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ON DETERMINATION OF k-FIBONACCI AND k-LUCAS

NUMBERS

NİHAL YILMAZ ÖZGÜR AND ÖZNUR ÖZTUNÇ KAYMAK

(Communicated by İrfan ŞİAP)

Abstract. In this study we investigate some properties of the k-Fibonacci

and k-Lucas sequences which are generalize the classical Fibonacci and Lucas

sequences. Moreover, two efficient tests are introduced as to whether or not a
positive integer is k-Fibonacci or k-Lucas.

1. Introduction

Let k and t be nonzero real numbers such that k2+4t > 0. Generalized Fibonacci
sequence {Un} is defined by

(1.1) U0 = 0, U1 = 1 and Un+1 = kUn + tUn−1 for n ≥ 1,

and generalized Lucas sequence {Vn} is defined by

(1.2) V0 = 2, V1 = k, and Vn+1 = kVn + tVn−1 for n ≥ 1,

(see [3], and [9] for more details about these sequences).
Let k ≥ 1 be any integer. In (1.1) and (1.2) if we take t = 1, we obtain k-

Fibonacci and k-Lucas numbers Fk,n and Lk,n, respectively. Basic properties of
these sequences were investigated in the several papers (see [1], [2], [12] and [2]).
After complex factorizations of these numbers for k = 1 were found by the autors in
[6], these results were generalized for k-Fibonacci and k-Lucas numbers in [10]. In
[7], using the Chebyshev polynomials of the first and second kinds, one-parameter
generalizations of the Fibonacci and Lucas numbers were given.

In this paper we introduce two tests as to whether or not a positive integer is
k-Fibonacci or k-Lucas. Our results generalize the results for the case k = 1 given
by I. Gessel, P. James and G. Wulczyn, respectively (see [8] and [4]).

Date: Received: July 8, 2015; Accepted: July 29, 2015.

2010 Mathematics Subject Classification. 11B39, 11B83.
Key words and phrases. k-Fibonacci number; k-Lucas number; Binet formula.

20



ON DETERMINATION OF k-FIBONACCI AND k-LUCAS NUMBERS 21

2. When is a number k-Fibonacci?

Let r1 and r2 be the roots of the characteristic equation r2 = kr+1 and r1 > r2.
It is known that

r1 =
k +
√
k2 + 4

2
, r2 =

k −
√
k2 + 4

2
and

(2.1) r1.r2 = −1.

Before giving our results, we recall the following equations (see [8], [11], [12])

(2.2) Lk,n = Fk,n−1 + Fk,n+1 for n ≥ 1,

(2.3) Fk,n =
rn1 − rn2
r1 − r2

(Binet’s Formula),

(2.4) Lk,n = rn1 + rn2 ,

and

(2.5) Fk,n−rFk,n+r − F 2
k,n = (−1)n+1−rF 2

k,r (Catalan’s Identity).

We begin the following lemmas.

Lemma 2.1. The equation

(2.6) y2 − kxy − x2 = +1

is satisfied by (x, y) = (Fk,n, Fk,n+1) for all n ≥ 0, x, y ∈ N.

Proof. For n = 0, using (Fk,0, Fk,1) = (0, 1) we have

12 − k.0.1− 02 = 1,

that is, the equation (2.6) is true.
Now, suppose that the equation (2.6) is true for n. Then by definition we obtain

F 2
k,n+2 − kFk,n+1Fk,n+2 − F 2

k,n+1

= (kFk,n+1 + Fk,n)2 − kFk,n+1(kFk,n+1 + Fk,n)− F 2
k,n+1

= −(F 2
k,n+1 − kFk,n+1Fk,n − F 2

k,n)

= +1.

�

Lemma 2.2. If (x, y) is a pair of positive integers satisfying the equation (2.6)
then (x, y) = (Fk,n, Fk,n+1) or (x, y) = (Fk,n, Fk,n−1) for some n ≥ 0.

Proof. If we take kx = y, then substituting y
k for x we get

y2 − kxy − x2 = y2 − y2 −
(y
k

)2

= −y
2

k2
= +1,

hence setting (x, y) = (Fk,1, Fk,2), satisfies this equation. Now assume that kx < y
and y2 − kxy − x2 = +1. We see that the pair of positive integers (a, b) = (y −
kx, x) satisfies the equation (2.6) since we have

b2 − kab− a2 = x2 − k(y − kx)x− (y − kx)2

= −(y2 − kxy − x2) = +1.
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By induction, (a, b) = (Fk,n, Fk,n+1) by some n. Thus we get

x = b = Fk,n+1

and

y = kx+ a = kFk,n+1 + Fk,n.

This means that (x, y) = (Fk,n+1, Fk,n+2). Similarly if kx > y then it can be seen
that the pair of positive integers (a, b) = (x, kx−y) satisfies the equation (2.6) since
we have

b2 − kab− a2 = (kx− y)2 − k(kx− y)x− x2

= y2 − kyx− x2 = +1.

Hence we get

x = a = Fk,n

and

y = kx− b = kFk,n − Fk,n+1.

This means that (x, y) = (Fk,n, Fk,n−1). �

From [2], we have the following theorem.

Theorem 2.1. (See [2], Theorem 2.1) For any integer n, the number (k2+4)F 2
k,n+

4(−1)n is a perfect square.

Now we prove the converse of Theorem 2.1.

Theorem 2.2. Let n be a positive integer. If (k2 + 4)n2+4 is a perfect square then
n is a k-Fibonacci number.

Proof. We use Lemma 2.1. Using the equation (2.6), we get

y =
kx+

√
(4 + k2)x2+4

2
.

Assuming y is positive we simplify this to

(2.7) y =
kx+

√
(4 + k2)x2+4

2
.

Assume that (k2+4)n2+4 is a perfect square and that x = n. Since x is a positive
integer then we see that y must also be a positive integer using the following three
cases:

Case 1. If n and k are both odd then (k2 + 4) and n2 must be both odd. Hence
the product (k2 + 4)n2 is an odd number and so (k2 + 4)n2+4 is an odd number
and perfect square. By (2.7) we get

1

2
(kn+ odd value) .

Since kn is odd, the number (kn+ odd value) is divisible by 2 and then 1
2 (kn+ odd value)

must be an integer. Thus under the assumption n and k are both odd y must be
an integer.

Case 2. If n and k are even then (k2 + 4) and n2 must be both even. Similarly
as for (k2 + 4)n2+4 is an even number and perfect square, using (2.7) we have

1

2
(kn+ even value) .
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Again as kn is even, the number (kn+ even value) is divisible by 2 and so we obtain
1
2 (kn+ even value) must be an integer. Thus under the assumption n and k are
both even y must be an integer.

Case 3. If one of the numbers n and k is odd, (k2 + 4)x2+4 must be an even
number. Thus this case is equivalent to the Case 2.

Consequently, since y must be a positive integer, from Lemma 2.2, both x =
n and y must be k-Fibonacci numbers. Namely, n is a k-Fibonacci number. �

We note that it was given a different proof of Lemma 2.2 for the case k =
2 sinh θ > 1 is an odd integer (θ > 0). Now combining Theorem 2.1 and Theorem
2.2 we obtain the following theorem.

Theorem 2.3. A positive integer n is a k-Fibonacci number if and only if (k2 +
4)n2+4 is a perfect square.

For k = 1, our results coincide with the results obtained in [4]. On the other
hand, there is an alternative proof of Theorem 2.1. Let n = Fk,m. Using (2.2) and
the Catalan’s identity (2.5), we have

Fk,m−1Fk,m+1 = F 2
k,m + (−1)m

and

L2
k,m − 4

[
(−1)m + F 2

k,m

]
= (Fk,m+1 + Fk,m−1)

2 − 4[Fk,m+1Fk,m−1]

= (Fk,m+1 − Fk,m−1)
2

= (kFk,m)2

= k2F 2
k,m

L2
k,m = (k2 + 4)F 2

k,m+4.

So, if n is a k-Fibonacci number Fk,m then (k2 + 4)n2+4 is a perfect square.

3. When is a number k-Lucas?

Now we continue our work with the following lemmas.

Lemma 3.1. The equation

(3.1) y2 − kxy − x2 = +(k2 + 4)

is satisfied by (x, y) = (Lk,n, Lk,n+1) for all n ≥ 0, x, y ∈ N.

Proof. For n = 0, using (Lk,0, Lk,1) = (2, k) we have

k2 − 2k2 − 4 = −(k2 + 4),

that is the equation (3.1) is true.
Now, suppose that the equation is true for n. Then by definition we obtain

L2
k,n+2 − kLk,n+1Lk,n+2 − L2

k,n+1

= (kLk,n+1 + Lk,n)2 − kLk,n+1(kLk,n+1 + Lk,n)− L2
k,n+1

= 2kLk,n+1Lk,n + L2
k,n − kFk,n+1Fk,n − L2

k,n+1

= −(L2
k,n+1 − kLk,n+1Lk,n − L2

k,n)

= +(k2 + 4).
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�

Lemma 3.2. If (x, y) is a pair of positive integers satisfying the equation (3.1)
then (x, y) = (Lk,n, Lk,n+1) or (x, y) = (Lk,n, Lk,n−1) for some n ≥ 0.

Proof. If we take kx = y then we get

y2 − kxy − x2 = y2 − y2 − x2 = −x2 = −(k2 + 4).

Hence there is no pair (x, y) which satisfies the equation (3.1). Let kx < y. We
see that the pair of positive integers (a, b) = (y − kx, x) satisfies the equation (3.1)
since we have

b2 − kab− a2 = x2 − k(y − kx)x− (y − kx)2

= x2 − kyx− y2 + 2kyx

= −(y2 − kxy − x2) = +(k2 + 4).

By induction, (a, b) = (Lk,n, Lk,n+1) by some n. Thus we get

x = b = Lk,n+1

and

y = kx+ a = kLk,n+1 + Lk,n.

This means that (x, y) = (Lk,n+1, Lk,n+2).
Now let kx > y. It can be easily seen that the pair of positive integers (a, b) =

(x, kx− y) satisfies the equation (3.1) since we have

b2 − kab− a2 = (kx− y)2 − kx(kx− y)− x2

= y2 − kxy − x2 = +(k2 + 4).

By induction, (a, b) = (Lk,n, Lk,n+1) by some n. Thus we get

x = a = Lk,n

and

y = kx− b = kLk,n − Lk,n+1 = Lk,n−1.

This means that (x, y) = (Lk,n, Lk,n−1). �

Theorem 3.1. A positive integer n is a k-Lucas number if and only if
(
k2 + 4

)
n2+4

(
k2 + 4

)
is a perfect square.

Proof. The proof is similar to the proofs of Theorem 2.1 and Theorem 2.2 by Lemma
3.1 and Lemma 3.2. �

There is an alternative proof of the first part of Theorem 3.1. Let n = Lk,2m+1.
Using (2.1) and (2.4) we find(

k2 + 4
)
n2 + 4(k2 + 4) = (k2 + 4)

(
r2m+1
1 + r2m+1

2

)2
+ 4(k2 + 4)

= (k2 + 4)
[
r4m+2
1 + r4m+2

2 + 2(r1r2)2m+1 + 4
]

= (k2 + 4)
(√

k2 + 4Fk,2m+1

)2

= (k2 + 4)2F 2
k,2m+1.
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Now let n = Lk,2m. By a similar way we find(
k2 + 4

)
n2 − 4(k2 + 4) = (k2 + 4)

(
r2m
1 + r2m

2

)2 − 4(k2 + 4)

= (k2 + 4)
[
r4m
1 + r4m

2 + 2(r1r2)2m − 4
]

= (k2 + 4)
[
r4m
1 + r4m

2 − 2(r1r2)2m
]

= (k2 + 4)
(√

k2 + 4Fk,2m

)2

= (k2 + 4)2F 2
k,2m.

4. Applications

In Section 2, we have introduced the algorithm as to whether or not a positive
integer is k-Fibonacci or k-Lucas. Using these tests we give an algorithm to realize
any given positive integer n whether or not a k-Fibonacci or k-Lucas number. This
algorithm is created by MATLAB [13].
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Table 1. The Algorithm

n= input(’n ’);
k= input(’k ’);

t1=(kˆ2+4)*nˆ2+4;
t2=(kˆ2+4)*nˆ2-4;

t3=(kˆ2+4)*nˆ2+4*(kˆ2+4);
t4=(kˆ2+4)*nˆ2-4*(kˆ2+4);

yes no=0;
if round(sqrt(t1))==sqrt(t1),

yes no=1;
end

yes no2=0;
if round(sqrt(t2))==sqrt(t2),

yes no2=1;
end

yes no3=0;
if round(sqrt(t3))==sqrt(t3),

yes no3=1;
end

yes no4=0;
if round(sqrt(t4))==sqrt(t4),

yes no4=1;
end

if yes no==1
fprintf(’n is a k-Fibonacci number’,t1);

else if yes no2==1
fprintf(’n is a k-Fibonacci number’,t2);

else if yes no3==1
fprintf(’n is a k-Lucas number’,t3);

else if yes no4==1
fprintf(’n is a k-Lucas number’,t4);

else fprintf(’n is a neither k-Fibonacci number nor k-Lucas number’,t1);
end
end
end
end


