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Abstract
The aim of this paper is to present connections between the Jensen and Hermite-Hadamard inequality.
The study includes convex functions of one and several variables. The basis of the research are convex
combinations with the common center.
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1. Introduction
In summary form, we present the concept of convexity and affinity by using binomial combinations.
Let X be a real linear space. Let a, b ∈ X be points and let α, β ∈ R be coefficients. Their binomial combination

αa+ βb is convex if α, β ≥ 0 and if α+ β = 1. If c = αa+ βb, then the point c itself is called the combination center.
A subset of X is convex if it contains all binomial convex combinations of its points. The convex hull convS of a

set S ⊆ X is the smallest convex set which contains S, and it consists of all binomial convex combinations of the
points of S .

Let C ⊆ X be a convex set. A function f : C → R is convex if the inequality

f(αa+ βb) ≤ αf(a) + βf(b) (1.1)

holds for all binomial convex combinations αa+ βb of pairs of points a, b ∈ C.
Using the adjective affine instead of convex, requiring the coefficients condition α+ β = 1, and requiring the

equality in equation (1.1), we get a characterization of the affinity.
Implementing mathematical induction, it can be verified that the above concept applies to n-membered affine or

convex combinations for any positive integer n > 2.

We present the discrete and integral form of the famous Jensen’s inequality using convex and measurable sets.
In 1905, applying mathematical induction to convex combinations, Jensen (see [6]) has obtained the following

discrete inequality.
Discrete form of the Jensen inequality. Let C be a convex set of a real linear space, and let

∑n
i=1 αiai be a convex

combination of points ai ∈ C.
Then every convex function f : C → R satisfies the inequality

f

(
n∑

i=1

αiai

)
≤

n∑
i=1

αif(ai). (1.2)
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In 1906, working on transition to integrals, Jensen (see [7]) has stated the another form.

Integral form of the Jensen inequality. Let I ⊆ R be an interval. Let A be a measurable set of a space of positive
measure µ so that µ(A) > 0, and let g : A → R be an integrable function so that g(A) ⊆ I.

Then every convex function f : I → R, such that f(g) is integrable, satisfies the inequality

f

(
1

µ(A)

∫
A
g(x) dµ

)
≤ 1

µ(A)

∫
A
f(g(x)) dµ. (1.3)

Because of its attractiveness, the Jensen and related inequalities were studied during the whole last century.
So, there are the Steffensen, Brunk and Olkin inequality. In this century the research goes on and we got the
Jensen-Mercer and Mercer-Steffensen inequality. For more information concerning these inequalities, one may refer
to the in book [9], and the papers in [1], [11], [12] and [13].

In 1883, studying convex functions, Hermite (see [5]) has attained the important inequality. In 1893, not knowing
Hermite’s result, Hadamard (see [4]) has gotten its first part, the left inequality in equation (1.4).

Classic form of the Hermite-Hadamard inequality. Let [a, b] ⊂ R be a bounded closed interval.
Then every convex function f : [a, b]→ R satisfies the double inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
. (1.4)

For information as regards the Hermite-Hadamard inequality, one may refer to book [3], and the papers in [2],
[8], [10] and [14].

1.1 Set Barycenter in Euclidean Space
The notion of the set barycenter is important for inequalities involving integrals.
Let A ⊆ Rk be a set, let µ be a positive measure on Rk such that µ(A) > 0, and let g : A → R be an integrable

function.
The barycenter of the set A respecting the measure µ is the point(

1

µ(A)

∫
A
x1 dµ, . . . ,

1

µ(A)

∫
A
xk dµ

)
(1.5)

belonging to the convex hull of the set A.
The integral mean of the function g respecting the measure µ is the number

1

µ(A)

∫
A
g(x1, . . . , xk) dµ (1.6)

belonging to the convex hull of the set g(A).
Let g1, . . . , gk : A → R be integrable functions. Let C ⊆ Rk be a convex set containing the image set

{
(
g1(x), . . . , gk(x)

)
: x ∈ A}. Then every convex function f : C → R, such that f(g1, . . . , gk) is integrable, sat-

isfies the inequality

f

(
1

µ(A)

∫
A
g1 dµ, . . . ,

1

µ(A)

∫
A
gk dµ

)
≤ 1

µ(A)

∫
A
f(g1, . . . , gk) dµ. (1.7)

The above inequality presents the integral form of the Jensen inequality for convex functions of several variables. If
the function f is affine, then the equality holds in equation (1.7). The same is true for equations (1.2), (1.3) and (1.4).

2. Geometric Presentation of Inequalities

Let I ⊆ R be an interval, let f : I → R be a convex function, and let c =
∑n

i=1 αiai be a convex combination
of points ai ∈ I. To explain the Jensen inequality visually, we take the convex combination C =

∑n
i=1 αiAi of the

points Ai = (ai, f(ai)) belonging to the graph of f . The center c is in the convex hull of line points ai,

c ∈ conv{a1, . . . , an}, (2.1)
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Figure 1. Geometric presentation of the inequality in equation (1.2)

as well as the center C is in the convex hull of plane points Ai,

C ∈ conv{A1, . . . , An}. (2.2)

The convex hull in equation (2.2) is the convex polygon inscribed in the function epigraph. So, the polygon point

C =

(
n∑

i=1

αiai,

n∑
i=1

αif(ai)

)
=

(
c,

n∑
i=1

αif(ai)

)
(2.3)

is above the graph point

A =
(
c, f(c)

)
=

(
c, f

(
n∑

i=1

αiai

))
, (2.4)

which can be seen in Figure 1. Therefore, the relation between ordinates of points A and C,

f

(
n∑

i=1

αiai

)
≤

n∑
i=1

αif(ai),

represents the classical discrete form of the Jensen inequality for convex functions of one variable.

The visual explanation of the Hermite-Hadamard inequality for a convex function f : [a, b]→ R depends on
two lines. We use the secant line function f sec

{a,b} whose graph passes through the points (a, f(a)) and (b, f(b)), and
for c ∈ (a, b) a supporting line function f sup

{c} whose graph passes through the point (c, f(c)).
So we get the curvilinear trapezoid which contains the supporting trapeze, and which is contained in the

bounding trapeze. This is clearly seen in Figure 2. By calculating the areas of all three shapes, it follows that

(b− a)f sup
{c}

(
a+ b

2

)
≤
∫ b

a

f(x) dx ≤ (b− a)f sec
{a,b}

(
a+ b

2

)
. (2.5)

We could also obtain the above result by integrating the double inequality

f
sup
{c} (x) ≤ f(x) ≤ f

sec
{a,b}(x)

over the interval [a, b].
Applying the formula f sup

{c} (c) = f(c) to the midpoint c = (a+b)/2 to the supporting line function (the supporting
trapeze area attains a maximum value at the midpoint), we get

f
sup
{ a+b

2 }

(
a+ b

2

)
= f

(
a+ b

2

)
. (2.6)
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Figure 2. Geometric presentation of the inequality in equation (2.5)

Using the affinity of the secant line function, we obtain

f sec
{a,b}

(
a+ b

2

)
=

1

2
f sec
{a,b}(a) +

1

2
f sec
{a,b}(b) =

f(a) + f(b)

2
. (2.7)

Involving the above equalities to equation (2.5) and dividing with b − a, we achieve the classical form of the
Hermite-Hadamard inequality,

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
.

3. Preceding Inequality for Functions of One Variable

The aim of this section is give the basic inequality from which can be derived both the Jensen and Hermite-
Hadamard inequality.

Through the section we will use a bounded closed interval [a, b] ⊂ R with endpoints a < b, and a convex function
f : [a, b]→ R.

Every number x ∈ R can be presented by the unique affine combination

x =
b− x
b− a

a+
x− a
b− a

b, (3.1)

which is convex if and only if the number x belongs to the interval [a, b]. Applying the affinity of f sec
{a,b} to the

equality in (3.1), we obtain the secant line equation

f sec
{a,b}(x) =

b− x
b− a

f(a) +
x− a
b− a

f(b). (3.2)

The function f has both left and right derivative on (a, b). Given a point c ∈ (a, b) and a slope κ ∈ [f ′(c−), f ′(c+)],
we get the supporting line equation

f
sup
{c} (x) = κ(x− c) + f(c). (3.3)

Finally, we have the double inequality

f
sup
{c} (x) ≤ f(x) ≤ f

sec
{a,b}(x), x ∈ [a, b]. (3.4)

Theorem 3.1. Let [a, b] ⊂ R be a bounded closed interval, let
∑n

i=1 αiai be a convex combination of points ai ∈ [a, b], and
let αa+ βb be the unique convex combination of endpoints a and b such that

αa+ βb =

n∑
i=1

αiai. (3.5)
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Then every convex function f : [a, b]→ R satisfies the double inequality

f (αa+ βb) ≤
n∑

i=1

αif(ai) ≤ αf(a) + βf(b). (3.6)

Proof. We put c =
∑n

i=1 αiai. Since c ∈ [a, b], we have two cases depending on the position of the center c.
If c is the endpoint, c ∈ {a, b}, then the trivial inequality f(c) ≤ f(c) ≤ f(c) represents the inequality in equation

(3.6).
If c is the interior point, c ∈ (a, b), then we use a supporting function f sup

{c} and the secant function f sec
{a,b} to obtain

the series of inequalities

f (αa+ βb) = f
sup
{c} (αa+ βb) =

n∑
i=1

αif
sup
{c} (ai)

≤
n∑

i=1

αif(ai)

≤
n∑

i=1

αif
sec
{a,b}(ai) = f sec

{a,b} (αa+ βb)

= αf(a) + βf(b)

(3.7)

including the double inequality in equation (3.6).

According to representing equation (3.1), the coefficients α and β in Theorem 3.1 are determined with fractions

α =
b− c
b− a

, β =
c− a
b− a

. (3.8)

Corollary 3.1. Let [a, b] ⊂ R be a bounded closed interval, let µ be a positive measure on R such that µ([a, b]) > 0, and let
αa+ βb be the unique convex combination of endpoints a and b such that

αa+ βb =
1

µ([a, b])

∫
[a,b]

x dµ. (3.9)

Then every convex function f : [a, b]→ R satisfies the double inequality

f (αa+ βb) ≤ 1

µ([a, b])

∫
[a,b]

f(x) dµ ≤ αf(a) + βf(b). (3.10)

Proof. We take the barycenter c =
∫
[a,b]

x dµ/µ([a, b]), and since c ∈ [a, b], we have the following two cases.
If the measure µ is concentrated in the endpoint, c ∈ {a, b}, then we have the trivial inequality f(c) ≤ f(c) ≤ f(c).
If the measure µ is not concentrated in the endpoint, c ∈ (a, b), then we can use the framework of equation (3.7).

Inserting the integral mean of f , and the equalities

h(αa+ βb) =
1

µ([a, b])

∫
[a,b]

h(x) dµ (3.11)

with h = f
sup
{c} and h = f sec

{a,b} into equation (3.7), we obtain equation (3.10).

The inequalities in equations (3.6) and (3.10) cover the following.
Remark 3.1. The left inequality of equation (3.6) with

∑n
i=1 αiai instead of the endpoints combination αa + βb

presents the discrete form of the Jensen inequality in equation (1.2), concerning the interval [a, b].
The left inequality of equation (3.10) with

∫
[a,b]

x dµ/µ([a, b]) instead of αa+ βb presents the integral form of the
Jensen inequality in equation (1.3), concerning the identity function g(x) = x on the interval [a, b].

Using the Riemann integral in Corollary 3.1, the condition in equation (3.9) gives the midpoint

1

2
a+

1

2
b =

1

b− a

∫ b

a

x dx, (3.12)

and its use in equation (3.10) implies the classic form of the Hermite-Hadamard inequality for convex functions of
one variable,

f

(
1

2
a+

1

2
b

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ 1

2
f(a) +

1

2
f(b). (3.13)
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4. Generalization to Functions of Several Variables
To generalize the inequalities of Section 3, we will use the smallest convex sets such as segments in the line and

triangles in the plane. This kind of sets are called simplexes or simplices.
Let S1, . . . , Sk+1 ∈ Rk be points. Their convex hull

S = conv{S1, . . . , Sk+1}

is the k-simplex in the space Rk if the points S1 − Sk+1, . . . , Sk − Sk+1 are linearly independent. The points Sj are
called simplex vertices.

Through the section we will use a k-simplex S ⊂ Rk with vertices S1, . . . , Sk+1, and a convex function f : S → R.
The interior of S will be denoted by So.

Every point P ∈ Rk can be presented by the unique affine combination

P =

k+1∑
j=1

λjSj , (4.1)

which is convex if and only if the point P belongs to the k-simplex S . The coefficients λj can be calculated by using
determinants presented in [11]. We will use the hyperplane passing through the graph points (Sj , f(Sj)), and a
supporting hyperplane passing through the graph point (C, f(C)) where C ∈ So. Using denotation fhyperplane

{S1,...,Sk+1} for
the hyperplane function, and f sup

{C} for the supporting hyperplane function, we have the double inequality

f
sup
{C}(P ) ≤ f(P ) ≤ f

hyperplane
{S1,...,Sk+1}(P ), P ∈ S. (4.2)

Theorem 4.1. Let S = conv{S1, . . . , Sk+1} be a k-simplex in the space Rk, let
∑n

i=1 αiAi be a convex combination of points
Ai ∈ S, and let

∑k+1
j=1 σjSj be the unique convex combination of simplex vertices Sj such that

k+1∑
j=1

σjSj =

n∑
i=1

αiAi. (4.3)

Then every convex function f : S → R satisfies the double inequality

f

k+1∑
j=1

σjSj

 ≤ n∑
i=1

αif(Ai) ≤
k+1∑
j=1

σjf(Sj). (4.4)

Proof. We put C =
∑n

i=1 αiAi. Since C ∈ S, we have three cases depending on the position of the center C.
If C is the simplex vertex, C ∈ {S1, . . . , Sk+1}, then the trivial inequality f(C) ≤ f(C) ≤ f(C) represents the

inequality in equation (4.4).
If C is the interior point of S , C ∈ So, then following the proof of Theorem 3.1, we get

f

k+1∑
j=1

σjSj

 = f
sup
{C}

k+1∑
j=1

σjSj

 =

n∑
i=1

αif
sup
{C}(Ai)

≤
n∑

i=1

αif(Ai)

≤
n∑

i=1

αif
hyperplane
{S1,...,Sk+1}(Ai) = f

hyperplane
{S1,...,Sk+1}

k+1∑
j=1

σjSj


=

k+1∑
j=1

σjf(Sj),

(4.5)

which proves the double inequality in equation (4.4).
If C is the interior point of the l-face F in the subspace Rl where 1 ≤ l ≤ k − 1, C ∈ Fo, then we can apply the

previous procedure to the l-simplex F . If the face F = conv{S1, . . . , Sl+1}, then the coefficients σ1, . . . , σl+1 are
positive, and the coefficients σl+2, . . . , σk+1 are equal to zero.
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Corollary 4.1. Let S = conv{S1, . . . , Sk+1} be a k-simplex in the space Rk, let µ be a positive measure on Rk such that
µ(S) > 0, and let

∑k+1
j=1 σjSj be the unique convex combination of simplex vertices Sj such that

k+1∑
j=1

σjSj =

(
1

µ(S)

∫
S
x1 dµ, . . . ,

1

µ(S)

∫
S
xk dµ

)
. (4.6)

Then every convex function f : S → R satisfies the double inequality

f

k+1∑
j=1

σjSj

 ≤ 1

µ(S)

∫
S
f(x1, . . . , xk) dµ ≤

k+1∑
j=1

σjf(Sj). (4.7)

Proof. We can apply the procedure of proving Corollary 3.1 by utilizing the framework of the proof of Theorem
4.1.

Using the inequalities in equations (4.4) and (4.7), we can obtain the following.

Remark 4.1. The left inequality of equation (4.4) with
∑n

i=1 αiAi instead of the vertices combination
∑k+1

j=1 σjSj

presents the discrete form of the Jensen inequality in equation (1.2), concerning the simplex S.

The left inequality of equation (4.7) with
( ∫

S x1 dµ/µ(S), . . . ,
∫
S xk dµ/µ(S)

)
instead of

∑k+1
j=1 σjSj gives a simple

version of the integral form of the Jensen inequality for convex functions of k variables in equation (1.7), concerning
the simplex S.

Using the Riemann integral in Corollary 4.1, the condition in equation (4.6) gives the barycentric point

1

k + 1

k+1∑
j=1

Sj =

(
1

vol(S)

∫
S
x1 dx1 . . . dxk, . . . ,

1

vol(S)

∫
S
xk dx1 . . . dxk

)
, (4.8)

and its use in equation (4.7) gives the Hermite-Hadamard inequality for convex functions of k variables,

f

 1

k+1

k+1∑
j=1

Sj

 ≤ 1

vol(S)

∫
S
f(x1, . . . , xk) dx1 . . . dxk ≤

1

k+1

k+1∑
j=1

f(Sj). (4.9)
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[8] Lyu, S. L., On the Hermite-Hadamard inequality for convex functions of two variables. Numerical Algebra,
Control and Optimization 4 (2014), 1-8.

[9] Niculescu, C. P. and Persson, L. E., Convex Functions and Their Applications. Canadian Mathematical Society.
Springer, New York, USA, 2006.

[10] Niculescu, C. P. and Persson, L. E., Old and new on the Hermite-Hadamard inequality. Real Analysis Exchange
29 (2003), 663-685.
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