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Abstract− Measurement System Analysis evaluates the accuracy and precision of measure-
ment processes; in the literature, part variability and measurement error are typically assumed
to follow normal distributions, and we adopt this convention. We derive closed-form formulas
for Types I and II misclassification probabilities using univariate and bivariate normal cumula-
tive distribution functions, avoiding numerical integration and enabling efficient computation
(e.g., in R). Building on these results, we derive explicit maximum likelihood estimates of
misclassification probabilities for both the classical approach based on measurements from
different parts and the repeated-measurement approach using multiple measurements on
the same part at different times. A Monte Carlo study shows that incorporating repeated
measurements reduces bias and mean squared error. A brief numerical example with simulated
data demonstrates practical implementation.

Keywords − Monte Carlo simulation, maximum likelihood estimation, measurement system analysis, misclassification
probabilities, quality control

1. Introduction

Statistical Quality Control (SQC) is essential for ensuring product consistency by monitoring process
variations and minimizing defects. A fundamental component of SQC is Measurement System Analysis
(MSA), which evaluates the accuracy and reliability of measurement processes. One of the key
tools in MSA is Gage Repeatability and Reproducibility (Gage R&R), which quantifies measurement
variability by analyzing repeatability and reproducibility. To assess the capability of a production
process, statistical indices such as the process capability index and the process performance index are
utilized. These indices ensure that process variation remains within defined specification limits. For
a comprehensive discussion on Gage R&R analysis, we refer to several key studies, including [1–10].
Similarly, for process capability indices, we refer to recent contributions from [11–18].

MSA also aims to provide critical insights into process variation and measurement reliability by
distinguishing the variation between the measured items from the errors inherent in the measurement
system. Two types of probabilities are associated with the misclassification of an item, which are
analogous to Type-I and Type-II errors in hypothesis testing. According to [19], the α probability
represents the combined probability of incorrectly failing an item that meets specifications (referred to
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as a false failure or producer’s risk), while the β probability refers to the probability of incorrectly
accepting an item that does not meet specifications (also called a missed fault or consumer’s risk).
These risks guide manufacturers in determining whether the measurement system is adequate or needs
improvement.

Under the assumption that both parts and measurement errors follow a normal distribution, several
studies have evaluated the misclassification probabilities α and β. Notable contributions in this context
include the following: [20] discussed the probabilities associated with the misclassification of items due
to measurement variability. [21] used a case study to assess the probabilities of misclassifying items due
to measurement variability in the case of multiple sources of product variability. [22] presented methods
for expanding the univariate MSA to the multivariate cases, and evaluated the performances of the
production test process through misclassification probabilities. [23] presented the generalized inference
method for constructing confidence intervals for misclassification probabilities in a Gage R&R study. [24]
proposed a bootstrap method to construct confidence intervals for misclassification probabilities
in MSA and compared its performance with the generalized inference method. [25] developed a
robust method to evaluate misclassification probabilities under the two-component measurement error
model. Recently, [26] presented a novel statistical methodology to improve the estimation process for
misclassification probabilities, while also constructing uncorrected likelihood ratio confidence intervals
for misclassification probabilities in MSA.

In this study, closed-form expressions for misclassification probabilities are derived under a normal
distribution framework, providing a more computationally efficient approach than integral-based
methods. The maximum likelihood estimation of these misclassification probabilities is also discussed
using the methodology presented by [26]. Furthermore, a comprehensive simulation study is conducted
to evaluate the performance of this methodology, assessing its accuracy in different scenarios. The
remainder of this paper is organized as follows: Section 2 introduces both the classical model and the
closed-form expressions for misclassification probabilities. The Maximum Likelihood Estimators (MLEs)
of model parameters and misclassification probabilities are discussed in Section 3. A comprehensive
simulation study is conducted, considering in-control stages, with the results presented in Section 4. To
illustrate the proposed methodologies, a numerical example is provided in Section 5. Finally, Section 6
presents the conclusion of the study.

2. Model Setup

In this paper, we study a model of the form

Y = X + M (2.1)

where X and M are independent random variables following N (µpart, σ2
part) and N (0, σ2

measure), respec-
tively. Then, the random variable Y = X + M following Y ∼ N

(
µpart, σ2

part + σ2
measure

)
. Moreover,

the misclassification probabilities, denoted as α and β, for lower and upper specification limits L and
U is defined by [21]:

α = P (L < X < U, (Y < L ∨ Y > U))

=
∫ L

−∞

∫ U

L
f(x, y) dx dy +

∫ ∞

U

∫ U

L
f(x, y) dx dy (2.2)

and
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β = P (L < Y < U, (X < L ∨ X > U))

=
∫ L

−∞

∫ U

L
f(x, y)dydx +

∫ ∞

U

∫ U

L
f(x, y)dydx (2.3)

where the joint pdf of X and Y is given in (2.4).

fX,Y (x, y) = 1
2πσpartσmeasure

exp
(

−(x − µpart)2

2 σ2
part

− (y − x)2

2 σ2
measure

)
(2.4)

[26] did not provide closed-form expressions for the integrals in (2.2) and (2.3). In this paper, closed-
form solutions for these integrals are derived based on one-dimensional and two-dimensional normal
cumulative distribution functions. Consider the following facts [27], which can be used to obtain
explicit expressions for misclassification probabilities:∫ z

−∞
Φ (c − d u) ϕ(u) du = Φ2

(
z,

c√
1 + d2

; d√
1 + d2

)
and ∫ z

−∞
Φ (c + du) ϕ(u) du = Φ2

(
z,

c√
1 + d2

; − d√
1 + d2

)
where, ϕ(·) and Φ(·) denote the probability density function (PDF) and cumulative distribution function
(CDF) of the standard normal distribution, respectively. The function Φ2(·, ·; ρ) represents the CDF

of a bivariate normal distribution with mean vector µ =
[
0
0

]
and covariance matrix Σ =

[
1 ρ

ρ 1

]
where ρ is the correlation coefficient. These functions are readily available in the stats and mvtnorm
packages in R. The standard normal PDF can be computed using dnorm(x), while the CDF is given
by pnorm(x). For the bivariate normal CDF, the pmvnorm(lower, upper, mean, sigma) function
from the mvtnorm package can be used. These functions allow for efficient numerical evaluation of
probability distributions, making it easy to verify theoretical results.

Let z = x−µpart

σpart
. By substituting (2.4) into (2.2), we obtain the explicit form of the misclassification

probability α as

α = Φ2

(
b,

γ1√
1 + d2

; d√
1 + d2

)
− Φ2

(
a,

γ1√
1 + d2

; d√
1 + d2

)

+Φ2

(
b,

γ2√
1 + d2

; − d√
1 + d2

)
− Φ2

(
a,

γ2√
1 + d2

; − d√
1 + d2

)
where a = L−µpart

σpart
, b = U−µpart

σpart
, d = σpart

σmeasure
, γ1 = L−µpart

σmeasure
, and γ2 = µpart−U

σmeasure
.

Similarly, by substituting (2.4) into (2.3), the explicit form of another misclassification probability, β,
is also obtained as

β = Φ2

(
a,

γ3√
1 + d2

; d√
1 + d2

)
− Φ2

(
a,

γ4√
1 + d2

; d√
1 + d2

)
+ Φ

(
γ3√

1 + d2

)

−Φ2

(
b,

γ3√
1 + d2

; d√
1 + d2

)
− Φ

(
γ4√

1 + d2

)
+ Φ2

(
b,

γ4√
1 + d2

; d√
1 + d2

)

where γ3 = U−µpart
σmeasure

and γ4 = L−µpart
σmeasure

.



Sert and Kuş / Evaluating Additional Observations of the Same Units to Estimate Misclassification Probabilities in ... 135

3. Statistical Inference

Let the measurements Y1, Y2, . . . , Yn represent daily routine measurements collected on the product,
where Yi (for i = 1, . . . , n) follow N

(
µpart, σ2

part + σ2
measure

)
. Hence, the log-likelihood expression

based on sample Y1, Y2, . . . , Yn is

ℓY (δ1) ∝ −n

2 log
(
σ2

part + σ2
measure

)
− 1

2(σ2
part + σ2

measure)

n∑
i=1

(yi − µpart)2 (3.1)

where δ1 = (µpart, σpart, σmeasure), and δ̂1 = (µ̂part, σ̂part, σ̂measure). Then, the associated gradients are
found to be:

∂ℓY (δ1)
∂µpart

= 1(
σ2

part + σ2
measure

) n∑
i=1

(yi − µpart) = 0 (3.2)

∂ℓY (δ1)
∂σpart

= σpart

(σ2
part + σ2

measure)2

(
n∑

i=1
(yi − µpart)2 − n

(
σ2

part + σ2
measure

))
= 0 (3.3)

∂ℓY (δ1)
∂σmeasure

= σmeasure

(σ2
part + σ2

measure)2

(
n∑

i=1
(yi − µpart)2 − n

(
σ2

part + σ2
measure

))
= 0 (3.4)

The MLEs of parameters can be obtained by solving these equations simultaneously, but only the
solution for µ̂part can be obtained analytically. Since (3.3) and (3.4) do not provide explicit solutions,
they can be solved by using an iterative algorithm to obtain the MLEs of δ1.

µ̂part =

n∑
i=1

Yi

n
(3.5)

The solutions of σpart and σmeasure in (3.3) and (3.4) cannot be obtained in closed form because
the total variance of the measurement system, σ2, involves both σ2

part and σ2
measure, i.e., σ2 =

σ2
part + σ2

measure. Consequently, using data from a single source alone makes it impossible to
separate σpart and σmeasure uniquely, and therefore, there is no single solution. An analytical
solution to these equations is only possible if either σpart or σmeasure is known in advance. Al-
though the optim function in R may appear to obtain MLE estimates, changing the optimization
method and initial values can lead to different results. For example, we generate data from the
N
(
µpart, σ2

part + σ2
measure

)
, where µpart = 5, σpart = 0.2, and σmeasure = 0.05. The generated data is

4.7409, 4.9212, 5.0696, 4.6897, 5.0527, 5.0081, 5.0229, 5.3006, 4.6718, 5.3412, and the results are illustrated
with Table 1.

Table 1. An illustrative example using different estimation methods in optim function
n = 10 Initial Value Method µ̂part σ̂part σ̂measure ℓ

(
δ̂1
)

(5,0.2,0.05) BFGS 4.9818 0.2211 0.0007 −0.900035
Nelder-Mead 4.9818 0.1976 0.0990 −0.900035

(5,1,1) BFGS 4.9818 0.1563 0.1563 −0.900035
Nelder-Mead 4.9818 0.1831 0.1238 −0.900035

Table 1 shows that although the value of the log-likelihood function remains identical between
different optimization methods, the estimates are different. This demonstrates a classical case of non-
identifiability: while the total variance σ2 = σ2

part + σ2
measure is estimable from the data, its individual

components cannot be uniquely separated without additional assumptions or external information.
As seen in Table 1, multiple combinations of (σpart, σmeasure) can yield the same log-likelihood value,
leading to different MLEs depending on the optimization method. This flat likelihood surface, often
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referred to as a ridge, indicates that the parameter space contains infinitely many equally likely
solutions. Therefore, the model is overparameterized and non-identifiable in its current form.

In practice, although the random variable Y in (2.1) can be observed, its components X and M cannot
be directly measured. However, following the methodology in [26], by repeatedly measuring a specific
product at different times, denoted as Z1, Z2, . . . , Zr, independently and identically distributed (iid)
normal random variables with a nuisance mean µnui and variance σ2

measure can be observed. Here, µnui

represents the uninterested mean of the repeatedly measured product, and σ2
measure is the variance of

M . Thus, additional information about the variance σ2
measure of the measurement system is collected,

which is expected to improve the estimate of σ2
measure. It is important to emphasize that the results

are derived assuming that the repeated measurements taken by the operator on the same unit are
independent. Several strategies can be implemented to ensure that repeated measurements on the same
sample remain as independent as possible. First, randomizing the order of measurements and including
filler samples can help prevent the operator from realizing that the same item is being measured
repeatedly. Second, keeping the product’s identity hidden from the operator (i.e., blinding) can reduce
the risk of conscious or subconscious bias. Third, allowing sufficient time between measurements can
disrupt short-term memory and reduce correlations that might arise from immediate recall. Finally,
maintaining a consistent measurement protocol while incorporating minor random variations can
minimize residual patterns or habits, strengthening the independence assumption between repeated
measurements.

The measurements Z1, Z2, . . . , Zr can be observed as follows: A previously manufactured product is
sent to the laboratory daily along with newly produced products, disguised as a new product. However,
the operator will not know it is a previously measured product. Let Z denote the daily measurement
for this product. Parameter estimates can be obtained using the following methodology, assuming that
the variance of the Z measurements equals the variance of the measurement error.

Let Y1, Y2, . . . , Yn be iid production measurements and Z1, Z2, . . . , Zr are iid measurements from daily
monitoring of the measurement system. Then, the log-likelihood function is given by

ℓY,Z(δ2) ∝ −n

2 log
(
σ2

part + σ2
measure

)
− 1

2(σ2
part + σ2

measure)

n∑
i=1

(yi − µpart)2

− r

2 log
(
σ2

measure

)
− 1

2σ2
measure

r∑
j=1

(zj − µnui)2 (3.6)

where δ2 = (µpart, σpart, σmeasure, µnui), δ̃2 = (µ̃part, σ̃part, σ̃measure, µ̃nui), and µnui is a nuisance
parameter. It can be considered a truly measured value of the previously manufactured product.
However, it is not used to compute the misclassification probabilities, our goal. The gradients for µpart,
σpart, σmeasure, and µnui are found to be

∂ℓY,Z (δ2)
∂µpart

= 1(
σ2

part + σ2
measure

) n∑
i=1

(yi − µpart) = 0

∂ℓY,Z (δ2)
∂σpart

= σpart

(σ2
part + σ2

measure)2

(
− n (σ2

part + σ2
measure) +

n∑
i=1

(yi − µpart)2
)

= 0
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∂ℓY,Z (δ2)
∂σmeasure

= − n σmeasure

σ2
part + σ2

measure

+ σmeasure

(σ2
part + σ2

measure)2

n∑
i=1

(yi − µpart)2

− r

σmeasure
+ 1

σ3
measure

r∑
j=1

(zj − µnui)2 = 0

and
∂ℓY,Z (δ2)

∂µnui
= −r

2 log(2πσ2
measure) − 1

2σ2
measure

r∑
j=1

(zj − µnui)2 = 0

respectively. The maximum likelihood estimators are obtained by solving the above equations, and can
be explicitly derived as follows:

µ̃part =

n∑
i=1

Yi

n
(3.7)

σ̃part =

√√√√ 1
n

n∑
i=1

(Yi − µ̃part)2 − 1
r

r∑
j=1

(Zj − µ̃nui)2 (3.8)

σ̃measure =

√√√√1
r

r∑
j=1

(Zj − µ̃nui)2 (3.9)

and

µ̃nui =

r∑
j=1

Zj

r

respectively. Then, the MLEs of α and β probabilities can be easily obtained by the invariance property
of MLEs.

Remark 3.1. Incorporating the Z observations alongside the Y data permits closed-form expressions
for the MLEs (see (3.7)–(3.9)). This approach fully resolves the identifiability problem inherent in the
likelihood function of (3.1), which relies exclusively on the Y data.

Remark 3.2. Let r denote the number of independent observations Z1, Z2, . . . , Zr ∼ N (µν , σ2
measure).

Then, as r → ∞, MLE of σmeasure, denoted by σ̃measure, converges in probability to the true value
σmeasure; that is,

σ̃measure
p−→ σmeasure

Consequently, as r → ∞, the full maximum likelihood estimation procedure that uses both Y and Z

converges to the estimation procedure in which σmeasure is treated as known and fixed. In particular,
the estimator σ̃part derived from the full dataset (including Z) asymptotically behaves like the estimator
obtained without access to Z, under the assumption that σmeasure is known.

4. Simulation Study

In this section, we perform a simulation study to evaluate the performance of the estimation method
considered in Section 3. Specifically, the parts are assumed to follow a normal distribution with
µpart = 13 and σpart = 3. Additionally, measurement errors are assumed to be normally distributed
with a mean of 0 and a standard deviation of σmeasure = 1.5. Also, µnui = 15 is pre-determined. The
simulation study is designed for different combinations of sample sizes (n, r) for n = 50, 100, 250 and
r = 5, 10, 25, 50, 100, 250, 500, 1000, 2000 by considering in control stages. In this regard, L and U are
determined such that 90% of the true values of the products (X) fall between L and U . In this case,
for µpart = 15 and σpart = 3 it is predetermined that 90% of the products fall within this range when
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L = 11.15 and U = 27.82. 50000 trials are used in the simulation, and the performance of the MLEs
for the model parameters and misclassification probabilities are evaluated using mean squared error
(MSE) and bias criteria. The results for δ̃2, α̃ and β̃ are presented in Figures 1-10.

Figure 1. MSE values in µ̃part for different n and r values

Figure 2. MSE values in σ̃part for different n and r values

Figure 3. MSE values in σ̃measure for different n and r values

Figure 4. MSE values in α̃ for different n and r values
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Figure 5. MSE values in β̃ for different n and r values

Figure 6. Bias values in µ̃part for different n and r values

Figure 7. Bias values in σ̃part for different n and r values

Figure 8. Bias values in σ̃measure for different n and r values
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Figure 9. Bias values in α̃ for different n and r values

Figure 10. Bias values in β̃ for different n and r values

According to Figures 1–10, several key observations can be made. Firstly, as expected, since µpart is
primarily identified from the Y data, the inclusion of additional Z observations does not significantly
affect its estimation. As expected, the MSE and bias of all MLEs for each model parameter, as well as
the MLEs of the misclassification probabilities α and β, tend to zero as both the sample size n and the
number of repeated measurements r increase. Moreover, as r increases (i.e., as the number of repeated
measurements for the same subject increases), there is a positive effect on the MSEs of all estimators.

5. Illustrative example

In this section, a simulated data set is used for illustration purposes. This data set is generated
assuming parts are distributed normally with parameters µpart = 20 and σpart = 0.3, and measurement
errors are assumed to be distributed normally with mean zero and standard deviation 0.05. Then, the
measurements are generated using (2.1) and by fixing set.seed(1). 20 parts are measured, with an
extra r = 10 observations collected. The measurements (Y ) and the additional observations (Z) are
obtained as follows:

Measurements (Y ):
19.8094, 20.0558, 19.7458, 20.4851, 20.1002, 19.7504, 20.1482, 20.2245, 20.1751, 19.9071,
20.4597, 20.1185, 19.8110, 19.3264, 20.3421, 19.9863, 19.9950, 20.2870, 20.2497, 20.1806.
Extra Observations (Z):

20.6479, 20.5748, 20.5993, 20.5773, 20.5111, 20.5592, 20.5602, 20.5770, 20.6350, 20.6181,

where µnui = 20.58 is pre-determined. It is also assumed that the manufacturer has specified the
specification limits as L = 19.7 and U = 20.4. Measurements including measurement errors are
displayed in Figure 11, where the dashed lines indicate the lower and upper specification limits.
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Figure 11. Measurements

The MLEs of model parameters and misclassification probabilities based on the above data are given
in Table 2.

Table 2. MLEs of model parameters and misclassification probabilities for the numerical example
Parameter n r µpart σpart σmeasure µnui α β

True Values 20 - 20 0.3 0.05 20.58 0.0302 0.0239
δ̂1 20 - 20.0579 0.1727 0.2085 - 0.1699 0.0165
δ̃2 20 10 20.0579 0.2669 0.0453 20.5733 0.0262 0.0199

Table 2 illustrates that incorporating additional observations into the measurement system enhances
the accuracy of estimating σpart and σmeasure, even in cases with small sample sizes, and consequently
improves the estimation of the misclassification probabilities α and β.

6. Conclusion

MSA plays a critical role across various fields including manufacturing, engineering, and reliability
of measurement systems. One of the main problems in MSA is the presence of measurement errors,
which may lead to misclassification, specifically Type I and Type II errors. This study provides
closed-form expressions for misclassification probabilities, which are derived based on one-dimensional
and two-dimensional normal CDFs. The proposed analytical approach offers a computationally efficient
alternative, especially in platforms like R. In addition to the classical sample, the study investigates the
impact of repeated measurements by the same operator on the same part, highlighting the positive
effects of these additional observations on the MLEs of misclassification probabilities in MSA. Overall,
the findings indicate that incorporating repeated measurements via Z leads to notable improvements
in both the estimation of model parameters—by reducing MSE and bias—and the estimation of
misclassification probabilities α and β, thereby enhancing the overall accuracy of the measurement
system. Finally, a numerical illustration using simulated data confirms the practical applicability and
effectiveness of the proposed approach. The primary limitation of this study is the assumption of
normally distributed part variation and measurement errors, as well as the use of a single-operator
measurement structure. In future studies, new estimators can be proposed, and their properties can be
analyzed under the assumption that more than one operator is involved and that their measurements
are dependent rather than independent.
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