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Abstract
Let F be a free Lie algebra generated by the free generators x and y. By using the technique of Gröbner-
Shirshov bases we show that the Lie algebra F/γ3(F )

′
has the presentation 〈x, y | ∆〉, where ∆ is the

minimal Gröbner basis of the algebra γ3(F )
′
.
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1. Introduction
Gröbner-Shirshov method for Lie algebras invented by A.I.Shirshov in 1962 [11]. He defined a notion of compo-

sition of two Lie polynomials relative to an associative word (It was called lately by S- polynomial for commutative
polynomials by B. Buchberger [8] and [9]). It leads to the algorithm for construction of a Gröbner-Shirshov basis of
the Lie ideal generated by some set S. Shirshov has proved a lemma, now known as the Composition- Diamond
Lemma. Several years later L.A. Bokut formulated this lemma in the modern form [2]. Shirshov’s Composition-
Diamond Lemma for associative algebras was formulated by L.A.Bokut [3] in 1976 and G.Bergman [1] in 1978.

The technique of Gröbner-Shirsov bases is very useful in the study of presentations of Lie algebras, associative
algebras, groups, etc., by generators and defining relations (see [4], [5], [6], [7]).

In this work, we give a presentation of a free abelian-by-nilpotent Lie algebra.
We found Gröbner-Shirsov basis of the free Lie algebra γ3(F )

′
and then we construct a presentation for the Lie

algebra F/γ3(F )
′

defined by generators and defining relations, where F is a free Lie algebra of rank 2 over a field of
characteristic zero.

In [10] V.Drensky gave a detailed account of the Gröbner-Shirsov basis theory. We give some known definitions
and results here referring to [10].

2. Gröbner basis
In this section we give some definitions and basic results about Gröbner-Shirsov basis which are given in [10].
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Let a vector space A is called an (associative) algebra and a free associative algebra K(X) is vector space for
every set X. The algebra K(X) has the following universal property. For any algebra A and any mapping h : X → A
there exists a unique homomorphism (which we denote also by h) h : K(X)→ A which extends the given mapping
h : X → A.

Definition 2.1. Let A ∼= K(X)/U . Any generating set R of the ideal U is called a set of defining relations of A. We
say that A is presented by the generating set X and the set of defining relations R and use the notationA = K 〈X | R〉
for the presentation of A or, allowing some freedom in the notation A = K 〈X | R = 0〉. If both sets X and R are
finite, we say that A is finitely presented.

Let us define Hall basis ordering of the free Lie algebra F on X . Let u = u1u2, v = v1v2 be elements of H . If
length(u) > length(v), put u > v. If u and v have the same length, then put u > v if and only if either u1 > v1 or
u1 = v1 and u2 > v2. The introduced ordering has the very important property that the set (X) is well ordered. This
allows to apply inductive arguments in our considerations.

Definition 2.2. (i) Let f ∈ K(X),

f = αu+
∑
v<u

βvv, u, v ∈ (X), α, βv ∈ K,α 6= 0.

The word f
′

= u is called the leading word of f .
(ii) If B ⊂ K(X) we denote by B

′
= {f ′ | 0 6= f ∈ B} the set of leading words of B.

(iii) The word w ∈ (X) is called normal with respect to B ⊂ K(X) if w does not contain as a subword a word of
B.

Definition 2.3. Let U � K(X). The set G ⊂ U is called a Gröbner basis of U (or a complete system of defining
relations of the algebra A = K(X)/U ) if the sets of normal words with respect to G and U coincide. A tirivial
example of a Gröbner basis of U is U itself.

Proposition 2.1. For any U �K(X), there exists a minimal (with respect to inclusion) Gröbner basis.

Lemma 2.1. (The Composition Lemma) Let L(X) be a free Lie algebra and I be its ideal generated by a complete set S. The
element f ∈ L(X), f 6= 0, belongs to I only if the leading term f

′
of f contains a subword s

′
, for some s ∈ S.

Let us define free generating sets and Hall basis for γm(F ) which will used in this paper. We denote the Lie
product on F by (ab) , where a, b ∈ F. A word of length n is an ordered n− tuples of the elements of X . We write
`(u) for the length of the word u ∈ F.

We construct a Hall basis HCm on Cm for the Lie algebra γm(F ), by forming products of elements of Cm such
that Cm is a set of free generators for γm(F ).

Theorem 2.1. [12] 1) The set Cm defined as

Cm = {x = (a1a2) | x, a1, a2 ∈ H; `(x) ≥ m; `(a2) < m}

is a set of free generators for γm(F ).
2) The set Cm,n defined as

Cm,n = {x = (a1a2) | x ∈ HCm ;Cm − `(x) ≥ n;

Cn − `(a2) < n}

is a set of free generators for γn(γm(L)) where HCm is the Hall basis for γm(F ).

We will refer Cm − ` and X − ` meaning the number of letters used from Cm or X respectively. We order Cm,n

as follows: Let g, h ∈ Cm,n. If Cm− `(g) < Cm− `(h), put g < h. If Cm− `(g) = Cm− `(h) and X − `(g) < X − `(h)
then again we put g < h. Suppose both Cm − `(g) = Cm − `(h) and X − `(g) < X − `(h). Then put g < h if either
g2 < h2 or g2 = h2 and g1 < h1, where g = g1g2 and h = h1h2.
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3. A Presentation of F/γ3(F )
′

Our strategy is to obtain the minimal Gröbner basis (with respect to the inclusion) for the ideal γ3(F )
′
. After

that we give a presentation for the algebra F/γ3(F )
′
.

We consider the Lie algebra defined by the presentation,

〈x, y | γ3(F )
′
〉.

Then,

F/γ3(F )
′ ∼= 〈x, y | γ3(F )

′
〉(1)

We eliminate certain types of basic words by finding minimal Gröbner basis for γ3(F )
′

and introduce a refinement
of the presentation 1.

Define the subset

∆ = {(ab), (a(ax)), (b(by))}.
of F where a = ((xy)x), b = ((xy)y).

For the obtain of this presentation we need the following technical propositions.

Proposition 3.1. The set ∆ is the minimal Gröbner basis for γ3(F )
′
.

Proof of this proposition can be obtained easily by using the following algorithm given in the proof of Proposi-
tion(4).

Proposition(4) give us the following algorithm for constructing a minimal Gröbner basis for γ3(F )
′

which is
generated by C3,2.

Algorithm: The input is the set C3,2. Output is the minimal Gröbner basis of γ3(F )
′
.

Step 1: We start with the words of minimal length in C3,2 (i.e. the words u such that C3 − `(u) = 2 and X − `(u) = 6
) and we construct a subset G1 of C3,2 such that no word of G1 is a proper subword of another word of G1 and the
set of normal words with respect to C3,2 and G1 are the same.

Step 2: Construct a subset G2 of G1 which contains the words v of C3− `(v) ≥ 2 and X− `(v) > 6 such that no word
ofG2 is a proper subword of another word ofG2 and the set of normal words with respect toG1 andG2 are the same.

Step 3: G2 is a minimal Gröbner basis of γ3(F )
′
. Put ∆ = G2.

The following proposition can be obtained easily, by using the Jacobi identity.

Proposition 3.2. Let a, b be any monomials of F then

((ab)xs) =

s∑
k=0

(
s

k

)
(axs−k)(bxk)

Proof. We prove the Lemma by induction on s. For s = 1,

((ab)x1) = −((bx)a)− ((xa)b)

= (a(bx)) + ((ax)b)

=

1∑
k=0

(
1

k

)
(ax1−k)(bxk)

Assume that the assertion it is true for s− 1, that is;

((ab)xs−1) =

s−1∑
k=0

(
s− 1

k

)
(axs−1−k)(bxk)
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Then,

((ab)xs) = (((ab)xs−1)x)

= (

s−1∑
k=0

(
s− 1

k

)
(axs−1−k)(bxk))x

=

s−1∑
k=0

(
s− 1

k

)
(axs−1−k)(bxk+1)+

s−1∑
k=0

(
s− 1

k

)
(axs−k)(bxk)

=

s−1∑
k=0

(
s− 1

k

)
(axs−1−k)(bxk+1)+

s−1∑
k=0

(
s− 1

k + 1

)
(axs−1−k)(bxk+1)

+

(
s− 1

0

)
((axs)b)

=

s−1∑
k=0

(

(
s− 1

k

)
+

(
s− 1

k + 1

)
)(axs−1−k)(bxk+1)+

(
s− 1

0

)
((axs)b)

=
s−1∑
k=0

(
s

k + 1

)
(axs−1−k)(bxk+1)+

(
s− 1

0

)
((axs)b)

=

s−1∑
k=0

(
s

k

)
(axs−k)(bxk)−

(
s

0

)
((axs)b)

+

(
s

s

)
(a(bxs))+

(
s− 1

0

)
((axs)b)

=

s∑
k=0

(
s

k

)
(axs−k)(bxk).

The proof of the following proposition is a consequence of the Composition Lemma and Proposition (4).

Proposition 3.3. The following monomials belong to the ideal 〈∆〉.
1) (a(byj)),
2) (axi)(axj), i > j,
3) (byi)(byj), i > j,
4) (axi)(byj), i ≥ j,
5) (axi)((byj)xs),
6) (byi)((byj)xs),
7) ((byi)xj)((byr)xs),
8) ((axi)(xy)r)(axj),
9) ((axi)(xy)r)(byj),
10) ((axi)(xy)r)((byj)xs),
11) ((byi)(xy)r)(byj),
12) ((byi)(xy)r)((byj)xs),
13) (((byi)xt)(xy)r)((byj)xs),
14) ((byi)(xy)r)(axj),
15) (((byi)xs)(xy)r)(axj),
16) ((axi)(xy)r)((axj)(xy)m),
17) ((axi)(xy)r)((byj)(xy)m),
18) ((axi)(xy)r)(((byj)xs)(xy)m),
19) ((byi)(xy)r)((byj)(xy)m),
20) ((byi)(xy)r)(((byj)xs)(xy)m),
21) (((byi)xt)(xy)r)(((byj)xs)(xy)m),
22) (a(ayj)),
23) (b(bxj)).
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Proof. 1) (a(byj)) can be written as −((byj)a). Applying the Jacobi identity for ((ba)yj), we obtain the following
statement,

((ba)yj) =

j∑
k=0

(
j

k

)
(byj−k)(ayk)

= ((byj)a) +

j∑
k=1

(
j

k

)
(byj−k)(ayk).

In this case, ((byj)a)) can be written as follows:

((byj)a)) = ((ba)yj)−
j∑

k=1

(
j

k

)
(byj−k)(ayk).

Since ((ba)yj) = (((ba)yj−k)yk) and (byj−k)(ayk) < ((ba)yj) then the leading term of ((byj)a)) is ((ba)yj). When
we consider the equality ((ba)yj) = −((ab)yj) we get (ab) is included as a subword in the set ∆. Hence, ((ab)yj) is
an element of the ideal 〈∆〉. So, ((byj)a)) = − (a(byj)) is an element of the ideal 〈∆〉.
The proof of cases that up to 2-to-7 are obtained similarly to the case 1.
8) Let (xy) = z. Applying the Jacobi identity we obtain,

((axi)(axj))zr) =

r∑
k=0

(
r

k

)
((axi)zr−k)((axj)zk)

= ((axi)zr)(axj) +

r∑
k=1

(
r

k

)
((axi)zr−k)((axj)zk).

In this case, ((axi)zr)(axj) can be written as follows:

((axi)zr)(axj) = ((axi)(axj))zr)−
r∑

k=1

(
r

k

)
((axi)zr−k)((axj)zk).

Here, ((axi)(axj))zr) = (((axi)(axj))zr−k)zk). Since, ((axi)zr−k)((axj)zk) < ((axi)(axj))zr) then the leading
term of ((axi)(axj))zr) is (axi)(axj). In this case, (axi)(axj) is included as a subword in the word of ((axi)(axj))zr).
Since, (axi)(axj) is an element of the ideal of 〈∆〉 from the Case 1 we get((axi)(axj))(xy)r) is an element of the
ideal 〈∆〉. Hence, ((axi)zr)(axj) is an element of the ideal 〈∆〉.
The proof of cases that up to 9-to-21 are obtained similarly to the case 8.

22) Applying the Jacobi identity for (a(ayj)) we obtain,

(a(ayj)) = (a(((xy)x)yj)

= (a(

j∑
k=0

(
j

k

)
((xy)yj−k)(xyk)))

= a(((xy)yj)x) +

j∑
k=1

(
j

k

)
((xy)yj−k)(xyk)

= ((xy)yj)x)((xy)x) +

j∑
k=1

(
j

k

)
(((xy)yj−k)(xyk))((xy)x)

The first term is an element of the ideal 〈∆〉 from the Case 5 and the second term is an element of the ideal 〈∆〉
from the Case 14. Hence, (a(ayj)) is an element of the ideal 〈∆〉. The proof of case 23 is obtained similarly to the
case 22.
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Theorem 3.1. Every element of γ3(F )
′

belongs to the ideal 〈∆〉.

Proof. For every w ∈ γ3(F )
′
, the form of w is w =

∑
k αk((((c1c2)c3)...)ck) where ci ∈ C3,2 for i = 1, 2, ..., k. Every

ci can be written in the form ((((ui1ui2)ui3)...)uis) (s ≥ 2) such that uik ∈ C3. Considering the all possibilities for
ui1 and ui2, we obtain the following words:

(axi)(xy)j , i, j ≥ 0
((bym)xn)(xy)p ,m, n, p ≥ 0

So, (ui1ui2) is expressed as follows:

(ui1ui2) = ((axi)(xy)j)(((bym)xn)(xy)p)

By Proposition(9), (ui1ui2) is an element of the ideal 〈∆〉. Thus, ci ∈ 〈∆〉 and so w ∈ 〈∆〉. Hence, every element of
γ3(F )

′
belongs to the ideal 〈∆〉.

Theorem 3.2. The Lie algera F/γ3(F )
′

admits the following presentation

〈x, y | ∆〉.

Proof. Since γ3(F )
′

contained in the ideal 〈∆〉, we obtain

F/γ3(F )
′

= 〈x, y | γ3(F )
′
〉 = 〈x, y | 〈∆〉〉 = 〈x, y | ∆〉.
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