A Presentation of The Free Lie Algebra $F / \gamma_{3}(F)^{\prime}$

Gülistan Kaya Gök

(Communicated by Murat TOSUN)

Abstract

Let F be a free Lie algebra generated by the free generators x and y . By using the technique of GröbnerShirshov bases we show that the Lie algebra $F / \gamma_{3}(F)^{\prime}$ has the presentation $\langle x, y \mid \Delta\rangle$, where Δ is the minimal Gröbner basis of the algebra $\gamma_{3}(F)^{\prime}$.

Keywords: Free Lie algebra, Presentation, Gröbner basis.
AMS Subject Classification (2010): Primary: 17B01.
*Corresponding author

1. Introduction

Gröbner-Shirshov method for Lie algebras invented by A.I.Shirshov in 1962 [11]. He defined a notion of composition of two Lie polynomials relative to an associative word (It was called lately by S- polynomial for commutative polynomials by B. Buchberger [8] and [9]). It leads to the algorithm for construction of a Gröbner-Shirshov basis of the Lie ideal generated by some set S. Shirshov has proved a lemma, now known as the Composition- Diamond Lemma. Several years later L.A. Bokut formulated this lemma in the modern form [2]. Shirshov's CompositionDiamond Lemma for associative algebras was formulated by L.A.Bokut [3] in 1976 and G.Bergman [1] in 1978.

The technique of Gröbner-Shirsov bases is very useful in the study of presentations of Lie algebras, associative algebras, groups, etc., by generators and defining relations (see [4], [5], [6], [7]).

In this work, we give a presentation of a free abelian-by-nilpotent Lie algebra.
We found Gröbner-Shirsov basis of the free Lie algebra $\gamma_{3}(F)^{\prime}$ and then we construct a presentation for the Lie algebra $F / \gamma_{3}(F)^{\prime}$ defined by generators and defining relations, where F is a free Lie algebra of rank 2 over a field of characteristic zero.

In [10] V.Drensky gave a detailed account of the Gröbner-Shirsov basis theory. We give some known definitions and results here referring to [10].

2. Gröbner basis

In this section we give some definitions and basic results about Gröbner-Shirsov basis which are given in [10].

[^0]Let a vector space A is called an (associative) algebra and a free associative algebra $K(X)$ is vector space for every set X . The algebra $K(X)$ has the following universal property. For any algebra A and any mapping $h: X \rightarrow A$ there exists a unique homomorphism (which we denote also by h) $h: K(X) \rightarrow A$ which extends the given mapping $h: X \rightarrow A$.

Definition 2.1. Let $A \cong K(X) / U$. Any generating set R of the ideal U is called a set of defining relations of A . We say that A is presented by the generating set X and the set of defining relations R and use the notation $A=K\langle X \mid R\rangle$ for the presentation of A or, allowing some freedom in the notation $A=K\langle X \mid R=0\rangle$. If both sets X and R are finite, we say that A is finitely presented.

Let us define Hall basis ordering of the free Lie algebra F on X. Let $u=u_{1} u_{2}, v=v_{1} v_{2}$ be elements of H. If length $(u)>$ length (v), put $u>v$. If u and v have the same length, then put $u>v$ if and only if either $u_{1}>v_{1}$ or $u_{1}=v_{1}$ and $u_{2}>v_{2}$. The introduced ordering has the very important property that the set (X) is well ordered. This allows to apply inductive arguments in our considerations.

Definition 2.2. (i) Let $f \in K(X)$,

$$
f=\alpha u+\sum_{v<u} \beta_{v} v, u, v \in(X), \alpha, \beta_{v} \in K, \alpha \neq 0
$$

The word $f^{\prime}=u$ is called the leading word of f.
(ii) If $B \subset K(X)$ we denote by $B^{\prime}=\left\{f^{\prime} \mid 0 \neq f \in B\right\}$ the set of leading words of B.
(iii) The word $w \in(X)$ is called normal with respect to $B \subset K(X)$ if w does not contain as a subword a word of B.

Definition 2.3. Let $U \triangleright K(X)$. The set $G \subset U$ is called a Gröbner basis of U (or a complete system of defining relations of the algebra $A=K(X) / U)$ if the sets of normal words with respect to G and U coincide. A tirivial example of a Gröbner basis of U is U itself.

Proposition 2.1. For any $U \triangleright K(X)$, there exists a minimal (with respect to inclusion) Gröbner basis.
Lemma 2.1. (The Composition Lemma) Let $L(X)$ be a free Lie algebra and I be its ideal generated by a complete set S. The element $f \in L(X), f \neq 0$, belongs to I only if the leading term f^{\prime} of f contains a subword s^{\prime}, for some $s \in S$.

Let us define free generating sets and Hall basis for $\gamma_{m}(F)$ which will used in this paper. We denote the Lie product on F by $(a b)$, where $a, b \in F$. A word of length n is an ordered $n-t u p l e s$ of the elements of X. We write $\ell(u)$ for the length of the word $u \in F$.

We construct a Hall basis $H^{C_{m}}$ on C_{m} for the Lie algebra $\gamma_{m}(F)$, by forming products of elements of C_{m} such that C_{m} is a set of free generators for $\gamma_{m}(F)$.

Theorem 2.1. [12] 1) The set C_{m} defined as

$$
C_{m}=\left\{x=\left(a_{1} a_{2}\right) \mid x, a_{1}, a_{2} \in H ; \ell(x) \geq m ; \ell\left(a_{2}\right)<m\right\}
$$

is a set of free generators for $\gamma_{m}(F)$.
2) The set $C_{m, n}$ defined as

$$
\begin{aligned}
C_{m, n} & =\left\{x=\left(a_{1} a_{2}\right) \mid x \in H^{C_{m}} ; C_{m}-\ell(x) \geq n\right. \\
C_{n}-\ell\left(a_{2}\right) & <n\}
\end{aligned}
$$

is a set of free generators for $\gamma_{n}\left(\gamma_{m}(L)\right)$ where $H^{C_{m}}$ is the Hall basis for $\gamma_{m}(F)$.
We will refer $C_{m}-\ell$ and $X-\ell$ meaning the number of letters used from C_{m} or X respectively. We order $C_{m, n}$ as follows: Let $g, h \in C_{m, n}$. If $C_{m}-\ell(g)<C_{m}-\ell(h)$, put $g<h$. If $C_{m}-\ell(g)=C_{m}-\ell(h)$ and $X-\ell(g)<X-\ell(h)$ then again we put $g<h$. Suppose both $C_{m}-\ell(g)=C_{m}-\ell(h)$ and $X-\ell(g)<X-\ell(h)$. Then put $g<h$ if either $g_{2}<h_{2}$ or $g_{2}=h_{2}$ and $g_{1}<h_{1}$, where $g=g_{1} g_{2}$ and $h=h_{1} h_{2}$.

3. A Presentation of $F / \gamma_{3}(F)^{\prime}$

Our strategy is to obtain the minimal Gröbner basis (with respect to the inclusion) for the ideal $\gamma_{3}(F)^{\prime}$. After that we give a presentation for the algebra $F / \gamma_{3}(F)^{\prime}$.

We consider the Lie algebra defined by the presentation,

$$
\left\langle x, y \mid \gamma_{3}(F)^{\prime}\right\rangle .
$$

Then,

$$
F / \gamma_{3}(F)^{\prime} \cong\left\langle x, y \mid \gamma_{3}(F)^{\prime}\right\rangle(1)
$$

We eliminate certain types of basic words by finding minimal Gröbner basis for $\gamma_{3}(F)^{\prime}$ and introduce a refinement of the presentation 1.

Define the subset

$$
\Delta=\{(a b),(a(a x)),(b(b y))\} .
$$

of F where $a=((x y) x), b=((x y) y)$.
For the obtain of this presentation we need the following technical propositions.
Proposition 3.1. The set Δ is the minimal Gröbner basis for $\gamma_{3}(F)^{\prime}$.
Proof of this proposition can be obtained easily by using the following algorithm given in the proof of Proposition(4).

Proposition(4) give us the following algorithm for constructing a minimal Gröbner basis for $\gamma_{3}(F)^{\prime}$ which is generated by $C_{3,2}$.

Algorithm: The input is the set $C_{3,2}$. Output is the minimal Gröbner basis of $\gamma_{3}(F)^{\prime}$.
Step 1: We start with the words of minimal length in $C_{3,2}$ (i.e. the words u such that $C_{3}-\ell(u)=2$ and $X-\ell(u)=6$) and we construct a subset G_{1} of $C_{3,2}$ such that no word of G_{1} is a proper subword of another word of G_{1} and the set of normal words with respect to $C_{3,2}$ and G_{1} are the same.

Step 2: Construct a subset G_{2} of G_{1} which contains the words v of $C_{3}-\ell(v) \geq 2$ and $X-\ell(v)>6$ such that no word of G_{2} is a proper subword of another word of G_{2} and the set of normal words with respect to G_{1} and G_{2} are the same.

Step 3: G_{2} is a minimal Gröbner basis of $\gamma_{3}(F)^{\prime}$. Put $\Delta=G_{2}$.
The following proposition can be obtained easily, by using the Jacobi identity.
Proposition 3.2. Let a, b be any monomials of F then

$$
\left((a b) x^{s}\right)=\sum_{k=0}^{s}\binom{s}{k}\left(a x^{s-k}\right)\left(b x^{k}\right)
$$

Proof. We prove the Lemma by induction on s. For $s=1$,

$$
\begin{aligned}
\left((a b) x^{1}\right) & =-((b x) a)-((x a) b) \\
& =(a(b x))+((a x) b) \\
& =\sum_{k=0}^{1}\binom{1}{k}\left(a x^{1-k}\right)\left(b x^{k}\right)
\end{aligned}
$$

Assume that the assertion it is true for $s-1$, that is;

$$
\left((a b) x^{s-1}\right)=\sum_{k=0}^{s-1}\binom{s-1}{k}\left(a x^{s-1-k}\right)\left(b x^{k}\right)
$$

Then,

$$
\begin{aligned}
\left((a b) x^{s}\right)= & \left(\left((a b) x^{s-1}\right) x\right) \\
= & \left(\sum_{k=0}^{s-1}\binom{s-1}{k}\left(a x^{s-1-k}\right)\left(b x^{k}\right)\right) x \\
= & \sum_{k=0}^{s-1}\binom{s-1}{k}\left(a x^{s-1-k}\right)\left(b x^{k+1}\right)+\sum_{k=0}^{s-1}\binom{s-1}{k}\left(a x^{s-k}\right)\left(b x^{k}\right) \\
= & \sum_{k=0}^{s-1}\binom{s-1}{k}\left(a x^{s-1-k}\right)\left(b x^{k+1}\right)+\sum_{k=0}^{s-1}\binom{s-1}{k+1}\left(a x^{s-1-k}\right)\left(b x^{k+1}\right) \\
& +\binom{s-1}{0}\left(\left(a x^{s}\right) b\right) \\
= & \left.\sum_{k=0}^{s-1}\binom{s-1}{k}+\binom{s-1}{k+1}\right)\left(a x^{s-1-k}\right)\left(b x^{k+1}\right)+\binom{s-1}{0}\left(\left(a x^{s}\right) b\right) \\
= & \sum_{k=0}^{s-1}\binom{s}{k+1}\left(a x^{s-1-k}\right)\left(b x^{k+1}\right)+\binom{s-1}{0}\left(\left(a x^{s}\right) b\right) \\
= & \sum_{k=0}^{s-1}\binom{s}{k}\left(a x^{s-k}\right)\left(b x^{k}\right)-\binom{s}{0}\left(\left(a x^{s}\right) b\right) \\
& +\binom{s}{s}\left(a\left(b x^{s}\right)\right)+\binom{s-1}{0}\left(\left(a x^{s}\right) b\right) \\
= & \sum_{k=0}^{s}\binom{s}{k}\left(a x^{s-k}\right)\left(b x^{k}\right) .
\end{aligned}
$$

The proof of the following proposition is a consequence of the Composition Lemma and Proposition (4).
Proposition 3.3. The following monomials belong to the ideal $\langle\Delta\rangle$.

1) $\left(a\left(b y^{j}\right)\right)$,
2) $\left(a x^{i}\right)\left(a x^{j}\right), i>j$,
3) $\left(b y^{i}\right)\left(b y^{j}\right), i>j$,
4) $\left(a x^{i}\right)\left(b y^{j}\right), i \geq j$,
5) $\left(a x^{i}\right)\left(\left(b y^{j}\right) x^{s}\right)$,
6) $\left(b y^{i}\right)\left(\left(b y^{j}\right) x^{s}\right)$,
7) $\left(\left(b y^{i}\right) x^{j}\right)\left(\left(b y^{r}\right) x^{s}\right)$,
8) $\left(\left(a x^{i}\right)(x y)^{r}\right)\left(a x^{j}\right)$,
9) $\left(\left(a x^{i}\right)(x y)^{r}\right)\left(b y^{j}\right)$,
10) $\left(\left(a x^{i}\right)(x y)^{r}\right)\left(\left(b y^{j}\right) x^{s}\right)$,
11) $\left(\left(b y^{i}\right)(x y)^{r}\right)\left(b y^{j}\right)$,
12) $\left(\left(b y^{i}\right)(x y)^{r}\right)\left(\left(b y^{j}\right) x^{s}\right)$,
13) $\left(\left(\left(b y^{i}\right) x^{t}\right)(x y)^{r}\right)\left(\left(b y^{j}\right) x^{s}\right)$,
14) $\left(\left(b y^{i}\right)(x y)^{r}\right)\left(a x^{j}\right)$,
15) $\left(\left(\left(b y^{i}\right) x^{s}\right)(x y)^{r}\right)\left(a x^{j}\right)$,
16) $\left(\left(a x^{i}\right)(x y)^{r}\right)\left(\left(a x^{j}\right)(x y)^{m}\right)$,
17) $\left(\left(a x^{i}\right)(x y)^{r}\right)\left(\left(b y^{j}\right)(x y)^{m}\right)$,
18) $\left(\left(a x^{i}\right)(x y)^{r}\right)\left(\left(\left(b y^{j}\right) x^{s}\right)(x y)^{m}\right)$,
19) $\left(\left(b y^{i}\right)(x y)^{r}\right)\left(\left(b y^{j}\right)(x y)^{m}\right)$,
20) $\left(\left(b y^{i}\right)(x y)^{r}\right)\left(\left(\left(b y^{j}\right) x^{s}\right)(x y)^{m}\right)$,
21) $\left(\left(\left(b y^{i}\right) x^{t}\right)(x y)^{r}\right)\left(\left(\left(b y^{j}\right) x^{s}\right)(x y)^{m}\right)$,
22) $\left(a\left(a y^{j}\right)\right)$,
23) $\left(b\left(b x^{j}\right)\right)$.

Proof. 1) $\left(a\left(b y^{j}\right)\right)$ can be written as $-\left(\left(b y^{j}\right) a\right)$. Applying the Jacobi identity for $\left((b a) y^{j}\right)$, we obtain the following statement,

$$
\begin{aligned}
\left((b a) y^{j}\right) & =\sum_{k=0}^{j}\binom{j}{k}\left(b y^{j-k}\right)\left(a y^{k}\right) \\
& =\left(\left(b y^{j}\right) a\right)+\sum_{k=1}^{j}\binom{j}{k}\left(b y^{j-k}\right)\left(a y^{k}\right) .
\end{aligned}
$$

In this case, $\left.\left(\left(b y^{j}\right) a\right)\right)$ can be written as follows:

$$
\left.\left(\left(b y^{j}\right) a\right)\right)=\left((b a) y^{j}\right)-\sum_{k=1}^{j}\binom{j}{k}\left(b y^{j-k}\right)\left(a y^{k}\right) .
$$

Since $\left((b a) y^{j}\right)=\left(\left((b a) y^{j-k}\right) y^{k}\right)$ and $\left(b y^{j-k}\right)\left(a y^{k}\right)<\left((b a) y^{j}\right)$ then the leading term of $\left.\left(\left(b y^{j}\right) a\right)\right)$ is $\left((b a) y^{j}\right)$. When we consider the equality $\left((b a) y^{j}\right)=-\left((a b) y^{j}\right)$ we get $(a b)$ is included as a subword in the set Δ. Hence, $\left((a b) y^{j}\right)$ is an element of the ideal $\langle\Delta\rangle$. So, $\left.\left(\left(b y^{j}\right) a\right)\right)=-\left(a\left(b y^{j}\right)\right)$ is an element of the ideal $\langle\Delta\rangle$.
The proof of cases that up to 2-to-7 are obtained similarly to the case 1 .
8) Let $(x y)=z$. Applying the Jacobi identity we obtain,

$$
\begin{aligned}
\left.\left(\left(a x^{i}\right)\left(a x^{j}\right)\right) z^{r}\right) & =\sum_{k=0}^{r}\binom{r}{k}\left(\left(a x^{i}\right) z^{r-k}\right)\left(\left(a x^{j}\right) z^{k}\right) \\
& =\left(\left(a x^{i}\right) z^{r}\right)\left(a x^{j}\right)+\sum_{k=1}^{r}\binom{r}{k}\left(\left(a x^{i}\right) z^{r-k}\right)\left(\left(a x^{j}\right) z^{k}\right) .
\end{aligned}
$$

In this case, $\left(\left(a x^{i}\right) z^{r}\right)\left(a x^{j}\right)$ can be written as follows:

$$
\left.\left(\left(a x^{i}\right) z^{r}\right)\left(a x^{j}\right)=\left(\left(a x^{i}\right)\left(a x^{j}\right)\right) z^{r}\right)-\sum_{k=1}^{r}\binom{r}{k}\left(\left(a x^{i}\right) z^{r-k}\right)\left(\left(a x^{j}\right) z^{k}\right) .
$$

Here, $\left.\left.\left(\left(a x^{i}\right)\left(a x^{j}\right)\right) z^{r}\right)=\left(\left(\left(a x^{i}\right)\left(a x^{j}\right)\right) z^{r-k}\right) z^{k}\right)$. Since, $\left.\left(\left(a x^{i}\right) z^{r-k}\right)\left(\left(a x^{j}\right) z^{k}\right)<\left(\left(a x^{i}\right)\left(a x^{j}\right)\right) z^{r}\right)$ then the leading term of $\left.\left(\left(a x^{i}\right)\left(a x^{j}\right)\right) z^{r}\right)$ is $\left(a x^{i}\right)\left(a x^{j}\right)$. In this case, $\left(a x^{i}\right)\left(a x^{j}\right)$ is included as a subword in the word of $\left.\left(\left(a x^{i}\right)\left(a x^{j}\right)\right) z^{r}\right)$. Since, $\left(a x^{i}\right)\left(a x^{j}\right)$ is an element of the ideal of $\langle\Delta\rangle$ from the Case 1 we $\left.\operatorname{get}\left(\left(a x^{i}\right)\left(a x^{j}\right)\right)(x y)^{r}\right)$ is an element of the ideal $\langle\Delta\rangle$. Hence, $\left(\left(a x^{i}\right) z^{r}\right)\left(a x^{j}\right)$ is an element of the ideal $\langle\Delta\rangle$.
The proof of cases that up to 9 -to- 21 are obtained similarly to the case 8 .
22) Applying the Jacobi identity for $\left(a\left(a y^{j}\right)\right)$ we obtain,

$$
\begin{aligned}
\left(a\left(a y^{j}\right)\right) & =\left(a\left(((x y) x) y^{j}\right)\right. \\
& =\left(a\left(\sum_{k=0}^{j}\binom{j}{k}\left((x y) y^{j-k}\right)\left(x y^{k}\right)\right)\right) \\
& =a\left(\left((x y) y^{j}\right) x\right)+\sum_{k=1}^{j}\binom{j}{k}\left((x y) y^{j-k}\right)\left(x y^{k}\right) \\
& \left.=\left((x y) y^{j}\right) x\right)((x y) x)+\sum_{k=1}^{j}\binom{j}{k}\left(\left((x y) y^{j-k}\right)\left(x y^{k}\right)\right)((x y) x)
\end{aligned}
$$

The first term is an element of the ideal $\langle\Delta\rangle$ from the Case 5 and the second term is an element of the ideal $\langle\Delta\rangle$ from the Case 14. Hence, $\left(a\left(a y^{j}\right)\right)$ is an element of the ideal $\langle\Delta\rangle$. The proof of case 23 is obtained similarly to the case 22.

Theorem 3.1. Every element of $\gamma_{3}(F)^{\prime}$ belongs to the ideal $\langle\Delta\rangle$.
Proof. For every $w \in \gamma_{3}(F)^{\prime}$, the form of w is $w=\sum_{k} \alpha_{k}\left(\left(\left(\left(c_{1} c_{2}\right) c_{3}\right) \ldots\right) c_{k}\right)$ where $c_{i} \in C_{3,2}$ for $i=1,2, \ldots, k$. Every c_{i} can be written in the form $\left(\left(\left(\left(u_{i 1} u_{i 2}\right) u_{i 3}\right) \ldots\right) u_{i s}\right)(s \geq 2)$ such that $u_{i k} \in C_{3}$. Considering the all possibilities for $u_{i 1}$ and $u_{i 2}$, we obtain the following words:

$$
\begin{array}{cc}
\left(a x^{i}\right)(x y)^{j} & , i, j \geq 0 \\
\left(\left(b y^{m}\right) x^{n}\right)(x y)^{p} & , m, n, p \geq 0
\end{array}
$$

So, $\left(u_{i 1} u_{i 2}\right)$ is expressed as follows:

$$
\left(u_{i 1} u_{i 2}\right)=\left(\left(a x^{i}\right)(x y)^{j}\right)\left(\left(\left(b y^{m}\right) x^{n}\right)(x y)^{p}\right)
$$

By Proposition(9), $\left(u_{i 1} u_{i 2}\right)$ is an element of the ideal $\langle\Delta\rangle$. Thus, $c_{i} \in\langle\Delta\rangle$ and so $w \in\langle\Delta\rangle$. Hence, every element of $\gamma_{3}(F)^{\prime}$ belongs to the ideal $\langle\Delta\rangle$.

Theorem 3.2. The Lie algera $F / \gamma_{3}(F)^{\prime}$ admits the following presentation

$$
\langle x, y \mid \Delta\rangle
$$

Proof. Since $\gamma_{3}(F)^{\prime}$ contained in the ideal $\langle\Delta\rangle$, we obtain

$$
F / \gamma_{3}(F)^{\prime}=\left\langle x, y \mid \gamma_{3}(F)^{\prime}\right\rangle=\langle x, y \mid\langle\Delta\rangle\rangle=\langle x, y \mid \Delta\rangle
$$

References

[1] Bergman, G. M., The Diamond lemma for ring theory, Adv. in Math. 29 (1978), 178-218.
[2] Bokut, L. A., Unsolvability of the word problem and subalgebras of finitely presented Lie algebras, Izv. Akad. Nauk. SSSR Ser. Math. 36 (1972), 1173-1219.
[3] Bokut, L. A., Embeddings into simple associative algebras, Algebrai Logika 15 (1976), 117-142.
[4] Bokut, L. A., Algorithmic and Combinatorial Algebra, Kluwer, Dordrecht, (1994).
[5] Bokut, L. A., Kolesnikov, P., Gröbner-Shirshov bases: from incipient to nowadays, Proceedings of the POMI 272 (1994), 26-67.
[6] Bokut, L. A., Kolesnikov, P., Gröbner-Shirshov bases: from their incipiency to the present, J. Math. Sci. 116, 1 (2003), 2894-2916.
[7] Bokut, L. A., Chen, Y., Gröbner-Shirshov bases: some new results, Proc. Second Int. Congress in Algebra and Combinatorics, World Scientific, (2008), 35-56.
[8] Buchberger, B., An algorithm for finding a basis for the residue class Ring of a zero-dimensional polynomial ideal, Phd. thesis, Univ. of Innsbruck, Austria, (1965).
[9] Buchberger, B., An algorithmical criteria for the solvability of algebraic system of equations, Aequationes Math., 4 (1970), 374-383.
[10] Drensky, V., Defining relations of noncommutative algebras, Institue of Mathematics and Informatics Bulgarian Academy of Sciences.
[11] Shirshov, A.I., Some algorithmic problems for Lie algebras, Sibirsk. Mat. Z. 3 (1962) 292-296; English translation in SIGSAM Bull, 33(2) (1999), 3-6.
[12] Smel'kin, A. L., Free polynilpotent groups
I. Soviet Math. Dokl. 4 (1963), 950-953.
II. Izvest. Akad. Nauk S.S.S.R. Ser. Mat. 28(1964), 91-122.
III. Dokl. Akad. Nauk. S.S.S.R. 169 (1966), 1024-1025.

Affiliations

GÜlistan Kaya Gök

Address: Hakkari University, Dept. of Mathematics Education, Hakkari-TURKEY.
E-MAIL: kayagokgulistan@gmail.com.tr

[^0]: Received:18-August-2015, Accepted : 30-December-2015

