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ON A M [X]/G/1 QUEUEING SYSTEM WITH GENERALIZED

COXIAN-2 SERVICE AND OPTIONAL GENERALIZED

COXIAN-2 VACATION

KAILASH C. MADAN

(Communicated by Türkan ERBAY DALKILIÇ)

Abstract. We study the steady state behaviour of a batch arrival single server

queue in which the first service with general service times G1 is compulsory

and the second service with general service times G2 is optional. We term such
a two phase service as generalized Coxian-2 service. Just after completion of a

service the server may take a vacation of random length of time with general
vacation times V1. After completion of the first phase of vacation the server

may or may not take the second optional vacation with general vacation times

V2. We term this two phase vacation as optional generalized Coxian-2 sever
vacation. We obtain steady state probability generating functions for the queue

size at a random epoch of time in explicit and closed forms. Some particular

cases of interest including some known results have been derived.

1. Introduction

Many authors including [8], [13], [5], [7], [3, 4], [6], [14], [15], [16], [17], [2], [1],
[18] and [10, 11, 12] have studied queues with server vacations, assuming various
vacation policies including Bernoulli schedules. In the present paper, we study
steady state behaviour of an M [X]/G/1 queue with Bernoulli schedules and Coxian-
2 server vacations, using the supplementary variable technique. The mathematical
model of our study is briefly described by the following underlying assumptions:

• Customers arrive at the system in batches of variable size in accordance
with a compound Poisson process. Let λcidt (for i = 1, 2, 3, ...) be the first
order probability that a batch of i customers arrives at the system during
a short interval of time (t, t+ dt], where 0 ≤ ci ≤ 1,

∑∞
i=1 ci = 1 and λ > 0

is the mean arrival rate of batches. The arriving batches wait in the queue
in the order of their arrival. It is further assumed that customers with each
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batch are pre-ordered for the purpose of service.

• There is a single server who provides generalized Coxian-2 service which
means essential first phase of service followed by optional second phase of
service. The first phase of service is provided to all customers one by one
on a first-come, first-served basis. Let S1 and S2 be the service times for
phase 1 and phase 2, respectively. Let A1(s1) and a1(s1) respectively be
the distribution function and the density function of the first phase service
time and let µ1(x)dx be the conditional probability of completion of first
phase service, given that the elapsed time is x, so that

(1.1) µ1(x) =
a1(x)

1−A1(x)
,

and, therefore,

(1.2) a1(s1) = µ1(s1) exp

− s1∫
0

µ1(x) dx

 .

• After completion of the first phase of service, the server provides second
phase of service which is optional. A customer may take second phase of
service with probability α or may leave the system with probability 1− α.
Let A2(s2) and a2(s2) respectively be the distribution function and the
density function of the second phase service time and let µ2(x)dx be the
conditional probability of completion of second phase service, given that
the elapsed time is x, so that

(1.3) µ2(x) =
a2(x)

1−A2(x)
,

and, therefore,

(1.4) a2(s2) = µ2(s2) exp

− s2∫
0

µ2(x) dx

 .

• As soon as the service of a customer is completed, then with probability p
the server may opt to take a vacation, or else with probability 1−p he may
continue staying in the system. In queueing literature this phenomenon
is termed as Bernoulli schedules. Most of the papers dealing with the
Bernoulli schedules assume that on any service completion epoch the server
may take a vacation with probability p or may not take a vacation with
probability 1 − p. They further assume that whenever the server becomes
idle on completing a service (i.e., he servers the last customer present in
the queue), he must necessarily take a vacation at such an epoch. However,
in the present paper, we assume that on any service completion epoch the
server may take a vacation with probability p or may not take a vacation
with probability 1− p, irrespective of whether there are customers waiting
in queue or not. We may term this phenomenon as uniform Bernoulli
schedules.
• Whenever the server decides to take a vacation, his vacation period fol-

lows a generalized Coxian-2 distribution which implies that this period is
bifurcated into two parts; phase 1 vacation followed by optional phase 2
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vacation. Let V1 and V2 denote the long vacation and short vacation times,
respectively. Let B1(v1) and b1(v1) respectively be the distribution function
and the density function of the first phase vacation time and let V1(x)dx
be the conditional probability of completion of first phase vacation, given
that the elapsed vacation time is x, so that

(1.5) V1(x) =
b1(x)

1−B1(x)
,

and, therefore,

(1.6) b1(v1) = V1(v1) exp

− v1∫
0

V1(x) dx

 .

• After completion of the first phase of vacation, the server may take second
phase of vacation with probability β or may return to the system with
probability 1 − β. LetB2(v2) and b2(v2) respectively be the distribution
function and the density function of the second phase vacation time and
let V2(x)dx be the conditional probability of completion of second phase
vacation, given that the elapsed time is x, so that

(1.7) V2(x) =
b2(x)

1−B2(x)
,

and, therefore,

(1.8) b2(v2) = V2(v2) exp

− v2∫
0

V2(x) dx

 .

• On completion of a vacation the server instantly takes up a customer (at
the head of the queue) for service if there are customers waiting in the
queue. However, if on returning back the server finds the queue empty, the
server remains idle until a new customer arrives in the system.
• Various stochastic processes involved in the system are independent of each

other.

2. Definitions and Notations

We assume that W
(j)
n (x, t), j = 1, 2, is the probability that at time t, there

are n(≥ 0) customers in the queue excluding one customer in j-th phase service

with elapsed service time x. Accordingly, W
(j)
n (t) =

∞∫
x=0

W
(j)
n (x, t) dx denotes

the probability that at time t, there are n customers in the queue excluding one
customer in the j-th phase service irrespective of the value of x. Next, we define

V
(j)
n (x, t), j = 1, 2, to be the probability that at time t, there are n(≥ 0) customers

in the queue and the server is on ,-th phase vacation with elapsed vacation time x.

Accordingly, V
(j)
n (t) =

∞∫
x=0

V
(j)
n (x, t) dx denotes the probability that at time t, there

are n customers in the queue and the server is on j-th phase vacation irrespective

of the value of x. Further, let Pn(t) =
∑2
j=1W

(j)
n (t) +

∑2
j=1 V

(j)
n (t) denote the

probability that at time t there are n(≥ 0) customers in the queue irrespective of
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whether the server is providing service or is on vacation. Finally, let Q(t) be the
probability that at time t, there is no customer in the system and the server is idle.

Further, for j = 1, 2, let the following denote the corresponding steady state
probabilities:

lim
t→∞

W (j)
n (x, t) = W (j)

n (x) , lim
t→∞

W (j)
n (t) = W (j)

n ,

lim
t→∞

V (j)
n (x, t) = V (j)

n (x) , lim
t→∞

V (k)
n (t) = V (k)

n ,

lim
t→∞

Pn(t) =

2∑
j=1

lim
t→∞

W (j)
n (t) +

2∑
j=1

lim
t→∞

V (j)
n (t) = Pn

lim
t→∞

Q(t) = Q .

Next, we define the following probability generating functions (pgf’s) for |z| ≤ 1
and j = 1, 2:

W (j)(x, z) =

∞∑
n=0

znW (j)
n (x) , W (j)(z) =

∞∑
n=0

znW (j)
n ,(2.1)

V (j)(x, z) =

∞∑
n=0

znV (j)
n (x) , V (j)(z) =

∞∑
n=0

znV (j)
n ,

P (z) =

∞∑
n=0

znPn =

∞∑
n=0

zn

 2∑
j=1

W (j)
n +

2∑
j=1

V (j)
n

 ,

C(z) =

∞∑
i=1

zici .

Further, we define the Laplace-Steiltjes transform of the j-th phase service time:

(2.2) Ā(j)[λ− λC(z)] =

∫ ∞
0

e[λ−λC(z)]xdA(j)(x) , j = 1, 2 ,

and the Laplace-Steiltjes transform of the k-th phase vacation time:

(2.3) B̄(j)[λ− λC(z)] =

∫ ∞
0

e[λ−λC(z)]xdB(j)(x) , j = 1, 2 .

3. Steady State Equations Governing the System

The usual probability arguments lead to the following steady state equations.

(3.1)
d

dx
W (1)
n (x) + (λ+ µ1(x))W (1)

n (x) = λ

n∑
i=1

ciW
(1)
n−i(x) , n ≥ 1 ,

(3.2)
d

dx
W

(1)
0 (x) + (λ+ µ1(x))W

(1)
0 (x) = 0 ,

(3.3)
d

dx
W (2)
n (x) + (λ+ µ2(x))W (2)

n (x) = λ

n∑
i=1

ciW
(2)
n−i(x) , n ≥ 1 ,

(3.4)
d

dx
W

(2)
0 (x) + (λ+ µ2(x))W

(2)
0 (x) = 0 ,



38 KAILASH C. MADAN

(3.5)
d

dx
V (1)
n (x) + (λ+ V1(x))V (1)

n (x) = λ

n∑
i=1

ciV
(1)
n−i(x) , n ≥ 1 ,

(3.6)
d

dx
V

(1)
0 (x) + (λ+ V1(x))V

(1)
0 (x) = 0 ,

(3.7)
d

dx
V (2)
n (x) + (λ+ V2(x))V (2)

n (x) = λ

n∑
i=1

ciV
(2)
n−i(x) , n ≥ 1 ,

(3.8)
d

dx
V

(2)
0 (x) + (λ+ V2(x))V

(2)
0 (x) = 0 ,

λQ = (1− β)

∫ ∞
0

V
(1)
0 (x)V1(x) dx+

∫ ∞
0

V
(2)
0 (x)V2(x) dx(3.9)

+(1− p)(1− α)

∫ ∞
0

W
(1)
0 (x)µ1(x) dx+ (1− p)

∫ ∞
0

W
(2)
0 (x)µ2(x) dx .

Equations (3-1) through (3.8) are to be solved subject to the following boundary
conditions, where n ≥ 0:

W (1)
n (0) = (1− p)(1− α)

∫ ∞
0

W
(1)
n+1(x)µ1(x) dx(3.10)

+(1− p)
∫ ∞
0

W
(2)
n+1(x)µ2(x) dx+ (1− β)

∫ ∞
0

V
(1)
n+1(x)V1(x) dx

+

∫ ∞
0

V
(2)
n+1(x)V2(x) dx+ λcn+1Q ,

(3.11) W (2)
n (0) = α

∫ ∞
0

W (1)
n (x)µ1(x) dx ,

(3.12) V (1)
n (0) = p(1− α)

∫ ∞
0

W (1)
n (x)µ1(x) dx+ p

∫ ∞
0

W (2)
n (x)µ2(x) dx ,

(3.13) V (2)
n (0) = β

∫ ∞
0

V (1)
n (x)V1(x) dx .

4. Steady State Solution: Queue Size at a random Epoch

Theorem 4.1. Under the model assumptions described above, the steady state prob-
ability generating function of the queue size at a random epoch is given by
(4.1)

P (z) =

[ (
Ā(1)[λ− λC(z)]− 1

)
+ α

(
Ā(2)[λ− λC(z)]− 1

)
+p
(
B̄(1)[λ− λC(z)]− 1

)
+ pβ

(
B̄(2)[λ− λC(z)]− 1

) ]Q
H(z)

,
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Where

H(z) = z − (1− p)(1− α)Ā(1)[λ− λC(z)](4.2)

−(1− p)αĀ(1)[λ− λC(z)]Ā(2)[λ− λC(z)]

−(1− β)p(1− α)Ā(1)[λ− λC(z)]B̄(1)[λ− λC(z)]

−(1− β)pαĀ(1)[λ− λC(z)]Ā(2)[λ− λC(z)]B̄(1)[λ− λC(z)]

−βp(1− α)Ā(1)[λ− λC(z)]B̄(1)[λ− λC(z)]B̄(2)[λ− λC(z)]

−βpαĀ(1)[λ− λC(z)]Ā(2)[λ− λC(z)]B̄(1)[λ− λC(z)]B̄(2)[λ− λC(z)] ,

(4.3) Q = 1− λE(I)(E(S1) + αE(S2) + pE(V1) + pβE(V2)) ,

E(I) is the mean size of the arriving batch, E(S1) is the mean service time of the
first phase service, E(S2) is the mean service time of the second phase service,
E(V1) is the mean vacation time of the first phase vacation and E(V2) is the mean
vacation time of the second phase vacation.

Proof. Multiplying equation (3.1) by zn, summing over n and adding the result to
(3.2) and using (2.1) we get

(4.4)
d

dx
W (1)(x, z) + (λ+ µ1(x)− λC(z))W (1)(x, z) = 0 .

Similar operation on equations (3.3) and (3.4), (3.5) and (3.6), and (3.7) and (3.8)
yield

(4.5)
d

dx
W (2)(x, z) + (λ+ µ2(x)− λC(z))W (2)(x, z) = 0 ,

(4.6)
d

dx
V (1)(x, z) + (λ+ V1(x)− λC(z))V (1)(x, z) = 0 ,

(4.7)
d

dx
V (2)(x, z) + (λ+ V2(x)− λC(z))V (2)(x, z) = 0 .

Next, we perform the similar operations on the boundary conditions (3.10), (3.11),
(3.12), (3.13) and make use of equation (3.9). Thus we get

zW (1)(0, z) = (1− p)(1− α)

∫ ∞
0

W (1)(x, z)µ1(x) dx(4.8)

+(1− p)
∫ ∞
0

W (2)(x, z)µ2(x) dx+ (1− β)

∫ ∞
0

V (1)(x, z)V1(x) dx

+

∫ ∞
0

V (2)(x, z)V2(x) dx+ (λC(z)− λ)Q ,

(4.9) W (2)(0, z) = α

∫ ∞
0

W (1)(x, z)µ1(x) dx ,

(4.10) V (1)(0, z) = p(1− α)

∫ ∞
0

W (1)(x, z)µ1(x) dx+ p

∫ ∞
0

W (2)(x, z)µ2(x) dx ,

(4.11) V (2)(0, z) = β

∫ ∞
0

V (1)(x, z)V1(x) dx .
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Now we integrate equations (4.4) to (4.7) between the limits 0 and x and obtain

(4.12) W (1)(x, z) = W (1)(0, z) exp

(
−(λ− λC(z))x−

∫ x

0

µ1(t) dt

)
,

(4.13) W (2)(x, z) = W (2)(0, z) exp

(
−(λ− λC(z))x−

∫ x

0

µ2(t) dt

)
,

(4.14) V (1)(x, z) = V (1)(0, z) exp

(
−(λ− λC(z))x−

∫ x

0

V1(t) dt

)
,

(4.15) V (2)(x, z) = V (2)(0, z) exp

(
−(λ− λC(z))x−

∫ x

0

V2(t) dt

)
,

where W (1)(0, z), W (2)(0, z), V (1)(0, z) and V (2)(0, z) are given above in equations
(4.8), (4.9), (4.10) and (4.11) respectively.

Next we again integrate equations (4.12) to (4.15) w.r.t. x by parts and obtain

(4.16) W (1)(z) = W (1)(0, z)

(
1− Ā(1)[λ− λC(z)]

λ− λC(z)

)
,

(4.17) W (2)(z) = W (2)(0, z)

(
1− Ā(21)[λ− λC(z)]

λ− λC(z)

)
,

(4.18) V (1)(z) = V (1)(0, z)

(
1− B̄(1)[λ− λC(z)]

λ− λC(z)

)
,

(4.19) V (2)(z) = V (2)(0, z)

(
1− B̄(21)[λ− λC(z)]

λ− λC(z)

)
.

Now we shall determine the integrals
∫∞
0
W (1)(x, z)µ1(x) dx,

∫∞
0
W (2)(x, z)µ2(x) dx,∫∞

0
V (1)(x, z)V1(x) dx and

∫∞
0
V (2)(x, z)V2(x) dx appearing in the right sides of

equations (4.8) to (4.11). For this purpose we multiply equations (4.4) to (4.7) by
µ1(x), µ2(x), V1(x) and V2(x) respectively and integrate each w.r.t. x. Thus we
obtain

(4.20)

∫ ∞
0

W (1)(x, z)µ1(x) dx = W (1)(0, z)Ā(1)[λ− λC(z)] ,

(4.21)

∫ ∞
0

W (2)(x, z)µ2(x) dx = W (2)(0, z)Ā(2)[λ− λC(z)] ,

(4.22)

∫ ∞
0

V (1)(x, z)V1(x) dx = V (1)(0, z)B̄(1)[λ− λC(z)] ,

(4.23)

∫ ∞
0

V (2)(x, z)V2(x) dx = V (2)(0, z)B̄(2)[λ− λC(z)] .

Utilizing equations (4.20) to (4.23) into equations (4.8) to (4.11) we get on simpli-
fying

(4.24) W (1)(z) =
Ā(1)[λ− λC(z)]− 1

H(z)
,
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(4.25) W (2)(z) =
Ā(2)[λ− λC(z)]− 1

H(z)
,

(4.26) V (1)(z) = p
B̄(1)[λ− λC(z)]− 1

H(z)
,

(4.27) V (2)(z) = pβ
B̄(2)[λ− λC(z)]− 1

H(z)
.

Further, adding equations (4.24), (4.25), (4.26) and (4.27), we get
(4.28)

P (z) =

[ (
Ā(1)[λ− λC(z)]− 1

)
+ α

(
Ā(2)[λ− λC(z)]− 1

)
+p
(
B̄(1)[λ− λC(z)]− 1

)
+ pβ

(
B̄(2)[λ− λC(z)]− 1

) ]Q
H(z)

,

where H(z) is given by (4.2).
Now in order to determine the only unknown constant Q, we employ the nor-

malizing condition

(4.29) Q+ P (1) = 1 .

We note that each factor in the right side of each of the equations (4.24) to (4.27)
is indeterminate of the zero by zero form at z = 1. Therefor, employing L’Hopital’s
rule, we obtain

W (1)(1) = lim
z→1

W (1)(z) = lim
z→1

(
Ā(1)[λ− λC(z)]− 1

H(z)

)
Q =

λE(I)E(S1)Q

H(z)
,

which is further simplified as

(4.30) W (1)(z) =
λE(I)E(S1)Q

1− λE(I)(E(S1) + αE(S2) + pE(V1) + pβE(V2))
.

Similarly equations (4.25) to (4.27) yield

W (2)(1) = lim
z→1

W (2)(z) = lim
z→1

α

(
Ā(2)[λ− λC(z)]− 1

H(z)

)
Q(4.31)

=
λαE(I)E(S2)Q

1− λE(I)(E(S1) + αE(S2) + pE(V1) + pβE(V2))
,

V (1)(1) = lim
z→1

V (1)(z) = lim
z→1

p

(
B̄(1)[λ− λC(z)]− 1

H(z)

)
Q(4.32)

=
λpE(I)E(V1)Q

1− λE(I)(E(S1) + αE(S2) + pE(V1) + pβE(V2))
,

V (2)(1) = lim
z→1

V (2)(z) = lim
z→1

pβ

(
B̄(2)[λ− λC(z)]− 1

H(z)

)
Q(4.33)

=
λpβE(I)E(V2)Q

1− λE(I)(E(S1) + αE(S2) + pE(V1) + pβE(V2))
,

(4.34) P (1) =
λE(I)Q(E(S1) + αE(S2) + pE(V1) + pβE(V2))

1− λE(I)(E(S1) + αE(S2) + pE(V1) + pβE(V2))
.
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Using (4.34) in the normalising equation (4.29), we obtain

(4.35) Q = 1− λE(I)(E(S1) + αE(S2) + pE(V1) + pβE(V2)) .

Further, we obtain the utilization factor of the system as

(4.36) ρ = 1−Q = λE(I)(E(S1) + αE(S2) + pE(V1) + pβE(V2)) .

�

5. Steady State Solution: Mean Queue Size at a Random Epoch

Theorem 5.1. Under the model assumptions described above, the steady state mean
queue size at a random epoch is given by

Lq = lim
z→1

(
J1 + αJ2 + pK1 + pβK2

(1−M)2
(5.1)

+
M [αJ1J2 + 2p(αK1J2 + αβJ2K2 + βK1K2 + βJ1K2)]

(1−M)2

)
.

where

J1 = λE[I(I − 1)]E(S1) + (λE(I))2E(S2
1) ,(5.2)

J2 = λE[I(I − 1)]E(S2) + (λE(I))2E(S2
2) ,

K1 = λE[I(I − 1)]E(V1) + (λE(I))2E(V 2
1 ) ,

K2 = λE[I(I − 1)]E(V2) + (λE(I))2E(V 2
2 ) ,

M = λE[I]Q(E(S1) + αE(S2) + pE(V1) + pβE(V2)) .

Proof. Let Lq denote the steady state mean queue size at a random epoch. Then
using (4.27) we get

Lq =
d

dz
P (z)

∣∣∣∣
z=1

=
d

dz

(
N(z)

H(z)

)∣∣∣∣
z=1

,

where
(5.3)

N(z) =

[ (
Ā(1)[λ− λC(z)]− 1

)
+ α

(
Ā(2)[λ− λC(z)]− 1

)
+p
(
B̄(1)[λ− λC(z)]− 1

)
+ pβ

(
B̄(2)[λ− λC(z)]− 1

) ]Q ,
and H(z) is given by (4.2) and Q is given by (4.3).

Since both N(z) and H(z) are zero at z = 1, we employ the following formula
which uses L’Hopital’s rule twice:

(5.4) Lq = lim
z→1

H ′(z)N ′′(z)−N ′(z)H ′′(z)
2(H ′(z))2

,

where primes and double primes in (5.4) denote the first and second derivative
respectively at z = 1. Carrying out the derivatives and simplifying a lot of cum-
bersome algebra we obtain the results in (5.1) and (5.2). �
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6. Particular Cases

Case 1: Two-phase general heterogeneous service and two-phase general vacation

The results of this case can be obtained from the above main results by putting
α = 1 and β = 1.

Case 2: Two-phase general heterogeneous service and one phase general vacation

The results of this case can be obtained from the above main results by putting
α = 1 and β = 0.

Case 3: One phase general service and two-phase general vacation

The results of this case can be obtained from the above main results by putting
α = 0 and β = 1.

Case 4: One phase general service and one phase general vacation

The results of this case can be obtained from the above main results by putting
α = 0 and β = 0.

Case 5: Two-phase general heterogeneous service and no vacation

The results of this case can be obtained from the above main results by putting
α = 1 and p = 0.

Case 6: One phase general service and no vacation

The results of this case can be obtained from the above main results by putting
α = 0 and p = 0.
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