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Abstract
In this article we obtain asymptotic formulas of arbitrary order for eigenfunctions and eigenvalues of the
non-self adjoint Sturm–Liouville operators with Dirichlet boundary conditions, when the potential is a
summable function. Then using these we compute the main part of the eigenvalues in special cases. The
eigenvalues obtained by the asymptotic method and the eigenvalues obtained by the finite difference
method followed by a numerical correction, are compared.
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1. Introduction
Let L(q) be an operator generated in L2[0, 1] by the expression

L(q) = −y
′′
(x) + q(x)y(x), 0 ≤ x ≤ 1 (1)

and by Dirichlet boundary conditions
y(0) = y(1) = 0, (2)

where q(x) is a complex-valued summable function.
In this article, we consider the small and large eigenvalues of the operator L(q) when q(x) has a singularity. The

large eigenvalues are investigated by the asymptotic method given in [1, 2]. Note that in classical investigations in
order to obtain the asymptotic formulas of order O(n−l) it is required that q(x) be (l− 1) times differentiable [4,11].
The method of [1] gives the possibility of obtaining the asymptotic formulas of order O(n−l) of eigenvalues and
eigenfunctions of L (q) when q(x) is arbitrary summable complex- valued function. The eigenvalues are compared
by asymptotic method and corrected approximation.

Expression of differential equations in matrix form and the advances in the field of the computers have led to
major developments in numerical methods. Regarding the numerical solution of the Sturm-Liouville problems,
Finite Difference method is amongst the popular methods. Finite Difference method can give effective results
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for the eigenvalues when it is used in connection with asymptotic correction technique. In the paper [13] the
Sturm-Liouville problems with Dirichlet and the general boundary conditions were studied respectively. Paine
found the correction of Finite Difference Eigenvalue Approximations for Sturm-Liouville Problems. Chen [16]
used the differential transform method to solve the eigenvalue problems. Ghelardoni and Gheri [18] used the
shooting technique for the calculation of the eigenvalues of Sturm-Liouville problem by considering the Prüfer
transformation given in [19].

2. Asymptotic Formulas For Eigenvalues

It is well-known [7] that the eigenvalues of the operator L (q) consists of the sequences {λn} satisfying

λn = (nπ)2 +O(1) (3)

for n ≥ N . Here and in forthcoming relations we denote by N a large positive integer, that is, N � 1. From these
formulas one can easily obtain the following inequalities from which we use essentially:∣∣λn − (πk)2

∣∣ > |(n− k)π| |(n+ k)π| − c1n
1
2 > c2n,∀k 6= n, k = 0, 1, ..., (4)

for n ≥ N, where we denote by cm, for m = 1, 2, ..., the positive constants whose exact value are inessential. To
obtain the asymptotic formula for eigenvalues λn and corresponding normalized eigenfunctions Φn(x) of L (q) we
use (4) and the following well-known relation

(λN − (πn)2)(ΦN (x), sinnπx) = (q(x)ΦN (x), sinnπx) (5)

Arguing as in the proof of Lemma 1 of [2], and using (5) and the decomposition

ΦN (x) =

∞∑
n1>−n

2 (ΦN (x), sin(n+ n1)πx) sin(n+ n1)πx (6)

of ΦN (x) by orthonormal basis
{√

2 sin(n+ n1)πx : n1 > −n
}

we get

(q(x)ΦN (x), sinnπx) = (7)

∞∑
n1>−n

2 (q(x), (sin(n+ n1)πx)(sinnπx))(ΦN (x), sin(n+ n1)πx)

from which using the multiplication formula in (7) and then replacing 2n+ n1 by k, we get

(q(x)ΦN (x), sinnπx) =

∞∑
n1=1

Cn1
(ΦN (x), sin (n+ n1)πx) (8)

+

∞∑
n1=1

Cn1
(ΦN (x), sin (n− n1)πx)

substituting this result in to (5) we obtain

(λN − (πn)2)(ΦN (x), sinnπx) =

∞∑
n1=−∞

Cn1
(ΦN (x), sin (n+ n1)πx) (9)

where Cn =
∫ 1

0
q(x) cosnπxdx and, without loss of generality, we assume that C0 = 0. Note that Cn → 0, Cn = C−n,

as |n| → ∞
Now we isolate the terms at right side of (9), containing (Φn(x), sinnπx) (i.e., the case n1 = −2n ), Using the

equality

(Φn(x), sin (n+ n1)πx) =

∞∑
n2=−∞
n1 6=−2n

Cn2
(Φn(x), sin (n+ n1 + n2)πx)

λn − (π(n+ n1))2
(10)
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which can be obtained from (9) by taking n and n+ n1 instead of N and n, we arrive at

(λn − (πn)2)(Φn(x), sinnπx) = −C2n(Φn(x), sinnπx) (11)

+

∞∑
n1,n2=−∞
n1 6=−2n

Cn1
Cn2

(Φn(x), sin (n+ n1 + n2)πx)

λn − (π(n+ n1))2

Again we isolate the terms for n1 + n2 = 0,−2n from the summation and use the equality Cn1 = C−n1 to obtain

(λn − (πn)2)(Φn(x), sinnπx) = (Φn(x), sinnπx){−C2n (12)

+

∞∑
n1=−∞
n1 6=0,−2n

Cn1
(Cn1

− Cn1+2n)

λn − (π(n+ n1))2
}

+

∞∑
n1,n2=−∞

n1,n1+n2 6=0,−2n

Cn1Cn2(Φn(x), sin (n+ n1 + n2)πx)

λn − (π(n+ n1))2

Applying the above iteration to last sum and isolating the terms for which n1 + n2 + n3 = 0,−2n. We obtaiın

(λn − (πn)2)(Φn(x), sinnπx) = (Φn(x), sinnπx){−C2n (13)

+

∞∑
n1=−∞
n1 6=0,−2n

Cn1
(Cn1

− Cn1+2n)

λn − (π(n+ n1))2

+

∞∑
n1,n2=−∞

n1,n1+n2 6=0,−2n

Cn1
Cn2

(Cn1+n2
− Cn1+n2+2n)

[λn − (π(n+ n1))2] [λn − (π(n+ n1 + n2))2]
}

+

∞∑
n1,n2,n3=−∞

n1,n1+n2,n1+n2+n3 6=0,−2n

Cn1
Cn2

Cn3
(Φn(x), sin (n+ n1 + n2 + n3)πx)

[λn − (π(n+ n1))2] [λn − (π(n+ n1 + n2))2]

Repeating this process m times we get

(λn − (πn)2 −Am(λn))(Φn(x), sinnπx) = Rm+1 (14)

where

Am(λn) =
m∑
k=0

ak (λn) ,

a0 (λn) = −C2n, (15)

a1 (λn) =

∞∑
n1=−∞
n1 6=0,−2n

Cn1(Cn1 − Cn1+2n)

λn − (π(n+ n1))2
, (16)

a2 (λn) =

∞∑
n1,n2=−∞

n1,n1+n2 6=0,−2n

Cn1
Cn2

(Cn1+n2
− Cn1+n2+2n)

[λn − (π(n+ n1))2] [λn − (π(n+ n1 + n2))2]
,

and in general for k

ak (λn) =

∞∑
n1,n2,...,nk=−∞

Cn1Cn2 ...Cnk(Cn1+n2+..+nk − Cn1+n2+...+nk+2n)∏k
j=1[λn − (π(n+

∑j
s=1 ns))

2]
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Rm+1 =

∞∑
n1,n2,...,nm+1=−∞

Cn1Cn2 ...Cnm+1(q(x)Φn(x), sin
(
n+

∑m+1
k=1 nk

)
)∏m+1

j=1 [λn − (π(n+
∑j
k=1 nk))2]

, (17)

Here the sums for ak (λn) and Rm+1are taken under the conditions

s∑
j=1

nj 6= 0,−2n, .

for s = 1, 2, ..., k and s = 1, 2, ...,m+ 1 respectively. Moreover in obtaining (17) after mth iteration we applied (5).
Using (4) and arguing as in the proof of equalities (27), (28) of [2] we get the following relations

∞∑
k=−∞
k 6=−n,n

1

|λn − (πk)2|
= O(

ln |n|
n

), (18)

ak = O

(
(
ln |n|
n

)k
)
, Rm+1 = O

(
(
ln |n|
n

)m+1

)
. (19)

Theorem 2.1. The eigenvalue λn of the operator L (q) satisfies the asymptotic formula

λn = (πn)2 + Fm +O

((
ln |n|
n

)m+1
)
, (20)

for all m = 0, 1, 2, ...,where F0 = −C2n,

F1 = A1

(
(nπ)

2
)

= −C2n +

∞∑
n1=−∞
n1 6=−2n

Cn1(Cn1 − Cn1+2n)[
(nπ)

2 − (π(n+ n1))2
]

Fk = Ak

(
(nπ)

2
+ Fk−1

)
,∀k = 2, 3, ...

Proof: We shall use induction to prove this theorem. First we prove (20) for m = 0, that is,

λn = (πn)2 − C2n +O

(
lnn

n

)
, (21)

Using the well-known formula (see[7,p.77])

Φn (x) =
√

2 sinnπx+O

(
1

n

)
we get

(Φn (x) , sinnπx) =

√
2

2
+O

(
1

n

)
(22)

Therefore dividing both sides of (14) for m = 0 by (Φn(x), sinnπx) and using (19), (22) we get the proof of (21).
Now we prove (20) m = 1. Arguing as we have done in the proof of (20) we get from (14) for m = 1.

λn = (nπ)
2

+A1 (λn) +O

((
ln |n|
n

)2
)

(23)

Using λn − (nπ)
2

= O(1) and (18) one can easily verify that

∞∑
k=−∞
k2 6=n,−n

∣∣∣∣ 1

λn − (πk)2
− 1

(πn)2 − (πk)2

∣∣∣∣ = O

((
ln |n|
n

)2
)

(24)
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and hence

A1 (λn) = A1

(
(πn)2

)
+O

((
ln |n|
n

)2
)

(25)

This together with (23) proves (20) for m = 1
In order to prove (20) by induction, we assume it to be true for m = j − 1, that is,

λn = (nπ)2 + Fj−1 +O

((
ln |n|
n

)j)
(26)

Replacing m by j in (14), dividing both sides by (Φn(x), sinnπx) and use (19), (22) we get

λn = (nπ)2 +Aj(λn) +O

((
ln |n|
n

)j+1
)

(27)

Substituting the value of λn given by (26) in Aj(λn), and arguing as in the proof of (25) we see that

Aj(λn) = Aj((nπ)2 + Fj−1 +O

((
ln |n|
n

)j)
) (28)

= Aj((nπ)2 + Fj−1) +O

((
ln |n|
n

)j+1
)

Thus taking into account that Aj((nπ)2 + Fj−1) = Fj we get the proof of (20) for m = j from (27), (28). The theorem
is proved.

As an example for asymptotic formulas (20), let the potential q(x) of the operator L(q) with the concrete potential

q (x) =
c

xα
, 0 < α < 1 (29)

where c is a complex number.

Theorem 2.2. The eigenvalues of the operator L(q) with the potential (29) satisfy the formulas

λn = (nπ)
2 − c.d

(2n)
1−α +O(

1

n
) (30)

where d =
∫∞
0

cosπt
tα dt,

λn = (nπ)
2 − c.d

(2n)
1−α +

∞∑
k=−∞
k 6=0,−2n

fk(fk − fk+2n)

(nπ)
2 − (π(n+ k))2

+O

((
ln |n|
n

)2
)

(31)

where

fn =

∫ 1

0

c. cosπnx

xα
dx

This theorem is as proved in [1]

3. Numerical Approximation

Now, we consider the small eigenvalues of the L(q) operator by numerical method.
For the finite difference method, take an equally spaced mesh (m > 2), 0 = x0 < x1 < ... < xm+1 = 1 where

xj = jh, h = 1
m+1 . Writing y(xj) as wj , q(xj) as qj and y

′′
(xj) as w

′′

j , we use the centred difference approximation
−w′′j ≈

−wj−1+2wj−wj+1

h2 Substituting in (1) gives the approximating scheme

−wj−1 + 2wj − wj+1

h2
+ qjwj = Λwj j = 1, 2, ...,m. (32)
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to solve this problem numericaly .
We should use centered approximation to obtain these values. After the calculation this can be written in matrix

form as the order (m) system

(K +Q)w = Λmw (33)

where K is a tridiagonal matrix, Q = diag(q(x1), q(x1), , ...q(xm)) and

K =



2
h2

−1
h2

− 1
h2

2
h2 − 1

h2

.
.
.

− 1
h2

2
h2 − 1

h2

−1
h2

2
h2


The eigenvalues of (1-2) are approximated by the eigenvalues of the matrix K. Paine et al.in [13,20] showed that the
leading term in the asymptotic expansion of the error for the three-point scheme does not depend on potential q .
Moreover for such method the error is known in closed form when q(x) = 0.They therefore suggested to use this
information to correct the computed eigenvalue in the case of q. With the ordered eigenvalues of (10) denoted by
Λmk , k = 1, 2, ...,m, the corrected eigenvalue estimates are given by

Λ
(m)

k = Λ
(m)
k + µk − µ(m)

k , k = 1, 2, ...,m− 1 (34)

where µk,and µ(m)
k = 1, 2, ... are the kth exact and numerical eigenvalues for q = 0 , respectively. and Λ

(m)
k , k =

1, 2, ...m, are the eigenvalues of (10) with Q 6= 0. We apply this technique with m� 1 to the eigenvalue problem
(1-2) then the results given in tables show that the errors in the corrected estimates and superior to the original
estimates.

Clearly, the obtained eigenvalues from the formula obtained by the asymptotic method are listed and evaluated
numerically the compared corrected eigenvalues.

Table 1 α = 0.1 α = 0.5 α = 0.9

n λ
(0.1)
n λ

(0.5)
n λ

(0.9)
n (nπ)2

1 9,836802 9,284288 -0,82713 9,869604
2 39,46010 38,98940 26,81010 39,47842
3 88,81315 88,36869 74,39831 88,82644
4 157,903 157,4696 141,9462 157,9137
5 246,7309 246,3026 229,4107 246,7401
6 355,2976 354,8715 336,7566 355,3058
7 483,6033 483,1776 463,9588 483,6106
8 631,6479 631,2219 611,0016 631,6547
9 799,4316 799,0048 777,8811 799,4380
10 986,9544 986,527 964,6524 986,9604
20 3947,837 3947,403 3921,531 3947,842
30 8882,64 8882,196 8853,956 8882,644
40 15791,36 15790,91 15760,9 15791,37
50 24674,01 24673,55 24642,1 24674,01
60 35530,57 35530,1 35497,45 35530,58
70 48361,06 48360,58 48326,88 48361,06
80 63165,46 63164,98 63130,34 63165,47
90 79943,79 79943,3 79907,83 79943,80
100 98696,04 98695,55 98659,3 98696,04
Table 1 shows both the nth eigenvalue obtained by using the asymptotic method for α = 0.1, 0.5, 0.9 respectively

and the nth eigenvalue for the operator L(0).
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Table 2

n Λ
(0.1)

n Λ
(0.5)

n Λ
(0.9)

n

1 10,95108 11,37728 12,03832
2 40,57302 41,12744 42,17357
3 89,92594 90,53919 91,81482
4 159,0158 159,6646 161,1022
5 247,8438 248,5171 250,0792
6 356,4106 357,102 358,765
7 484,7162 485,4218 487,1692
8 632,7609 633,478 635,2977
9 800,5447 801,2712 803,1541
10 988,0675 988,8021 990,741
20 3948,951 3949,728 3952,013
30 8883,753 8884,548 8887,002
40 15792,48 15793,28 15795,82
50 24675,12 24675,93 24678,49
60 35531,69 35532,49 35535,03
70 48362,17 48362,97 48365,43
80 63166,58 63167,36 63169,66
90 79944,9 79945,64 79947,63
100 98697,13 98697,56 98698,28

Table 2 shows the nth corrected eigenvalue obtained by using the finite difference method for α = 0.1, 0.5, 0.9
respectively.

Table 3

n Λ
(0.1)

n − (nπ)2 Λ
(0.5)

n − (nπ)2 Λ
(0.9)

n − (nπ)2

1 1,081479893 1,507673921 2,16871913
2 1,094606645 1,649021921 2,695156874
3 1,09950304 1,712745752 2,988379079
4 1,102092404 1,750905378 3,188503476
5 1,103703936 1,776991574 3,339132542
6 1,104807505 1,796256532 3,459199448
7 1,105612449 1,811223831 3,558567804
8 1,106226483 1,823276353 3,643007064
9 1,106710823 1,833243483 3,71617449
10 1,107102891 1,841656869 3,780529819
20 1,108918458 1,886274806 4,171554409
30 1,109516903 1,904096257 4,358259832
40 1,109768063 1,912303842 4,45191185
50 1,109843865 1,914880513 4,482477541
60 1,109782116 1,912764558 4,457511461
70 1,109552451 1,905194836 4,370946909
80 1,109004827 1,888648163 4,196242546
90 1,10742319 1,848625597 3,838723497
100 1,081623478 1,515892515 2,237212549

The corrected differences Λ
(α)

n − (nπ)2 show the effect of the potential q(α) to the eigenavlues for α = 0.1, 0.5, 0.9
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Table 4

n λ
(0.1)
n − (nπ)2 λ

(0.5)
n − (nπ)2 λ

(0.9)
n − (nπ)2

1 -0,032802560 0,585315946 -10,69673415
2 -0,018317047 -0,489017416 -12,66831515
3 -0,013287336 -0,457752089 -14,42813566
4 -0,010719567 -0,444067713 -15,96747315
5 -0,009160065 -0,437461285 -17,32939883
6 -0,008112923 -0,434302424 -18,54919126
7 -0,007362049 -0,433014772 -19,65180001
8 -0,006797985 -0,432800998 -20,65304927
9 -0,006359217 -0,433180466 -21,55685193
10 -0,006007514 -0,433478708 -22,30805135
20 -0,004445580 -0,438827058 -26,31055883
30 -0,003965214 -0,448262049 -28,68837815
40 -0,003751163 -0,457500814 -30,46864132
50 -0,003640011 -0,465942480 -31,90956508
60 -0,003578065 -0,473584198 -33,12753648
70 -0,003542804 -0,480523723 -34,18640325
80 -0,003523263 -0,486863986 -35,12538671
90 -0,003513533 -0,492694053 -35,97046725
90 -0,003510185 -0,498087369 -36,73981629

The differences λ(α)n − (nπ)2 show the effect of the potential q(α) to the eigenavlues for α = 0.1, 0.5, 0.9.

4. Conclusion
It is natural and well known that for large eigenvalues the asymptotic method gives us approximations with

smaller errors. The numerical method, in general, gives better results for smaller eigenvalues. The Tables 1,2 show
that the results of both the asymptotic method and corrected method give quiet acceptable results for eigenvalues.
According to the Table 3 and 4, if α increases, the effect of the potential function to the eigenvalues also increases for
both methods.

Therefore we can easily observe that the correcting method and the asymptotic method give good results for
the calculation of the eigenvalues. It is natural and well known that for large eigenvalues the asymptotic method
gives us approximations with smaller errors. The numerical method, in general, gives better results for smaller
eigenvalues. We see that in this paper corrected eigenvalues also give us approximations with smaller errors for all
eigenvalues.

The table 3 and 4 show that the results of the asymptotic method and numerical method also give quiet
acceptable results for α = 0.1. Therefore we can easily observe that asymptotic and corrected methods give good
results for the calculation of all eigenvalues. Additionally while α tends to 1, both of the methods are effected by
potential function and differences between two methods are also increasing.
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