A Presentation of The Free Lie Algebra $F/\gamma_3(F)'$

Gülistan Kaya Gök

(Communicated by Murat TOSUN)

Abstract

Let *F* be a free Lie algebra generated by the free generators x and y. By using the technique of Gröbner-Shirshov bases we show that the Lie algebra $F/\gamma_3(F)'$ has the presentation $\langle x, y \mid \Delta \rangle$, where Δ is the minimal Gröbner basis of the algebra $\gamma_3(F)'$.

Keywords: Free Lie algebra, Presentation, Gröbner basis.

AMS Subject Classification (2010): Primary: 17B01.

*Corresponding author

1. Introduction

Gröbner-Shirshov method for Lie algebras invented by A.I.Shirshov in 1962 [11]. He defined a notion of composition of two Lie polynomials relative to an associative word (It was called lately by S- polynomial for commutative polynomials by B. Buchberger [8] and [9]). It leads to the algorithm for construction of a Gröbner-Shirshov basis of the Lie ideal generated by some set S. Shirshov has proved a lemma, now known as the Composition-Diamond Lemma. Several years later L.A. Bokut formulated this lemma in the modern form [2]. Shirshov's Composition-Diamond Lemma for associative algebras was formulated by L.A.Bokut [3] in 1976 and G.Bergman [1] in 1978.

The technique of Gröbner-Shirsov bases is very useful in the study of presentations of Lie algebras, associative algebras, groups, etc., by generators and defining relations (see [4], [5], [6], [7]).

In this work, we give a presentation of a free abelian-by-nilpotent Lie algebra.

We found Gröbner-Shirsov basis of the free Lie algebra $\gamma_3(F)'$ and then we construct a presentation for the Lie algebra $F/\gamma_3(F)'$ defined by generators and defining relations, where F is a free Lie algebra of rank 2 over a field of characteristic zero.

In [10] V.Drensky gave a detailed account of the Gröbner-Shirsov basis theory. We give some known definitions and results here referring to [10].

2. Gröbner basis

In this section we give some definitions and basic results about Gröbner-Shirsov basis which are given in [10].

Received: 18-August-2015, Accepted: 30-December-2015

This article is the written version of author's plenary talk delivered on September 03- August 31, 2015 at 4th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2015) in Athens, Greece.

Let a vector space A is called an (associative) algebra and a free associative algebra K(X) is vector space for every set X. The algebra K(X) has the following universal property. For any algebra A and any mapping $h : X \to A$ there exists a unique homomorphism (which we denote also by h) $h : K(X) \to A$ which extends the given mapping $h : X \to A$.

Definition 2.1. Let $A \cong K(X)/U$. Any generating set R of the ideal U is called a set of defining relations of A. We say that A is presented by the generating set X and the set of defining relations R and use the notation $A = K \langle X | R \rangle$ for the presentation of A or, allowing some freedom in the notation $A = K \langle X | R = 0 \rangle$. If both sets X and R are finite, we say that A is finitely presented.

Let us define Hall basis ordering of the free Lie algebra F on X. Let $u = u_1u_2$, $v = v_1v_2$ be elements of H. If length(u) > length(v), put u > v. If u and v have the same length, then put u > v if and only if either $u_1 > v_1$ or $u_1 = v_1$ and $u_2 > v_2$. The introduced ordering has the very important property that the set (X) is well ordered. This allows to apply inductive arguments in our considerations.

Definition 2.2. (i) Let $f \in K(X)$,

$$f = \alpha u + \sum_{v < u} \beta_v v, \ u, v \in (X), \alpha, \beta_v \in K, \alpha \neq 0$$

The word f' = u is called the leading word of f.

(ii) If $B \subset K(X)$ we denote by $B' = \{f' \mid 0 \neq f \in B\}$ the set of leading words of B.

(iii) The word $w \in (X)$ is called normal with respect to $B \subset K(X)$ if w does not contain as a subword a word of B.

Definition 2.3. Let $U \triangleright K(X)$. The set $G \subset U$ is called a Gröbner basis of U(or a complete system of defining relations of the algebra A = K(X)/U) if the sets of normal words with respect to G and U coincide. A tirivial example of a Gröbner basis of U is U itself.

Proposition 2.1. For any $U \triangleright K(X)$, there exists a minimal (with respect to inclusion) Gröbner basis.

Lemma 2.1. (The Composition Lemma) Let L(X) be a free Lie algebra and I be its ideal generated by a complete set S. The element $f \in L(X)$, $f \neq 0$, belongs to I only if the leading term f' of f contains a subword s', for some $s \in S$.

Let us define free generating sets and Hall basis for $\gamma_m(F)$ which will used in this paper. We denote the Lie product on F by (ab), where $a, b \in F$. A word of length n is an ordered n - tuples of the elements of X. We write $\ell(u)$ for the length of the word $u \in F$.

We construct a Hall basis H^{C_m} on C_m for the Lie algebra $\gamma_m(F)$, by forming products of elements of C_m such that C_m is a set of free generators for $\gamma_m(F)$.

Theorem 2.1. [12] 1) The set C_m defined as

$$C_m = \{ x = (a_1 a_2) \mid x, a_1, a_2 \in H; \ \ell(x) \ge m; \ell(a_2) < m \}$$

is a set of free generators for $\gamma_m(F)$. 2) The set $C_{m,n}$ defined as

$$C_{m,n} = \{ x = (a_1 a_2) \mid x \in H^{C_m}; C_m - \ell(x) \ge n; \\ C_n - \ell(a_2) < n \}$$

is a set of free generators for $\gamma_n(\gamma_m(L))$ where H^{C_m} is the Hall basis for $\gamma_m(F)$.

We will refer $C_m - \ell$ and $X - \ell$ meaning the number of letters used from C_m or X respectively. We order $C_{m,n}$ as follows: Let $g, h \in C_{m,n}$. If $C_m - \ell(g) < C_m - \ell(h)$, put g < h. If $C_m - \ell(g) = C_m - \ell(h)$ and $X - \ell(g) < X - \ell(h)$ then again we put g < h. Suppose both $C_m - \ell(g) = C_m - \ell(h)$ and $X - \ell(g) < X - \ell(h)$. Then put g < h if either $g_2 < h_2$ or $g_2 = h_2$ and $g_1 < h_1$, where $g = g_1g_2$ and $h = h_1h_2$.

3. A Presentation of $F/\gamma_3(F)'$

Our strategy is to obtain the minimal Gröbner basis (with respect to the inclusion) for the ideal $\gamma_3(F)'$. After that we give a presentation for the algebra $F/\gamma_3(F)'$.

We consider the Lie algebra defined by the presentation,

$$\langle x, y \mid \gamma_3(F)' \rangle$$

Then,

$$F/\gamma_3(F)' \cong \langle x, y \mid \gamma_3(F)' \rangle(1)$$

We eliminate certain types of basic words by finding minimal Gröbner basis for $\gamma_3(F)'$ and introduce a refinement of the presentation 1.

Define the subset

$$\Delta = \{(ab), (a(ax)), (b(by))\}$$

of F where a = ((xy)x), b = ((xy)y).

For the obtain of this presentation we need the following technical propositions.

Proposition 3.1. The set Δ is the minimal Gröbner basis for $\gamma_3(F)'$.

Proof of this proposition can be obtained easily by using the following algorithm given in the proof of Proposition(4).

Proposition(4) give us the following algorithm for constructing a minimal Gröbner basis for $\gamma_3(F)'$ which is generated by $C_{3,2}$.

Algorithm: The input is the set $C_{3,2}$. Output is the minimal Gröbner basis of $\gamma_3(F)'$. Step 1: We start with the words of minimal length in $C_{3,2}$ (i.e. the words u such that $C_3 - \ell(u) = 2$ and $X - \ell(u) = 6$) and we construct a subset G_1 of $C_{3,2}$ such that no word of G_1 is a proper subword of another word of G_1 and the set of normal words with respect to $C_{3,2}$ and G_1 are the same.

Step 2: Construct a subset G_2 of G_1 which contains the words v of $C_3 - \ell(v) \ge 2$ and $X - \ell(v) > 6$ such that no word of G_2 is a proper subword of another word of G_2 and the set of normal words with respect to G_1 and G_2 are the same.

Step 3: G_2 is a minimal Gröbner basis of $\gamma_3(F)'$. Put $\Delta = G_2$. The following proposition can be obtained easily, by using the Jacobi identity.

Proposition 3.2. Let a, b be any monomials of F then

$$((ab)x^s) = \sum_{k=0}^s \binom{s}{k} (ax^{s-k})(bx^k)$$

Proof. We prove the Lemma by induction on s. For s = 1,

$$\begin{aligned} ((ab)x^1) &= -((bx)a) - ((xa)b) \\ &= (a(bx)) + ((ax)b) \\ &= \sum_{k=0}^1 \binom{1}{k} (ax^{1-k})(bx^k) \end{aligned}$$

Assume that the assertion it is true for s - 1, that is;

$$((ab)x^{s-1}) = \sum_{k=0}^{s-1} \binom{s-1}{k} (ax^{s-1-k})(bx^k)$$

Then,

(

$$\begin{aligned} (ab)x^{s}) &= (((ab)x^{s-1})x) \\ &= (\sum_{k=0}^{s-1} \binom{s-1}{k} (ax^{s-1-k})(bx^{k}))x \\ &= \sum_{k=0}^{s-1} \binom{s-1}{k} (ax^{s-1-k})(bx^{k+1}) + \sum_{k=0}^{s-1} \binom{s-1}{k} (ax^{s-k})(bx^{k}) \\ &= \sum_{k=0}^{s-1} \binom{s-1}{k} (ax^{s-1-k})(bx^{k+1}) + \sum_{k=0}^{s-1} \binom{s-1}{k+1} (ax^{s-1-k})(bx^{k+1}) \\ &+ \binom{s-1}{0} ((ax^{s})b) \\ &= \sum_{k=0}^{s-1} \binom{s-1}{k} + \binom{s-1}{k+1} (ax^{s-1-k})(bx^{k+1}) + \binom{s-1}{0} ((ax^{s})b) \\ &= \sum_{k=0}^{s-1} \binom{s}{k+1} (ax^{s-1-k})(bx^{k+1}) + \binom{s-1}{0} ((ax^{s})b) \\ &= \sum_{k=0}^{s-1} \binom{s}{k} (ax^{s-k})(bx^{k}) - \binom{s}{0} ((ax^{s})b) \\ &= \sum_{k=0}^{s} \binom{s}{k} (ax^{s-k})(bx^{k}) \\ &= \sum_{k=0}^{s} \binom{s}{k} (ax^{s-k})(bx^{k}). \end{aligned}$$

The proof of the following proposition is a consequence of the Composition Lemma and Proposition (4).

Proposition 3.3. *The following monomials belong to the ideal* $\langle \Delta \rangle$ *.*

1) $(a(by^{j})),$ 2) $(ax^{i})(ax^{j}), i > j,$ 3) $(by^i)(by^j), i > j$, 4) $(ax^{i})(by^{j}), i \geq j$, 5) $(ax^{i})((by^{j})x^{s}),$ 6) $(by^i)((by^j)x^s)$, 7) $((by^i)x^j)((by^r)x^s)$, 8) $((ax^i)(xy)^r)(ax^j)$, 9) $((ax^i)(xy)^r)(by^j)$, $10)((ax^{i})(xy)^{r})((by^{j})x^{s}),$ 11) $((by^i)(xy)^r)(by^j)$, 12) $((by^i)(xy)^r)((by^j)x^s)$, 13) $(((by^i)x^t)(xy)^r)((by^j)x^s),$ 14) $((by^i)(xy)^r)(ax^j)$, 15) $(((by^i)x^s)(xy)^r)(ax^j),$ 16) $((ax^i)(xy)^r)((ax^j)(xy)^m)$, $\begin{array}{c} 17) \; ((ax^i)(xy)^r)((by^j)(xy)^m),\\ 18) \; ((ax^i)(xy)^r)(((by^j)x^s)(xy)^m), \end{array}$ 19) $((by^i)(xy)^r)((by^j)(xy)^m)$, 20) $((by^i)(xy)^r)(((by^j)x^s)(xy)^m)$, 21) $(((by^i)x^t)(xy)^r)(((by^j)x^s)(xy)^m),$ 22) $(a(ay^j)),$ 23) $(b(bx^j))$.

Proof. 1) $(a(by^j))$ can be written as $-((by^j)a)$. Applying the Jacobi identity for $((ba)y^j)$, we obtain the following statement,

$$\begin{aligned} ((ba)y^j) &= \sum_{k=0}^{j} \binom{j}{k} (by^{j-k}) (ay^k) \\ &= ((by^j)a) + \sum_{k=1}^{j} \binom{j}{k} (by^{j-k}) (ay^k). \end{aligned}$$

In this case, $((by^j)a))$ can be written as follows:

$$((by^{j})a)) = ((ba)y^{j}) - \sum_{k=1}^{j} {j \choose k} (by^{j-k})(ay^{k}).$$

Since $((ba)y^j) = (((ba)y^{j-k})y^k)$ and $(by^{j-k})(ay^k) < ((ba)y^j)$ then the leading term of $((by^j)a)$) is $((ba)y^j)$. When we consider the equality $((ba)y^j) = -((ab)y^j)$ we get (ab) is included as a subword in the set Δ . Hence, $((ab)y^j)$ is an element of the ideal $\langle \Delta \rangle$. So, $((by^j)a)) = -(a(by^j))$ is an element of the ideal $\langle \Delta \rangle$. The proof of cases that up to 2-to-7 are obtained similarly to the case 1.

8) Let (xy) = z. Applying the Jacobi identity we obtain,

$$\begin{aligned} ((ax^{i})(ax^{j}))z^{r}) &= \sum_{k=0}^{r} \binom{r}{k} ((ax^{i})z^{r-k})((ax^{j})z^{k}) \\ &= ((ax^{i})z^{r})(ax^{j}) + \sum_{k=1}^{r} \binom{r}{k} ((ax^{i})z^{r-k})((ax^{j})z^{k}). \end{aligned}$$

In this case, $((ax^i)z^r)(ax^j)$ can be written as follows:

$$((ax^{i})z^{r})(ax^{j}) = ((ax^{i})(ax^{j}))z^{r}) - \sum_{k=1}^{r} \binom{r}{k} ((ax^{i})z^{r-k})((ax^{j})z^{k}).$$

Here, $((ax^i)(ax^j))z^r) = (((ax^i)(ax^j))z^{r-k})z^k)$. Since, $((ax^i)z^{r-k})((ax^j)z^k) < ((ax^i)(ax^j))z^r)$ then the leading term of $((ax^i)(ax^j))z^r)$ is $(ax^i)(ax^j)$. In this case, $(ax^i)(ax^j)$ is included as a subword in the word of $((ax^i)(ax^j))z^r)$. Since, $(ax^i)(ax^j)$ is an element of the ideal of $\langle \Delta \rangle$ from the Case 1 we get $((ax^i)(ax^j))(xy)^r)$ is an element of the ideal $\langle \Delta \rangle$.

The proof of cases that up to 9-to-21 are obtained similarly to the case 8.

22) Applying the Jacobi identity for $(a(ay^j))$ we obtain,

$$\begin{split} (a(ay^{j})) &= (a(((xy)x)y^{j}) \\ &= (a(\sum_{k=0}^{j} \binom{j}{k}((xy)y^{j-k})(xy^{k}))) \\ &= a(((xy)y^{j})x) + \sum_{k=1}^{j} \binom{j}{k}((xy)y^{j-k})(xy^{k}) \\ &= ((xy)y^{j})x)((xy)x) + \sum_{k=1}^{j} \binom{j}{k}(((xy)y^{j-k})(xy^{k}))((xy)x) \end{split}$$

The first term is an element of the ideal $\langle \Delta \rangle$ from the Case 5 and the second term is an element of the ideal $\langle \Delta \rangle$ from the Case 14. Hence, $(a(ay^j))$ is an element of the ideal $\langle \Delta \rangle$. The proof of case 23 is obtained similarly to the case 22.

Theorem 3.1. Every element of $\gamma_3(F)'$ belongs to the ideal $\langle \Delta \rangle$.

Proof. For every $w \in \gamma_3(F)'$, the form of w is $w = \sum_k \alpha_k((((c_1c_2)c_3)...)c_k)$ where $c_i \in C_{3,2}$ for i = 1, 2, ..., k. Every c_i can be written in the form $((((u_{i1}u_{i2})u_{i3})...)u_{is}) (s \ge 2)$ such that $u_{ik} \in C_3$. Considering the all possibilities for u_{i1} and u_{i2} , we obtain the following words:

$$\begin{array}{ll} (ax^i)(xy)^j & , i,j \ge 0\\ ((by^m)x^n)(xy)^p & , m,n,p \ge 0 \end{array}$$

So, $(u_{i1}u_{i2})$ is expressed as follows:

$$(u_{i1}u_{i2}) = ((ax^i)(xy)^j)(((by^m)x^n)(xy)^p)$$

By Proposition(9), $(u_{i1}u_{i2})$ is an element of the ideal $\langle \Delta \rangle$. Thus, $c_i \in \langle \Delta \rangle$ and so $w \in \langle \Delta \rangle$. Hence, every element of $\gamma_3(F)'$ belongs to the ideal $\langle \Delta \rangle$.

Theorem 3.2. The Lie algera $F/\gamma_3(F)'$ admits the following presentation

$$\langle x, y \mid \Delta \rangle.$$

Proof. Since $\gamma_3(F)'$ contained in the ideal $\langle \Delta \rangle$, we obtain

$$F/\gamma_3(F)' = \langle x, y \mid \gamma_3(F)' \rangle = \langle x, y \mid \langle \Delta \rangle \rangle = \langle x, y \mid \Delta \rangle$$

References

- [1] Bergman, G. M., The Diamond lemma for ring theory, Adv. in Math. 29 (1978), 178-218.
- [2] Bokut, L. A., Unsolvability of the word problem and subalgebras of finitely presented Lie algebras, Izv. Akad. Nauk. SSSR Ser. Math. 36 (1972), 1173-1219.
- [3] Bokut, L. A., Embeddings into simple associative algebras, Algebrai Logika 15 (1976), 117-142.
- [4] Bokut, L. A., Algorithmic and Combinatorial Algebra, Kluwer, Dordrecht, (1994).
- [5] Bokut, L. A., Kolesnikov, P., Gröbner-Shirshov bases: from incipient to nowadays, Proceedings of the POMI 272 (1994), 26-67.
- [6] Bokut, L. A., Kolesnikov, P., Gröbner-Shirshov bases: from their incipiency to the present, J. Math. Sci. 116, 1 (2003), 2894-2916.
- [7] Bokut, L. A., Chen, Y., Gröbner-Shirshov bases: some new results, Proc. Second Int. Congress in Algebra and Combinatorics, World Scientific, (2008), 35-56.
- [8] Buchberger, B., An algorithm for finding a basis for the residue class Ring of a zero-dimensional polynomial ideal, Phd. thesis, Univ. of Innsbruck, Austria, (1965).
- [9] Buchberger, B., An algorithmical criteria for the solvability of algebraic system of equations, Aequationes Math., 4 (1970), 374-383.
- [10] Drensky, V., Defining relations of noncommutative algebras, Institue of Mathematics and Informatics Bulgarian Academy of Sciences.
- [11] Shirshov, A.I., Some algorithmic problems for Lie algebras, Sibirsk. Mat. Z. 3 (1962) 292-296; English translation in SIGSAM Bull, 33(2) (1999), 3-6.

- [12] Smel'kin, A. L., Free polynilpotent groups
 - I. Soviet Math. Dokl. 4 (1963), 950-953.
 - II. Izvest. Akad. Nauk S.S.S.R. Ser. Mat. 28(1964), 91-122.
 - III. Dokl. Akad. Nauk. S.S.S.R. 169 (1966), 1024-1025.

Affiliations

GÜLISTAN KAYA GÖK ADDRESS: Hakkari University, Dept. of Mathematics Education, Hakkari-TURKEY. E-MAIL: kayagokgulistan@gmail.com.tr