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Abstract. The most simple unimolecular first order chemical reaction mech-
anism that involves two species, can be exemplified by the Mutarotation of

Glucose [1]. The corresponding mathematical model is an O.D.E. linear sys-
tem which solutions are stable, but not asymptotically [2]. When three chem-

ical compounds are considered, the mechanism can vary from a simple two

reactions sequence to a complicated one as the adsorption of Carbon Diox-
ide (CO2) over Platinum (Pt) surfaces [2]. Although in these examples the

mechanisms are very different, in both cases the O.D.E. system has two nega-

tive eigenvalues and the other one is zero. Once again, solutions show a weak
stability which implies that small errors due to measurements in the initial

concentrations will remain bounded, but they do not tend to vanish as the

reaction proceeds. In this paper, a general result for reversible reactions is
stated through an inverse modelling approach [3] [4], proposing theoretical

mechanisms and showing algebraically that all the eigenvalues are negative,

except one, which is zero. From this fact, the conclusions about the stability
of the solutions are obtained and their consequences on the propagation of

measurements errors are analysed.

1. Introduction

A first order chemical reaction proceeds at a rate that depends linearly only
on one reactant concentration.The differential equation describing this first order
kinetics is:

(1.1)
d[A]

dt
= −k[A]

being [A] the concentration of the reactant A , t is time and k is the kinetic constant.
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If two chemical species are involved, instead of an O.D.E., we will have an O.D.E.
linear system. For instance, in the mutarotation of Glucose we have:

(1.2) α−Glucose� β −Glucose
If k1 and k−1 are the kinetic constants, this mechanism includes two first order
reactions, the direct one:

(1.3) α−Glucose k1−→ β −Glucose
and the opposed one:

(1.4) β −Glucose k−1−→ α−Glucose
In the adsorption of Carbon Dioxide (CO2) over Platinum (Pt) surfaces, three

different adsorbates were observed. If E1 ,E2 and E3 represent these adsorbates,
then the mechanism that showed the best fit with the experimental curves was the
following:

E1
k1−→ E2

E1
k2−→ E3(1.5)

E2
k3−→ E3 E3

k−3−→ E2

where k1 ,k2 ,k3 and k−3 are the kinetic constants.
If [E1] , [E2], [E3] represent the adsorbates surface concentrations, then the

corresponding mathematical model is the following:

(1.6)


d[E1]

dt
= − (k1 + k2) [E1]

d[E2]

dt
= k1[E1]− k3[E2] + k−3[E3]

d[E3]

dt
= k2[E1] + k3[E2]− k−3[E3]

In the mutarotation of Glucose example, the O.D.E. associated system matrix
[2] is:

(1.7) A1 =

(
−k1 k−1

k1 −k−1

)
and in the adsorption of Carbon Dioxide (CO2) over Platinum (Pt) surfaces, the
O.D.E. associated system matrix is:

(1.8) A2 =

−k1 − k2 0 0
k1 −k3 k−3

k2 k3 −k−3


In both cases (i.e., for matrices A1 and A2), the matrices eigenvalues are easy to

compute. The eigenvalues corresponding to A1 are λ1 = 0 and λ2 = −(k1+k−1) < 0
and for A2 are: λ1 = 0 , λ2 = −k1 − k2 < 0 and λ3 = −k3 − k−3 < 0 (see [2] for
this result).

Taking into account these results, it seems that there is a null eigenvalue and
all the others are negative. If this conjecture was true, then the O.D.E. system
solutions would be stable but not asymptotically.

In this paper the precedent conjecture will be proved for mechanisms involving n
chemical compounds, all of them only linked by reversible first order reactions. As a



60 VICTOR MARTINEZ-LUACES

final remark, the consequences of these results in the propagation of measurements
errors for this kind of mechanisms will be analysed.

2. Analysis of mechanisms involving two, three or four substances

In this section we will consider chemical mechanisms involving two, three or
four substances that will be notated as E1 ,E2 ,E3 and E4. These species will be
linked by all the possible reversible chemical reactions. For instance, if only two
reactants E1 and E2 are involved, the corresponding mechanism consists in only
one reversible reaction. The situation can be schematized as:

E1
K−→ E2 , E2

k−→ E1(2.1)

being K the kinetic constant for the direct reaction and k the corresponding one
for the opposed one. It is easy to note that this mechanism is the same as (1.2),
with a different notation.

In this case the characteristic equation is:

(2.2) p(λ) = det(A− λI) = det

(
−K − λ k
K −k − λ

)
= λ2 + (K + k)λ = 0

and the eigenvalues are λ1 = 0 and λ2 = −(K + k) < 0.
If three species E1 ,E2 and E3 are linked by all the possible reactions between

them, the chemical mechanism will be:

(2.3)

E1
K−→ E2 , E2

k−→ E1

E1
L−→ E3 , E3

l−→ E1

E2
M−→ E3 , E3

m−→ E2

where capital letters were used for the direct reactions kinetic constants and lower-
case letters for the corresponding opposed reactions. The mathematical model for
this mechanism is:

(2.4)
d

dt

[E1]
[E2]
[E3]

 =

−K − L k l
K −k −M m
L M −l −m

[E1]
[E2]
[E3]


In this equation, all the associated matrix columns add to zero, so its determinant

is zero and λ = 0 is one of the eigenvalues. Moreover, the characteristic equation
is:

(2.5) p(λ) = det(A− λI) = det

−K − L− λ k l
K −k −M − λ m
L M −l −m− λ

 = 0

Algebraic manipulations lead to a third order polynomial equation of this form:

(2.6) p(λ) = −λ3 − aλ2 − bλ = 0 =⇒ p(λ) = (−λ)(λ2 + aλ+ b) = 0

where

(2.7)
a = K + L+M + k + l +m
b = KM +Kl +Km+ LM + Lk + Lm+Ml + kl + km

It is important to note that K, L, M , k, m and l are positive numbers since
they are kinetic constants, so a > 0 and b > 0. Solving equation (2.6) the following



STABILITY OF O.D.E. SOLUTIONS CORRESPONDING TO CHEMICAL MECHANISM... 61

eigenvalues are obtained:

(2.8) λ1 = 0 , λ2 =
−a+

√
a2 − 4b

2
, λ3 =

−a−
√
a2 − 4b

2

The eigenvalues λ2 and λ3 depend on ∆ = a2 − 4b , which at least in theory
can be positive, negative or zero. For instance, if all the kinetic constants were the
same number (K), then a = K + L + M + k + l + m = 6K and b = KM + Kl +
Km+LM +Lk+Lm+Ml+kl+km = 9K2, so ∆ = a2− 4b = 36K2− 36K2 = 0.
From the stability view point, the sign of ∆ = a2−4b is irrelevant, since in all cases
Re(λ2) < 0 and Re(λ3) < 0 because a > 0 and b > 0 then, the O.D.E. system has
a null eigenvalue and the other two have a negative real part. As a consequence,
all the solutions are stable, but not asymptotically.

The last result admits an interesting generalization for the eigenvalues of the
associated matrix: if all the reactions involved in the mechanism are first order
unimolecular reactions reversible or not then, for every eigenvalue λ it can be
proved that Re(λ) 6 0 and Re(λ) = 0 if and only if λ = 0. This result is a
consequence of the general form of the associated matrix obtained through an
inverse modelling approach [3] [4] and the Gershgorin circle theorem (see [5] for
more details).

Finally, if four chemical species E1 ,E2 ,E3 and E4 are linked by all the possible
unimolecular reactions between them, the chemical mechanism will be:

(2.9)

E1
A−→ E2, E2

a−→ E1

E1
B−→ E3, E3

b−→ E1

E1
C−→ E4, E4

c−→ E1

E2
D−→ E3, E3

d−→ E2

E2
E−→ E4, E4

e−→ E2

E3
F−→ E4, E4

f−→ E3

and the O.D.E. system is:
(2.10)

d

dt


[E1]
[E2]
[E3]
[E4]

 =


−A−B − C a b c

A −a−D − E d e
B D −b− d− F f
C E F −c− e− f




[E1]
[E2]
[E3]
[E4]


Algebraic manipulations lead to a fourth order characteristic equation of this

form:

(2.11) p(λ) = λ4 +αλ3 + βλ2 + γλ = 0 =⇒ p(λ) = λ.(λ3 +αλ2 + βλ+ γ) = 0

Once again the determinant is zero and the coefficient α is the sum of the kinetic
constants, i.e., α = A+B+C+D+E+F +a+ b+ c+d+e+f . Nevertheless, for
this analysis the most important coefficient is γ , which is a large sum of products
like abc , bcD , fAE and CEF , among others (the whole sum consists in 64
products of three kinetic constants). If the reactions are reversible like in (2.9), all
these constants are positive and so, γ > 0 and then, the null eigenvalue is always a
simple root of the characteristic equation.

Summarizing, if two, three or four substances are involved and all the reactions
of the mechanism are reversible, λ = 0 is a simple eigenvalue, and the other ones
have negative real part.
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3. A general result

In the previous cases, the characteristic equations were:

(3.1) p(λ) = λ2 + (K + k)λ = 0

(3.2) p(λ) = −λ3 − aλ2 − bλ = 0

(3.3) p(λ) = λ4 + αλ3 + βλ2 + γλ = 0

Note that the equations (3.1), (3.2) and (3.3) are just simplified versions of equations
(2.2), (2.6) and (2.11), respectively. All of them are of the form:

(3.4) p(λ) = (−1)nλn + cn−1λ
n−1 + . . .+ c2λ

2 + c1λ = 0

where c1 = K + k > 0 in equation (3.1), c1 = −KM − . . . − km < 0 in equation
(3.2) and c1 = abc+ . . .+ CEF > 0 in equation (3.3).

Then, the sign of c1 is positive if an even number of substances react and negative
if the chemical species are an odd number. It can be noted also that there are(
6
2

)
= 15 possible combinations of two kinetic constants and 9 of them are present

in the coefficient c1 of equation (3.2), while in equation (3.3), 64 of the
(
12
3

)
= 220

possible combinations of three kinetic constants are involved in the same coefficient.
In general, if n substances react, the absolute value of the coefficient |c1| is a

positive number, since it is a sum of products of n − 1 positive kinetic constants.
Being in all cases c1 6= 0 , it can be concluded that λ = 0 is a simple eigenvalue, while
the other eigenvalues can be multiple (double, triple, etc.). On one hand, from the
O.D.E. solutions point of view, the non-zero eigenvalues give linear combinations
of functions like:

(3.5) exp(λt) , t exp(λt) , t2 exp(λt) , . . . , tp exp(λt)

depending on the algebraic and the corresponding geometric multiplicity of the
eigenvalue λ.

Taking into account that Re(λ) < 0 , all the functions given in (3.5) tend to
zero as t −→ +∞. On the other hand, for the null eigenvalue, the corresponding
exponential function exp(λt) is a constant, so the O.D.E. system solutions will be
stable but not asymptotically.

4. Conclusions

In the precedent section it was proved that if n species react following a reversible
first order reactions mechanism then the O.D.E. solutions show a weak stability
(i.e., they are stable but not asymptotically).

In Chemical Kinetics experiments there are always small errors in measurements
in the initial concentrations. Those errors will remain bounded, but they do not
tend to vanish as the reaction proceeds.

It is important to know, whether or not, the paper results can be extended to
other chemical mechanisms. It can be noted that the general result about the weak
stability of the O.D.E. solutions strongly depends on the previous statement about
the coefficient c1. This argument cannot be generalized to other kind of reactions.
For example, if the mechanism involves both reversible and irreversible reactions,
there exist counter-examples once again, obtained through an inverse modelling
approach where c1 = 0 and the null eigenvalue may be double, triple, etc. In these
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cases, a weak stability result can be obtained at least for mechanisms involving two
or three reactants [5], if they are linked through unimolecular first order reactions.
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