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Abstract
The purpose of this paper is to provide sufficient conditions for the existence of a best proximity point for
various types of cyclic contraction maps. Our results extend and improve certain recent results in the
literature.
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1. Introduction and preliminaries

Let A and B nonempty subsets of a metric space X. If there is a pair (x0, y0) ∈ A × B for which d(x0, y0) =
d(A,B), that

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B},

then the pair (x0, y0) is called a best proximity pair for A and B. We can find the best proximity pair of the sets A
and B, by considering a map T : A ∪ B → A ∪ B such that T (A) ⊆ B and T (B) ⊆ A. The point x ∈ A ∪ B is a
best proximity point for T if, d(x, Tx) = d(A,B). A map T : A ∪B → A ∪B, T (A) ⊆ B, T (B) ⊆ A is called cyclic
contraction [3] if, for some k ∈ (0, 1) the condition

d(Tx, Ty) ≤ kd(x, y) + (1− k)d(A,B),

holds for all x ∈ A, y ∈ B.
In 2003, Kirk et al. proved fixed point results for cyclic contraction maps [8]. In 2006, Eldered and Veeramani
obtained best proximity point results for cyclic contraction maps [3].

Theorem 1.1. [3] Let A and B be nonempty closed subsets of a complete metric space X. Let T : A ∪B → A ∪B be a cyclic
contraction map. Let x0 ∈ A and define xn+1 = Txn. Suppose {x2n} has a convergent subsequence in A. Then there exists
x ∈ A such that d(x, Tx) = d(A,B).

Best proximity point theory of cyclic contraction maps has been studied by many authors see [1, 3, 9] and
references therein. In 2007, Huang and Zhang [6] introduced cone metric spaces as a generalization of metric spaces.
Then in [10] some results about characterization of best approximations in the cone metric spaces are studied. In
2011, Haghi et al [4] obtained best proximity points for cyclic contraction maps on regular cone metric spaces. In
2012, Karapınar [7], obtained best proximity point for certain cyclic contraction maps in metric spaces. In 2013,
Amini and et al [2], introduce a new class of cyclic generalized contraction maps and it is shown that the best
proximity point property for closed and convex subsets of a uniformly convex Banach space holds.
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In this paper, we obtain some existence of best proximity point theorems for various types of cyclic contraction
maps, which are the generalization of some results in the literature. To prove our results in the next section we
recall some definitions and facts. In the present paper E stands for a real Banach space. A subset P of E is called a
cone if and only if

(i) P is closed, nonempty and P 6= {0};
(ii) a, b ∈ R+ and x, y ∈ P implies ax+ by ∈ P ;
(iii) x ∈ P and −x ∈ P implies x = 0.

We define a partial ordering ≤with respect to P by x ≤ y if and only if y− x ∈ P. x < y will stand for x ≤ y and
x 6= y, while x� y will stand for y − x ∈ intP, where intP denotes the interior of P.

A map f : P → P is said to be increasing (strictly increasing) whenever x ≤ y implies that f(x) ≤ f(y) (x < y
implies that f(x) < f(y)).

A cone P is said to be normal if there is a number M > 0 such that for all x, y ∈ E

0 ≤ x ≤ y implies ‖x‖ ≤M‖y‖.

The least positive number M satisfying the above inequality is called the normal constant of cone P. [6]

Definition 1.1. [12] A nonempty subset A of (X, d), is said to be bounded above if there exists c ∈ intP such that
c− d(x, y) ∈ P for all x, y ∈ A.

The cone P is called regular if every increasing sequence which is bounded from above is convergent. That
is, if {xn}n≥1 is a sequence such that x1 ≤ x2 ≤ . . . ≤ y for some y ∈ E, then there is x ∈ E such that limn→∞ ‖
xn − x ‖= 0. Equivalently, the cone P is regular if and only if, every decreasing sequence which is bounded from
below is convergent.

Lemma 1.1. [11] Every regular cone is normal.

Definition 1.2. [6] Let X be a nonempty set. Suppose that a mapping d : X ×X → E satisfies:
(d1) 0 ≤ d(x, y) for every x, y ∈ X and d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x) for every x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for every x, y, z ∈ X.

Then d is called a cone metric and (X, d) is called a cone metric space.

Example 1.1. [5] Let E = (L1[0, 1], ‖ · ‖1), P = {f ∈ E : f ≥ 0 a.e.}, (X, ρ) be a metric space and d : X ×X → E
defined by d(x, y) = fx,y, where fx,y(t) = ρ(x, y)t2. Then (X, d) is a regular cone metric space. In fact, if {fn}n≥1 is
an increasing sequence and there is g ∈ L1 such that f1 ≤ f2 ≤ . . . ≤ fn ≤ . . . ≤ g for almost every where x, then
{fn}n≥1 converges to a function f a.e. on X. Then, fn ≤ f ≤ g (a.e.) for all n ≥ 1. Thus g− f1 ∈ L1, g− fn ≤ g− f1
for all n ≥ 1 and limn→∞g − fn = g − f (a.e.)
Hence by the Lebesgue dominated convergence theorem, f ∈ L1 and
limn→∞ ‖ fn − f ‖1= 0. So, the cone P is regular.

Definition 1.3. [4] Let A and B nonempty subsets of cone metric space (X, d). An element p ∈ P is said to be a
lower bound for A×B whenever

p ≤ d(a, b),

for all (a, b) ∈ A×B. If p ≥ q for all lower bound q for A×B, then p is called the greatest lower bound for A×B.
We denote it by d(A,B).

Clearly, d(A,B) is a unique vector in P.

Definition 1.4. [4] A map ψ : P → P is called cone L- function whenever ψ(0) = 0, ψ(s) > 0 for all s ∈ P with
s 6= 0 and there exists δs � 0 such that ψ(t) ≤ s for all s ≤ t ≤ s+ δs.

Lemma 1.2. [4] Let ψ : P → P be a cone L-function and {sn} a decreacing sequence in P such that sn+1 < ψ(sn) for all
n ≥ 1. Then limn→∞sn = 0.
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2. Main results
Throughout this section, E is a normed space, (X, d) is regular cone metric space, ≤ is the partial ordering with

respect to P and A,B are nonempty subsets of X.

Theorem 2.1. Let T : A ∪B → A ∪B be a map such that T (A) ⊆ B,
T (B) ⊆ A and

d(Tx, Ty) ≤ kmax{d(x, y), (1/2){d(Tx, x) + d(Ty, y)}}
+ (1− k)d(a, b), (2.1)

for all (a, b), (x, y) ∈ A×B, for some k ∈ (0, 1). Then, d(A,B) exists.

Proof. The max{d(x, y), (1/2){d(Tx, x) + d(Ty, y)}} = d(x, y) is known (see [4]). Let

max{d(x, y), (1/2){d(Tx, x) + d(Ty, y)}} = (1/2){d(Tx, x) + d(Ty, y)}.

Take x0 ∈ A ∪B, set xn+1 = Txn and dn+1 = d(xn+1, xn) for all n ≥ 1. Then

dn+1 ≤ (k/2){dn+1 + dn}+ (1− k)d(a, b),

for all (a, b) ∈ A×B, which is equivalent to

dn+1 ≤
k/2

1− k/2
dn +

1− k
1− k/2

d(a, b),

for each (a, b) in A×B. It follows that dn+1 ≤ dn for all n ≥ 1. By the regularity of the cone P, there exists p ∈ P
such that dn → p as n → ∞. Thus p ≤ d(a, b) holds for any (a, b) in A× B. Now if q is a lower bound for A× B,
then q ≤ dn for all n ≥ 1, and so, q ≤ p. Therefore, d(A,B) = p.

Note that, inequality (2.1) is equivalent to

d(Tx, Ty) ≤ kmax{d(x, y), (1/2){d(Tx, x) + d(Ty, y)}}+ (1− k)d(A,B),

in metric spaces.

Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold, x0 ∈ A and xn+1 = Txn for all n ≥ 1. If {x2n} has a
convergent subsequence in A, then there exists x ∈ A such that d(x, Tx) = d(A,B).

Proof. Let {x2nk
} be the convergent subsequence of {x2n} in A with x2nk

→ x ∈ A. Since

p = d(A,B) ≤ d(x, x2nk−1) ≤ d(x, x2nk
) + d(x2nk

, x2nk−1),

for each k ≥ 1, {d(x2nk
, x2nk−1)} is a subsequence of {dn}, hence

d(x, x2nk−1)→ p as n→∞. As
p ≤ d(Tx, x2nk

) ≤ d(x, x2nk−1),

for all k ≥ 1. It follows that d(x, Tx) = p = d(A,B).

Theorem 2.3. Let T : A ∪B → A ∪B be a map such that T (A) ⊆ B, T (B) ⊆ A and

d(Tx, Ty) ≤ ad(x, y) + b{d(Tx, x) + d(Ty, y)}+ cd(a, b), (2.2)

for all (a, b), (x, y) ∈ A×B, where a, b, c are constant such that a, b, c≥ 0 and a+ 2b+ c < 1. Then d(A,B) exists.

Proof. Take x0 ∈ A ∪B. Set xn+1 = Txn and dn+1 = d(xn+1, xn) for all n ≥ 1. Then

dn+1 ≤ adn + b{dn+1 + dn}+ cd(a, b),

for all (a, b) ∈ A×B. So

dn+1 ≤
a+ b

1− b
dn +

c

1− b
d(a, b),

for each (a, b) ∈ A×B. So
dn+1 ≤ kdn + (1− k)d(a, b),

for all (a, b) in A×B, where k = (a+ b)/(1− b). Hence, dn+1 ≤ dn for all n ≥ 1. Similar to the prove of Theorem 2.1
we obtain the result.
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Note that, inequality (2.2) is equivalent to

d(Tx, Ty) ≤ ad(x, y) + b{d(Tx, x) + d(Ty, y)}+ cd(A,B),

in metric spaces.

Theorem 2.4. Suppose that the conditions of Theorem 2.3 hold, x0 ∈ A and xn+1 = Txn for all n ≥ 1. If {x2n} has a
convergent subsequence in A. Then there exists x ∈ A such that d(x, Tx) = d(A,B).

Proof. The proof is similar to the proof of Theorem 2.2.

Now, we will consider the best proximity points for a pair of mapping (S, T ), such that S, T : A ∪ B →
A ∪B, S(A) ⊆ B and T (B) ⊆ A.

Theorem 2.5. Let S, T : A ∪B → A ∪B such that S(A) ⊆ B, T (B) ⊆ A and

d(Sx, Ty) ≤ kd(x, y) + (1− k)d(a, b), (2.3)

for all (a, b), (x, y) ∈ A×B, for some k ∈ (0, 1). Then, d(A,B) exists.

Proof. Take x0 ∈ A, then Sx0 ∈ B, so there exists y0 ∈ B such that y0 = Sx0. Now Ty0 ∈ A, so there exists x1 ∈ A
such that x1 = Ty0. Inductively, we define sequence {xn} and {yn} in A and B, respectively by

xn+1 = Tyn, yn = Sxn. (2.4)

Set dn = d(xn, Sxn). Since

dn+1 ≤ kd(yn, xn+1) + (1− k)d(a, b)
≤ k2dn + (1− k2)d(a, b),

for all (a, b) in A×B. It follows that dn+1 ≤ dn. Similar to the prove of Theorem 2.1 we obtain the result.

Note that, inequality (2.3) is equivalent to

d(Sx, Ty) ≤ kd(x, y) + (1− k)d(A,B),

in metric spaces. Also, in case S = T, Theorem 2.5 reduce to the Theorem 2.1 in [4].

Theorem 2.6. Suppose that the conditions of Theorem 2.5 hold and the sequence {xn} and {yn} are generated by (2.4) for
some x0 ∈ A ∪B. If both {xn} and {yn} have a convergent subsequence in A and B respectively, then there exist x ∈ A and
y ∈ B such that

d(x, Sx) = d(A,B) = d(y, Ty).

Proof. Set dn = d(xn, Sxn). Let {ynk
} be a subsequence of {yn} such that ynk

→ y. The relation

p = d(A,B) ≤ d(Tynk
, y) ≤ d(ynk

, y) + d(ynk
, Tynk

),

holds for each k ≥ 1. Since
d(ynk

, T ynk
) ≤ kdnk

+ (1− k)d(a, b),
for all (a, b) ∈ A × B. It follows that d(ynk

, T ynk
) ≤ dnk

. Since {d(Sxnk
, xnk

)} is a subsequence of {dn}, hence
limk→∞ d(Sxnk

, xnk
) = p. Thus

lim
k→∞

d(ynk
, Tynk

) = p.

So d(Tynk
, y)→ p as k →∞. Now, for each k ≥ 1

d(Ty, ynk
) ≤ kd(y, xnk

) + (1− k)d(a, b)
≤ k{d(y, ynk

) + d(ynk
, xnk

)}+ (1− k)d(a, b).
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i.e.
p = d(A,B) ≤ d(Ty, ynk

) ≤ k{d(y, ynk
) + dnk

}+ (1− k)d(a, b),

for all (a, b) ∈ A×B. Letting k →∞, we have d(Ty, y) = p = d(A,B).
Similarly, it can be proved that d(x, Sx) = d(A,B).

In the following Theorem, the distance of A and B is obtained by considering the pair mapping (S, T ) in a
regular cone metric space.

Theorem 2.7. Let ψ : P → P be a cone L- function. S, T : A ∪B → A ∪B such that T (B) ⊆ A, S(A) ⊆ B and

d(Sx, Ty)− p < ψ(d(x, y)− p),

for all (x, y) ∈ A×B with p < d(x, y), where p is lower bounded for A×B. Then d(A,B) = p.

Proof. Let {xn} and {yn} be as follows xn+1 = Tyn, Sxn = yn+1 for some (x0, y0) ∈ A × B, n ∈ N. Also let
dn+1 = d(xn+1, yn+1), we have

dn+1 − p < ψ(dn − p) ≤ dn − p.

By the regularity of the cone P, we have dn+1 ≤ dn. Hence, there exists q ∈ P such that limn→∞dn = q. Then p ≤ q.
Put sn = dn − p. Since, sn > 0, we have sn+1 < ψ(sn) ≤ sn. By Lemma 1.8, limn→∞sn = 0. Thus, limn→∞dn = p
and so d(A,B) = p = q.

Note that, in case S = T. Theorem 2.7 reduce to the Theorem 2.4 in [4].
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