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ABSTRACT. Mursaleen introduced the concepts of statistical convergence in
random 2-normed spaces. Recently Mohiuddine and Aiyup defined the notion
of lacunary statistical convergence and lacunary statistical Cauchy in random
2-normed spaces. In this paper, we define and study the notion of lacunary
statistical convergence and lacunary of statistical Cauchy sequences in random
on x? over p— metric spaces defined by Musielak and prove some theorems
which generalizes Mohiuddine and Aiyup results.

1. INTRODUCTION

The concept of statistical convergence play a vital role not only in pure math-
ematics but also in other branches of science involving mathematics, especially in
information theory, computer science, biological science, dynamical systems, geo-
graphic information systems, population modeling, and motion planning in robotics.

The notion of statistical convergence was introduced by Fast and Schoenberg
independently. Over the years and under different names statistical convergence
has been discussed in the theory of fourier analysis, ergodic theory and number
theory. Later on it was further investigated by Fridy, S'aldt, Cakalli, Maio and
Kocinac, Miller, Maddox, Leindler, Mursaleen and Alotaibi, Mursaleen and Edely,
and many others. In the recent years, generalizations of statistical convergence
have appeared in the study of strong integral summability and the structure of
ideals of bounded continuous functions on Stone-Cech compactification of the nat-
ural numbers. Moreover statistical convergence is closely related to the concept of
convergence in probability.

The notion of statistical convergence depends on the density of subsets of N. A
subset of N is said to have density ¢ (E) if

5 1y _
0 (E) =limy s—00 p” Z ZX E(mn)=0.

m=1n=1
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Throughout w, x and A denote the classes of all, gai and analytic scalar valued
single sequences, respectively.

We write w? for the set of all complex sequences (Z,,,,), where m,n € N, the set
of positive integers. Then, w? is a linear space under the coordinate wise addition
and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [4]. Later
on, they were investigated by Hardy [11], Moricz [19], Moricz and Rhoades [20],
Basarir and Solankan [3], Tripathy [34-37], Turkmenoglu [30], and many others.

We procure the following sets of double sequences:

M, (t) = {(xmn) € w? : supmnen \xmn|t’”" < oo},
bmn — 1 for somel € C},

Cp(t) == {(ﬂfmn) € w? 1 p — liMum n—oo [Tmn — 1
COP (t) = (xmn) S w2 :p— limm,n_wo |1‘mn|tmn = 1} s
ﬁu (t) = (xm”) € U}2 : Zfr?:l Zf:;l ‘xmn|tmn < OO} )

Cop (t) == Cp () N M (t) and Covy () = Cop () N M (1),

where ¢ = (t,u,) is the sequence of strictly positive reals t,,, for all m,n € N and
D — limy, n—oo denotes the limit in the Pringsheim’s sense. In the case ¢, =1
for all m,n € N; M, (t), C, (t), Cop (t), Lu (t), Cip (t) and Copp (t) reduce to the
sets My, Cp, Cop, Ly, Cpp and Copp, respectively. Now, we may summarize the
knowledge given in some document related to the double sequence spaces. Gékhan
and Colak [7,8] have proved that M, (¢) and C, (t) , Cpp (t) are complete paranormed
spaces of double sequences and gave the a—, 5—,v— duals of the spaces M,, (¢) and
Cpp (t) . Quite recently, in her PhD thesis, Zelter [42] has essentially studied both
the theory of topological double sequence spaces and the theory of summability
of double sequences. Mursaleen and Edely [21] have independently introduced the
statistical convergence and Cauchy for double sequences and given the relation
between statistical convergent and strongly Cesaro summable double sequences.
Altay and Basar [1] have defined the spaces BS, BS (t), CSp, CSpp, CS, and BY
of double sequences consisting of all double series whose sequence of partial sums
are in the spaces My, My, (t), Cp, Cpp, Cr and L,,, respectively, and also examined
some properties of those sequence spaces and determined the a— duals of the spaces
BS, BV, CSp, and the 3 (¥) — duals of the spaces CSy, and CS, of double series.
Basar and Sever [2] have introduced the Banach space £, of double sequences
corresponding to the well-known space ¢, of single sequences and examined some
properties of the space £,. Quite recently Subramanian and Misra [28] have studied
the space X?w (p, q,u) of double sequences and gave some inclusion relations.

The class of sequences which are strongly Cesaro summable with respect to
a modulus was introduced by Maddox [18] as an extension of the definition of
strongly Cesaro summable sequences. Cannor [5] further extended this definition
to a definition of strong A— summability with respect to a modulus where A =
(an,k) is a nonnegative regular matrix and established some connections between
strong A— summability, strong A— summability with respect to a modulus, and
A— statistical convergence. In [25] the notion of convergence of double sequences
was presented by A. Pringsheim. Also, in [12]-[13], and [14] the four dimensional
matrix transformation (Az), , = >~ 1 > | al &y was studied extensively by
Robison and Hamilton. 7



96 R. BABU, N. SUBRAMANIAN, AND P. THIRUNAVUKKARASU

We need the following inequality in the sequel of the paper. For a,b > 0 and
0 < p <1, we have

(1.1) (a+b)P <aP +bP

The double series Zf:,nﬂ Tmn is called convergent if and only if the double

sequence (S,,,) is convergent, where s,,, = Zznjzl zij(m,n € N).
A sequence z = (x,,,,)is said to be double analytic if sup,, |xmn\1/m+n < 00.
The vector space of all double analytic sequences will be denoted by A2. A sequence
x = (Tmn) is called double gai sequence if ((m + n)! |xmn|)1/m+n — 0asm,n — oo.
The double gai sequences will be denoted by x2. Let ¢ = {all finite sequences} .

Consider a double sequence z = (z;;). The (m, n)*" section 2™ of the sequence
is defined by zl™" = er’zoxij%ij for all m,n € N; where 3;; denotes the double
sequence whose only non zero term is a ﬁ in the (i,j)th place for each 4,5 € N.

An FK-space (or a metric space) X is said to have AK property if (Sy,y) is a
Schauder basis for X. Or equivalently z!™™ — z.

An FDK-space is a double sequence space endowed with a complete metriz-
able; locally convex topology under which the coordinate mappings = = (zp) —
(Zmn)(m,n € N) are also continuous.

Let M and ® are mutually complementary modulus functions. Then, we have

(i) For all u,y > 0,

(1.2) uy < M (u) + @ (y), (Young'sinequality)[16].
(ii) For all u > 0,

(1.3) un (u) = M (u) + @ (n (u)) .
(iii) For all w > 0, and 0 < A < 1,
(1.4) M (Au) < AM (u) .

Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to construct
Orlicz sequence space

by = {xéwZM(%) < 00, forsomep>0}.

k=1

The space £3; with the norm

I =mf{p> 0> (1) < 1},
k=1 P

becomes a Banach space which is called an Orlicz sequence space. For M (t) =
t? (1 < p < 00), the spaces £j; coincide with the classical sequence space £,,.

A sequence f = (fiun) of modulus function is called a Musielak-modulus function.
A sequence g = (gmn) defined by

Imn (V) = sup{|v|u — (frn) (w) :u >0}, mn=1,2,---

is called the complementary function of a Musielak-modulus function f. For a
given Musielak modulus function f, the Musielak-modulus sequence space ty and
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its subspace hy are defined as follows:
ty = {x e w?: It (|wmn))/™ ™ = 0asm,n — o

hy = {a: ew?: Iy (|Tmn))/ ™™ = 0asm,n — oo}7

where I is a convex modular defined by

oo o0

I () = 323 fon (2n) /™" 2 = (2) € 1.

m=1n=1

We consider t; equipped with the Luxemburg metric

x 1/m+n
d(x,y) = supmn {inf (Z > fmn ("”")) < 1}.

If X is a sequence space, we give the following definitions:

i) X = the continuous dual of X;

i) X = {a = (amn) : 355 =1 |@mn@mn| < 00, foreachz € X} ;

iii) Xﬁ = {a = (amn) : o n=10mnTmn s convegent, for eachx € X} ;

(
(
(
(iv) X7 = { = (amn) : SUPmn > 1 Z%:LV 1 GmnTmn
(
(

< 00, foreachxeX};

v) Let X bean FK —space D ¢;then X/ = {f(\fmn) 1 fe Xl};

vi) X0 = { = (Amn) : SUPmn |amnxmn|1/m+n < 00, for eachz € X} :

X2 X8 X7 are called a — (or Kéthe-Toeplitz) dual of X, — (or generalized-
Ko6the-Toeplitz) dualof X, y—dual of X, § — dualof X, respectively. X< is defined
by Gupta and Kamptan [16]. It is clear that X* ¢ X% and X® C X7, but X? c X7
does not hold, since the sequence of partial sums of a double convergent series need
not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced
by Kizmaz as follows

Z(A)={z=(z) ew: (Azxy) € Z},

for Z = ¢,¢p and £, where Axy = zp — x4 for all k € N. Here ¢, ¢g and £
denote the classes of convergent, null and bounded sclar valued single sequences,
respectively. The difference sequence space bv,, of the classical space £, is introduced
and studied in the case 1 < p < oo by Bagar and Altay and in the case 0 < p < 1
by Altay and Basar in [1]. The spaces ¢ (A), ¢o (A), lo (A) and bu, are Banach
spaces normed by

oo 1/p
[zl = |z1] + supk>1 |Azk| and 2], = <Z |xk|p> ,(1<p<oo).

Later on the notion was further investigated by many others. We now introduce
the following difference double sequence spaces defined by

Z(A) = {x = (Tpn) € W2 : (Apy) € Z},

where Z = A27X2 and Az, = (mmn - xmn+1) - (merln - $m+1n+1) = Tmn —
Tmntl — Tmtin + Tmyint1 for all myn € N. The generalized difference double
notion has the following representation:

—1 —1 -1 —1
Aml’mn =A™ Lmn — A™ LTmn+1 — A™ Tm+1n + A™ Tm+1n+1;
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and also this generalized difference double notion has the following binomial repre-

sentation:
m m » m m
Amxmn - ZZ (71)2 J (’L) <]> Tm+in+j-

i=0 j=0

2. DEFINITION AND PRELIMINARIES

Let n € N and X be a real vector space of dimension w where n < w. A
real valued function dy,(z1,...,z,) = ||(di(z1),...,dn(zn))|l, on X satisfying the
following four conditions:

() [1(di(z1), ..., dn(zn))|lp = 0 if and and only if di(z1),...,dn(x,) are linearly
dependent,

(i) ||(d1(z1),-- -, dn(xn))|p is invariant under permutation,

(iii) [[(adi(z1), ..., dn(zn))llp = |l [[(di(z1), ..., dn(zn))lp, a €R

(iv) dp ((z1,91),s (22,92) - -+ (Tny yn)) = (dx (T1, 22, 20)P + dy (Y1,Y2, Yn)P)
for 1 < p < oo; (or)

(v) d((@1,91), (22,¥2), (T, Yn)) = sup {dx (¥1, T2, @), dy (Y1, Y2, Yn) } 5

for 1,22, -z, € X,Y1,Y2, - Yn € Y is called the p product metric of the
Cartesian product of n metric spaces is the p norm of the n-vector of the norms of
the n subspaces.

A trivial example of p product metric of n metric space is the p norm space is
X =R equipped with the following Euclidean metric in the product space is the p
norm:

1(dy (1), - . dn(zn)) 2

1/p

sup (|det(dmn (Zmn))|)

di (5511) dy2 (3012) v din (mm)
do1 (21) doo (x22) ... dop(x1n)

= Ssup ’ s
dnl (xnl) dn2 (xn2) dnn (xnn)

where x; = (241, @) € R” for each ¢ = 1,2,---n.

If every Cauchy sequence in X converges to some L € X, then X is said to be
complete with respect to the p— metric. Any complete p— metric space is said to
be p— Banach metric space.

Let X be a linear metric space. A function w : X — R is called paranorm, if

(1) w(x) >0, for all x € X;

(2) w(—x) =w(x), for all z € X;

B)w(z+y) <w(z)+w(y), foral z,y € X;

(4) If (04mn) is a sequence of scalars with o,,, — 0 as m,n — 0o and (Z,,,) is a
sequence of vectors with w (z,,, — ) — 0 as m,n — oo, then w (GnTmn — o) —
0 as m,n — oo.

A paranorm w for which w (z) = 0 implies = 0 is called total paranorm and the
pair (X, w) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [41], Theorem 10.4.2,
p.183).

By the convergence of a double sequence we mean the convergence on the Pring-
sheim sense that is, a double sequence & = (2,5, ) has Prinsheim limit L (denoted by
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P —limz = L) provided that given ¢ > 0 there exists n € N such that |z,,, — L| < €
whenever m,n > n . We shall write more briefly as P— convergent.

The double sequence 6,.s = {(m,.,ns)} is called double lacunary sequence if there
exist two increasing of integers such that

mo =0, ¢, = m, —m,_1 — coasr — oo and
ng =0,ps =Ng — Ns—_1 —> 00aASs — X.

Notations: m.s = myng, hrs = ©rQPs, Oy is determined by

Is ={(m,n) :m_; <m<mrandns_1 <n <ng},

qr = kkiilvq; = 7:7g and ¢rs = ¢rgs-

T -1
The notion of A— double gai and double analytic sequences as follows: Let
A= Amn)re n—o be a strictly increasing sequences of positive real numbers tending
to infinity, that is

0< oo < A11 < ---and Ay, — 00ASM, N — 0O

and said that a sequence @ = (Z,,,) € w? is A\— convergent to 0, called the A— limit
of x, if ppmy () = 0asm,n — oo, where i, (x) is defined by

—1 —1 —1 1/ m+n
m n— A" )\m,n+1 —A™ >\m+1,n +A™ )\m+1,n+1) |xmn‘ / .

S mel,, nelm

The sequence & = (¥,,,) € w? is A— double analytic if sup,, |fmn (2)] < co. If
limnTmn = 0 in the ordinary sense of convergence, then

llmmni Zmelm ZHEIT»S (Am_lAm,n - Am_l)‘mm—i—l - Am’_lAWL—i—l,n + A"l_l)\m-ﬁ—lfn+l)
((m A+ n)! |Zmp — O™ = 0.
This implies that

limpp |,Umn (:E) - Ol
= hmm" i Emelrs Znelrs (Am_l)\m,n — Am—lAmJH-l - ATn_l)‘m-‘rl,n + Am_lAm-i—l,n-‘rl)
((m+ 1) g — O™ = 0,
which yields that lim, fmn (¥) = 0 and hence x = (7,,,) € w? is A— convergent

to 0.
Let I2— be an admissible ideal of 2¥*N 4, be a double lacunary sequence, f =

(fimn) be a Musielak-modulus function and (X,|\(d(a:1),d(x2),~~ d(zn_1))| )

be a p—metric space, ¢ = (¢mn) be double analytic sequence of strictly posi-
tive real numbers. By w? (p — X) we denote the space of all sequences defined

over (X, l(d(x1),d(z2), - ,d(zn=1))l ) . The following inequality will be used
throughout the paper. If 0 S Amn < SUPGmy = H, K = max (1, 2H’1) then

(2.1) |amn _|_ bmn|QMn S K {|amn‘an + |bmn|an}

for all m,n and ampn, b, € C. Also |a]™™" < max (1, |a|H) for all a € C.
In the present paper we define the following sequence spaces:

[X?%”(d(%),d(@)’... d(zn_1)) } _
{r,s €l {fmn (Humn (), (d(z1),d(22)," 7d($n71))”p)}qmn > 6} e I?
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and

4201 () o] =
{T,S el : [fmn (Hﬂmn (x)v(d(xl),d(x2)7 . (xn 1))” )] > K} —

If we take fon () = x, we get

2 r
[0 I (@) d (w2, d(@n)E] =

{rs et |(lnm @), @), d(2), - d(@a I, )] zeer
and
AT (1) s d (w2) - d (@ muﬂf =
{rs €Lt [(litmn @), (@(@) (@) d@ai)l,)] ™" 2 K} € 1
If we take ¢ = (Gmn) = 1, we get
[l dte), o d e ))lE], =
{8 € Loy [ (lhimn (), @(@1) 4 (@2) - (), ) 2 ) € 2
and

|43, 11(d (@1) ,d (w2) - ,d@cnfl))uﬂ: =
{T,SEIM : [fmn (”an (x)ﬂ(d(xl),d(lg),... (xn 1))” )] } er.

In the present paper we plan to study some topological properties and inclusion
relation between the above defined sequence spaces.

2

L @) ) )IE],

and
2

(A28 1@ o) d o) )E],

which we shall discuss in this paper.

3. MAIN RESULTS

3.1. Theorem. Let f = (fmn) be a Musielak-modulus function, ¢ = (¢mn) be a
double analytic sequence of strictly positive real numbers, the sequence spaces

2

@) d ) )IE]

and
2

[Aig,||(d(x1),d(x2),~~' d(@n—1))l }

are linear spaces.
Proof: It is routine verification. Therefore the proof is omitted.
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3.2. Theorem. Let f = (fn) be a Musielak-modulus function, ¢ = (gmnn) be

a double analytic sequence of strictly positive real numbers, the sequence space
I2

[X?C‘L, I(d(z1),d(z2),- - ,d(ggn,l))Hﬂe is a paranormed space with respect to

the paranorm defined by h

9 @) = inf {[fun (Ibmn (@), (@ @2) d(x2) - d@aen))l,) | <1}
Proof: Clearly g (z) > 0for z = () € [x?,ﬂ, [(d(21),d(x2), - ,d(xn_1))| } "

Since frn (0) =0, we get g (0) = 0.
Conversely, suppose that g (z) = 0, then

inf { [ fon (Ittmn (2), (d (1), d (2) -+ d @), )| < 1}
Suppose that pi,, (z) # 0 for each m,n € N. Then
[t (), (d (1), d (22) ;- d (20-1))]|7 — oo
It follows that
(o 100t )]

which is a contradiction. Therefore i, () = 0. Let

([fm" (”/Jmn (@), (d(z1),d(z2), - ,d(xn_1))| )}qmn)l/H -
and

([ (Itrn @) (@ a0) @) - )] ) <1
Then by using Minkowski’s inequality, we have
({fmn (”:umn (x4y),(d(x1),d(xs), - ,d(zn_1) )}qm,, 1/H
({fmn (H,an (2),(d(z1),d(x2), - ,d(zn_1))| >:|Q1,L,L)1/H
([fm" (||an (), (d(z1),d(x2) - ,d(zn_1))| )]qmn>1/H.

So we have

g(@+y) = ing {[fon (Imn (@ +9), (@) d (@), dl@a)ll,)| " <1} <
inf { [ frun (I1mn (@)1 (@ @1) A @2) -+ 1 (20-1)
inf {[foun (tnn (), (d (1) d (@2) -+ (20-1))

Therefore,

—_ hd:
N——
Q
3
3
| IN
—
—
+

gle+y) <g(@) +g(y).
Finally, to prove that the scalar multiplication is continuous. Let A be any
complex number. By definition,

90) = inf { [fon (lmn ), (@ (1), d (22) -+ d @a-n)),) ] < 1)
Then
g Ona) = inf LA/ [ fonn (it O) (@ (@1) s a2) s+ )], )|
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where t = & Since || < maz (1, |M*“PP™") , we have
g(Az) <
maa (1, N7 in f {tamn /2| fo (Humn (A2), (d 1), d (w2) - d @), )| <1}
This completes the proof.

3.3. Theorem. (i) If the sequence (fy.n) satisfies uniform As— condition, then

[ it (), (1)) o] =
D o (@), (@ (1) d (2) - d ) }ﬁ
(i) If the sequence (gmn) satisfies uniform Ay— condition, then
D i () (d (1) 1 (w2) -+ d (20-0))] }Im -
3 i (2), 01 2), G )IE] "
Proof: (i) Let the sequence (fy,y) satisfies uniform As— condltlon we get
0 ) (1) d a2) - d @]
[t lmn (@) (d (@1) ) -+ d (@a-0))] }I
To prove the inclusion
N2 s @), (d (@) 4 @2) -]
[t (. o) ). A )]
let a € [\}h llmn (2), (d(21) d (22) -+ s (wn1)IF } ™ Then for all {2}
With () € (X5 Dt (), (1) d(02) - d )] e ave
(3.1) i i | | < 0.
et

Since the sequence (f,5) satisfies uniform Ay— condition, then

2

(ymn) € [X?Za”ﬂmn (’ll'),(d(l‘l),d(l‘g), (xn 1))” } )

we get D00 D00, ’% < oo by (3.2). Thus

2

(rstmn) € [0 limn (@), (@ (02)  (@2) -+ n-0)E],
= [ it 00, @ 1) @), d ]
and hence

(@) € (X3 ptn (@) (d (22) d (22) - ()]
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This gives that

[X?”pr lttmn (), (d (1), d (22), -

D tn (@), (d (1) d (2) -

We are granted with (3.1) and (3.3)

[X?f(,zp ”,Umn (1') » (d (1'1) 7d(l’2) R

|: 2q”,”ﬂmn( ),(d(m1)7d(x2)’_._

(ii) Similarly, one can prove that

[X?/”‘» tmn (), (d (1), d (z2) , - -

[xfc‘i, |t (), (d (1), d (3) , - -

2a

a0,
A (@)l ]

2

d@a)f], =

0
rs2

atwnIg],

I2a

d@a-)f], <
IE
d(z-)lf],

if the sequence (gp,y) satisfies uniform As— condition.

3.4. Proposition. If 0 < ¢, < pmn < 00 for each m and m, then

[ fu |ttrmn (), (d(21),d(z2),- -

(A2t (2) (@ (21) ,d (22) .-

Proof: The proof is standard, so we omit it.

I2

,d<xn71>>||ﬂ c

0

a0,

12

3.5. Proposition. (i) If 0 < infgmn < ¢mn < 1 then

{Aqu”ﬂmn( ), (d(z1),d(z2), ",

[A?uv |t () 5 (d (21) ,d (22) -

(i) If 1 < Gimn < SUPGmn < 00, then

(83, o (2) (@ (21) 1 (22) .-+

(A7t (2) (@ (1), (22) .-

Proof: The proof is standard, so we omit it.

3.6. Proposition. Let f/

functions, we have

(A%l (). (d (21)  d (a2) -
|:A2?' ’ ”an (.%') ) (d (.%'1) ,d (xQ) )T

(220, it (), (@ (1), (22) .-+

Proof: The proof is easy so we omit it.

= (frn) and 1" = (fn

T

2

alw-Ig],

"

a0l
A )E]
A (@) ]

s

N
c

103

) are sequences of Musielak
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3.7. Proposition. For any sequence of Musielak functions f = (f,,) and ¢ =
(¢mn) be double analytic sequence of strictly positive real numbers. Then

D It (@), (d 1) d (@) -+ d () } c
(A3t (2) (@ (21) 1 (22) -+ (1) }
Proof: The proof is easy so we omit it.

3.8. Proposition. The sequence space

2

(830 o () (@ 1) 0 (02) - o E]
is solid. 2
Proofs Let & = (o) € [A%0: i (2), (01 d 22), -+ d e )Z],
(i.e) .
sup [Nl (2), (1) d 2) - (an i) E] < oo

Let (amn) be double sequence of scalars such that |, | < 1 for allm,n € NxN.
Then we get

D, (AT [ptmn (@) (d (1) d (3) -+ o (wn)|F] <
Dy [AZL i () (A 1) (2) -+ (o 0))]
This completes the proof.
3.9. Proposition. The sequence space

(A2 it (@), (@ (2) ), )]

is monotone
Proof: The proof follows from Proposition 3.8.

3.10. Proposition. If f = (f,,,) be any Musielak function. Then

12

(A3 b (@), (@ (@2) (@) - s e
e ?
(A% N (@) (@ (1) d @)+ @) ]
if and only if supmzlg—Zi < 0.
Proof: Let
17
€ [ATt It (@) (d @) d (@) -+ o (wn)I ]
and

*
TSs

EES
TS

N = sup, s>1 < 0.
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Then we get
12
2 -
(A5 tn (@), (@ (22) A (@2) -+ s d (o)) [57] =
) :
N (A3 ln (@), (d 1) d (22) - s d (@ 0)F] =0

Thus @ € (A3, lJtnn (). (d (1) d (2) - d@a)E |
Conversely, suppose that b

|:A§(ZJ,’ Hﬂ'mn (33) s (d (331) 7d($2) e ’d (xn—l))||§*:| I c

Ny
(30 Tt (@), (@ o) (02 - o)
and
& [AZL o (2). @ (1) o) s )]
Then

2

(AT lin (@) (d (@2) d (2) - d ()] <

for every € > 0. Suppose that supr,szl% = 00, then there exists a sequence of
. 0l
members (rs;) such that lzmj7k_>oo¢+fi = 00. Hence, we have

I2

|: flu”:umn( )7(d(x1)ad(x2)7‘” ’d<xn71))\|§:51|0,.5 -
Therefore
e I?
2 ¢ [AfL i () (@ (1) d ) - d ()]

which is a contradiction. This completes the proof.

3.11. Proposition. If f = (f,,,) be any Musielak function. Then

(ATt (@) (d (21) () .- ,d<xn_1>>uzf*};s _
[ fﬂ’”'umn( z),(d(z1),d(z2),- - ’d(xnfl))”g**};m

* ok

if and OIlly if SUPyr s>1 gaii < 00, SUPr s>1 i* > 00.

TS

Proof: It is easy to prove so we omit.

3.12. Proposition. The sequence space

2

D Mt (@) 5 (@ (1) d (@) -+ d ()

is not solid.
Proof: The result follows from the following example.
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Example: Consider

x = (Tmn)
11 .. 1
1 1 ... 1
2 r
= ' S [Xfi7||,u/mn ($)7(d($1)ad(x2)a 7d($n*1))||;{;J 0..
1 1 1
Let
—1mtn _qmtn o _qmtn
—1mtn _gmitn o _qmtn
Omn = ’
—17.”“‘ B O
for all m,n € N. Then
12
2
Cnntmn & [0 Mt (), (d (1) 1 (22) - d @)
Hence
2q ® r
D Mt (@) (d (1) s (22) - d )]
is not solid.
3.13. Proposition. The sequence space
2
[t o @), (@ (@) d (2) -+ d @)

is not monotone

exi

Proof: The proof follows from Proposition 3.12.
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