \overline{+} 4}}{2} .
$$

Assuming y is positive we simplify this to

$$
\begin{equation*}
y=\frac{k x+\sqrt{\left(4+k^{2}\right) x^{2} \bar{\mp} 4}}{2} . \tag{2.7}
\end{equation*}
$$

Assume that $\left(k^{2}+4\right) n^{2} \mp 4$ is a perfect square and that $x=n$. Since x is a positive integer then we see that y must also be a positive integer using the following three cases:

Case 1. If n and k are both odd then $\left(k^{2}+4\right)$ and n^{2} must be both odd. Hence the product $\left(k^{2}+4\right) n^{2}$ is an odd number and so $\left(k^{2}+4\right) n^{2} \overline{+} 4$ is an odd number and perfect square. By (2.7) we get

$$
\frac{1}{2}(k n+\text { odd value })
$$

Since $k n$ is odd, the number ($k n+$ odd value) is divisible by 2 and then $\frac{1}{2}$ ($k n+$ odd value) must be an integer. Thus under the assumption n and k are both odd y must be an integer.

Case 2. If n and k are even then $\left(k^{2}+4\right)$ and n^{2} must be both even. Similarly as for $\left(k^{2}+4\right) n^{2} \mp 4$ is an even number and perfect square, using (2.7) we have

$$
\frac{1}{2}(k n+\text { even value })
$$

Again as $k n$ is even, the number ($k n+$ even value) is divisible by 2 and so we obtain $\frac{1}{2}$ ($k n+$ even value) must be an integer. Thus under the assumption n and k are both even y must be an integer.

Case 3. If one of the numbers n and k is odd, $\left(k^{2}+4\right) x^{2} \mp 4$ must be an even number. Thus this case is equivalent to the Case 2.

Consequently, since y must be a positive integer, from Lemma 2.2 , both $x=$ n and y must be k-Fibonacci numbers. Namely, n is a k-Fibonacci number.

We note that it was given a different proof of Lemma 2.2 for the case $k=$ $2 \sinh \theta>1$ is an odd integer $(\theta>0)$. Now combining Theorem 2.1 and Theorem 2.2 we obtain the following theorem.

Theorem 2.3. A positive integer n is a k-Fibonacci number if and only if $\left(k^{2}+\right.$ 4) $n^{2} \mp 4$ is a perfect square.

For $k=1$, our results coincide with the results obtained in [4]. On the other hand, there is an alternative proof of Theorem 2.1. Let $n=F_{k, m}$. Using (2.2) and the Catalan's identity (2.5), we have

$$
F_{k, m-1} F_{k, m+1}=F_{k, m}^{2}+(-1)^{m}
$$

and

$$
\begin{aligned}
L_{k, m}^{2}-4\left[(-1)^{m}+F_{k, m}^{2}\right] & =\left(F_{k, m+1}+F_{k, m-1}\right)^{2}-4\left[F_{k, m+1} F_{k, m-1}\right] \\
& =\left(F_{k, m+1}-F_{k, m-1}\right)^{2} \\
& =\left(k F_{k, m}\right)^{2} \\
& =k^{2} F_{k, m}^{2} \\
L_{k, m}^{2} & =\left(k^{2}+4\right) F_{k, m}^{2} \mp 4 .
\end{aligned}
$$

So, if n is a k-Fibonacci number $F_{k, m}$ then $\left(k^{2}+4\right) n^{2} \overline{+} 4$ is a perfect square.

3. When is a number k-Lucas?

Now we continue our work with the following lemmas.
Lemma 3.1. The equation

$$
\begin{equation*}
y^{2}-k x y-x^{2}=\bar{\mp}\left(k^{2}+4\right) \tag{3.1}
\end{equation*}
$$

is satisfied by $(x, y)=\left(L_{k, n}, L_{k, n+1}\right)$ for all $n \geq 0, x, y \in \mathbb{N}$.
Proof. For $n=0$, using $\left(L_{k, 0}, L_{k, 1}\right)=(2, k)$ we have

$$
k^{2}-2 k^{2}-4=-\left(k^{2}+4\right),
$$

that is the equation (3.1) is true.
Now, suppose that the equation is true for n. Then by definition we obtain

$$
\begin{aligned}
& L_{k, n+2}^{2}-k L_{k, n+1} L_{k, n+2}-L_{k, n+1}^{2} \\
= & \left(k L_{k, n+1}+L_{k, n}\right)^{2}-k L_{k, n+1}\left(k L_{k, n+1}+L_{k, n}\right)-L_{k, n+1}^{2} \\
= & 2 k L_{k, n+1} L_{k, n}+L_{k, n}^{2}-k F_{k, n+1} F_{k, n}-L_{k, n+1}^{2} \\
= & -\left(L_{k, n+1}^{2}-k L_{k, n+1} L_{k, n}-L_{k, n}^{2}\right) \\
= & \mp\left(k^{2}+4\right) .
\end{aligned}
$$

Lemma 3.2. If (x, y) is a pair of positive integers satisfying the equation (3.1) then $(x, y)=\left(L_{k, n}, L_{k, n+1}\right)$ or $(x, y)=\left(L_{k, n}, L_{k, n-1}\right)$ for some $n \geq 0$.
Proof. If we take $k x=y$ then we get

$$
y^{2}-k x y-x^{2}=y^{2}-y^{2}-x^{2}=-x^{2}=-\left(k^{2}+4\right)
$$

Hence there is no pair (x, y) which satisfies the equation (3.1). Let $k x<y$. We see that the pair of positive integers $(a, b)=(y-k x, x)$ satisfies the equation (3.1) since we have

$$
\begin{aligned}
b^{2}-k a b-a^{2} & =x^{2}-k(y-k x) x-(y-k x)^{2} \\
& =x^{2}-k y x-y^{2}+2 k y x \\
& =-\left(y^{2}-k x y-x^{2}\right)=\mp\left(k^{2}+4\right) .
\end{aligned}
$$

By induction, $(a, b)=\left(L_{k, n}, L_{k, n+1}\right)$ by some n. Thus we get

$$
x=b=L_{k, n+1}
$$

and

$$
y=k x+a=k L_{k, n+1}+L_{k, n} .
$$

This means that $(x, y)=\left(L_{k, n+1}, L_{k, n+2}\right)$.
Now let $k x>y$. It can be easily seen that the pair of positive integers $(a, b)=$ $(x, k x-y)$ satisfies the equation (3.1) since we have

$$
\begin{aligned}
b^{2}-k a b-a^{2} & =(k x-y)^{2}-k x(k x-y)-x^{2} \\
& =y^{2}-k x y-x^{2}=\mp\left(k^{2}+4\right) .
\end{aligned}
$$

By induction, $(a, b)=\left(L_{k, n}, L_{k, n+1}\right)$ by some n. Thus we get

$$
x=a=L_{k, n}
$$

and

$$
y=k x-b=k L_{k, n}-L_{k, n+1}=L_{k, n-1} .
$$

This means that $(x, y)=\left(L_{k, n}, L_{k, n-1}\right)$.
Theorem 3.1. A positive integer n is a k-Lucas number if and only if $\left(k^{2}+4\right) n^{2} \overline{+} 4\left(k^{2}+4\right)$ is a perfect square.

Proof. The proof is similar to the proofs of Theorem 2.1 and Theorem 2.2 by Lemma 3.1 and Lemma 3.2.

There is an alternative proof of the first part of Theorem 3.1. Let $n=L_{k, 2 m+1}$. Using (2.1) and (2.4) we find

$$
\begin{aligned}
\left(k^{2}+4\right) n^{2}+4\left(k^{2}+4\right) & =\left(k^{2}+4\right)\left(r_{1}^{2 m+1}+r_{2}^{2 m+1}\right)^{2}+4\left(k^{2}+4\right) \\
& =\left(k^{2}+4\right)\left[r_{1}^{4 m+2}+r_{2}^{4 m+2}+2\left(r_{1} r_{2}\right)^{2 m+1}+4\right] \\
& =\left(k^{2}+4\right)\left(\sqrt{k^{2}+4} F_{k, 2 m+1}\right)^{2} \\
& =\left(k^{2}+4\right)^{2} F_{k, 2 m+1}^{2} .
\end{aligned}
$$

Now let $n=L_{k, 2 m}$. By a similar way we find

$$
\begin{aligned}
\left(k^{2}+4\right) n^{2}-4\left(k^{2}+4\right) & =\left(k^{2}+4\right)\left(r_{1}^{2 m}+r_{2}^{2 m}\right)^{2}-4\left(k^{2}+4\right) \\
& =\left(k^{2}+4\right)\left[r_{1}^{4 m}+r_{2}^{4 m}+2\left(r_{1} r_{2}\right)^{2 m}-4\right] \\
& =\left(k^{2}+4\right)\left[r_{1}^{4 m}+r_{2}^{4 m}-2\left(r_{1} r_{2}\right)^{2 m}\right] \\
& =\left(k^{2}+4\right)\left(\sqrt{k^{2}+4} F_{k, 2 m}\right)^{2} \\
& =\left(k^{2}+4\right)^{2} F_{k, 2 m}^{2} .
\end{aligned}
$$

4. Applications

In Section 2, we have introduced the algorithm as to whether or not a positive integer is k-Fibonacci or k-Lucas. Using these tests we give an algorithm to realize any given positive integer n whether or not a k-Fibonacci or k-Lucas number. This algorithm is created by MATLAB [13].

References

[1] Bolat, C. and Köse H., On the properties of k-Fibonacci numbers, Int. J. Contemp. Math. Sciences, 5, 1097-1105, (2010).
[2] Falcòn S., On the k-Lucas Numbers, Int. J. Contemp. Math. Sciences, 6, 1039-1050, (2011).
[3] Hoggatt V. E., Generalized Zeckendorf theorem, Fibonacci Quart 10, 89-93, (1972).
[4] James P., When is a number Fibonacci?, Department of Computer Science, Swansea University, January 25, (2009).
[5] Kalman, D. and Mena, R., The Fibonacci numbers-exposed. Math. Mag. 76, no. 3, 167-181, (2003).
[6] Cahill N. D., D'Errico J. R., Spence J. S., Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart. 41, no. 1, 13-19, (2003).
[7] Ismail, M. E. H., One parameter generalizations of the Fibonacci and Lucas numbers, Fibonacci Quart. 46/47, no. 2, 167-180, (2008/09).
[8] Koshy T., Fibonacci and Lucas numbers with applications, Wiley, (2001).
[9] Siar Z., Keskin R., Some new identites concerning Generalized Fibonacci and Lucas Numbers, Hacet. J. Math. Stat. 42, no.3, 211-222, (2013).
[10] Ozgur, N. Y., Ucar S., Oztunc O., Complex Factorizations of the k-Fibonacci and k-Lucas numbers, in press, (2015).
[11] S. Falcòn and À. Plaza, On the Fibonacci k-numbers, Chaos, Solitons 8 Fractals 32, 16151624 (2007).
[12] S. Falcòn and À. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solitons 8 Fractals 33, 38-49 (2007).
[13] MATLAB trial version 8.5.0. Natick, Massachusetts: The MathWorks Inc., (2015).
Balikesir University, Department of Mathematics, 10145 Balikesir, TURKEY
E-mail address: nihal@balikesir.edu.tr
Balikesir University, 10145 Balikesir, TURKEY
E-mail address: oztunc@balikesir.edu.tr

Table 1. The Algorithm

[^0]: Date: Received: July 8, 2015; Accepted: July 29, 2015.
 2010 Mathematics Subject Classification. 11B39, 11B83.
 Key words and phrases. k-Fibonacci number; k-Lucas number; Binet formula.

