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A NOTE ON LAGUERRE MATRIX POLYNOMIALS
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Abstract. In this paper, some new relations for Laguerre matrix polynomials

are given.

1. Introduction

Recently, matrix polynomials that are solutions of a second order matrix differ-
ential equation are very popular subject in mathematics. In this area, many papers
have been published ([17],[16],[18],[11],[19],[10],[23]). Many properties, extensions
and generalizations of them have been introduced ([20],[9],[13],[12],[22],[15],[4],[24],
[2],[3],[1],[8]). Laguerre matrix polynomial is one of them ([21],[20],[7],[5],[6]).

In this paper, firstly a few lemmas are given. After, some new relations for
Laguerre matrix polynomials are obtained by using these lemmas.

Throughout this paper, for a matrix A ∈ Cr×r, σ(A) denotes the set of all
eigenvalues ofA and is called its spectrum. A is a positive stable matrix if Re (λ) > 0
for all λ ∈ σ(A). Furthermore, the identity matrix and the null matrix in Cr×r will
be denoted I and 0. If A0, A1, ..., An are elements of Cr×r and An 6= 0, then

P (x) = Anx
n +An−1x

n−1 + ...+A1x+A0

is called a matrix polynomial of degree n in x for every integer n ≥ 0. From [17],

(1.1) (A)n = A(A+ I)(A+ 2I)...(A+ (n− 1)I) ; n ≥ 1 ; (A)0 = I.

is written. Using (1.1), we see that

(1.2)
I

(n− k)!
= (−1)k

(−nI)k
n!

; 0 ≤ k ≤ n.

In [17], if f(z) and g(z) are holomorphic functions which are defined in an open set
Ω of the complex plane, and if A is a matrix in Cr×r for which σ(A) ⊂ Ω, using
the properties of the matrix functional calculus in [14] then

f(A)g(A) = g(A)f(A).
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Hence, if B ∈ Cr×r is a matrix for which σ(B) ⊂ Ω and AB = BA, then

f(A)g(B) = g(B)f(A).

Let A be a matrix in Cr×rsatisfying (−k) /∈ σ (A) for every integer k > 0 and λ be
a complex number whose real part is positive. In [17], n-th degree Laguerre matrix

polynomial, L
(A,λ)
n (x) is defined by

L(A,λ)
n (x) =

n∑
k=0

(−1)
k

(n− k)! k!
(A+ I)n (A+ I)

−1
k (λx)

k
.

By using (1.2), L
(A,λ)
n (x) can be written in the form

L(A,λ)
n (x) =

(A+ I)n
n!

n∑
k=0

(−nI)k (A+ I)
−1
k

(λx)
k

k!
.

Also, Laguerre matrix polynomials have the following derivative relation [20],

(1.3)
d

dx
L(A,λ)
n (x) = −λL(A+I,λ)

n−1 (x) , n ≥ 1.

Lemma 1.1. [7] The raising operator for Laguerre matrix polynomials is

(1.4)
d

dx

(
xAe−λxL(A,λ)

n (x)
)

= (n+ 1)xA−Ie−λxL
(A−I,λ)
n+1 (x) , x > 0

where A is positive stable matrix in Cr×rand Re (λ) > 0.

2. Some new relations for Laguerre matrix polynomials

Lemma 2.1. Let A be a matrix in Cr×rsatisfying the spectral condition

(2.1) Re (µ) > 1 for all µ ∈ σ(A),

and λ be a complex number with Re (λ) > 0. For Laguerre matrix polynomials,

(2.2)
d

dx

[
xAL(A,λ)

n (x)
]

= (A+ nI)xA−IL(A−I,λ)
n (x) , x > 0

is satisfied.

Proof. We start by taking the derivative of xAL
(A,λ)
n (x) with respect to x. Thus,

we have

d

dx

[
xAL(A,λ)

n (x)
]

=
d

dx

[
xA

(A+ I)n
n!

n∑
k=0

(−nI)k (A+ I)
−1
k

(λx)
k

k!

]

=
d

dx

[
1

n!

n∑
k=0

λk (−nI)k (A+ I)n (A+ I)
−1
k

xA+kI

k!

]

=
1

n!

n∑
k=0

{
λk (−nI)k (A+ I)n (A+ I)

−1
k (A+ kI)

xA+(k−1)I

k!

}
.
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Then by using (1.1),

d

dx

[
xAL(A,λ)

n (x)
]

=
xA−I

n!

n∑
k=0

λk (−nI)k (A)n (A+ nI) (A)
−1
k

xk

k!

= (A+ nI)xA−I (A)n
n!

n∑
k=0

(−nI)k (A)
−1
k

(λx)
k

k!

= (A+ nI)xA−IL(A−I,λ)
n (x) .

holds. This completes the proof. �

Theorem 2.1. Let A be a matrix in Cr×r satisfying the spectral condition (2.1)
and Re (λ) > 0. Laguerre matrix polynomials satisfy the following relation with
x > 0

AL(A,λ)
n (x) = (A+ nI)L(A−I,λ)

n (x) + λxL
(A+I,λ)
n−1 (x) , n ≥ 1.

Proof. The derivative of multiplication of xAL
(A,λ)
n (x) with respect to x is, as

follows from (1.3),

d

dx

[
xAL(A,λ)

n (x)
]

= AxA−IL(A,λ)
n (x) + xA

d

dx
L(A,λ)
n (x)

= AxA−IL(A,λ)
n (x)− λxAL(A+I,λ)

n−1 (x) , n ≥ 1.

Using (2.2) in the left side of this equation,

AxA−IL(A,λ)
n (x) = (A+ nI)xA−IL(A−I,λ)

n (x) + λxAL
(A+I,λ)
n−1 (x) , n ≥ 1

is written. Then multiplying both sides with the inverse of xA−I ,

AL(A,λ)
n (x) = (A+ nI)L(A−I,λ)

n (x) + λxL
(A+I,λ)
n−1 (x) , n ≥ 1

is obtained. �

Theorem 2.2. Let A be a matrix in Cr×r satisfying the spectral condition (2.1)
and Re (λ) > 0. For Laguerre matrix polynomials,

(n+ 1)L
(A−I,λ)
n+1 (x) = (A+ nI)L(A−I,λ)

n (x)− λxL(A,λ)
n (x) , x > 0

holds.

Proof. Starting from the derivative of e−λxxAL
(A,λ)
n (x) with respect to x and using

Lemma 2.1, we can write

d

dx

[
e−λx

(
xAL(A,λ)

n (x)
)]

= −λe−λxxAL(A,λ)
n (x) + e−λx

d

dx

(
xAL(A,λ)

n (x)
)

= −λe−λxxAL(A,λ)
n (x) + (A+ nI) e−λxxA−IL(A−I,λ)

n (x) .(2.3)

Combining (1.4) and (2.3), then multiplying both side with eλxx−A+I , the proof is
completed. �
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[11] Defez, E., Jódar, L. and Law, A., Jacobi matrix differential equation, polynomial solutions

and their properties. Comput. Math. Appl. 48 (2004), 789-803.
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