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Abstract
A new extension of moment exponential distribution, called exponentiated moment exponential distribu-
tion (EMED), was recently introduced by Hasnain [14]. Based on lower generalized order statistics, we
first derive the explicit expressions as well as recurrence relations for single and product moments of lower
generalized order statistics and we use these results to compute the means, variances and coefficients of
skewness and kurtosis of EMED. Further, using a recurrence relation for single moment, we obtain char-
acterization of EMED. Next we obtain the maximum likelihood estimators of the unknown parameters
and the approximate confidence intervals of the EMED. Finally, we consider Bayes estimation under the
symmetric and asymmetric loss functions using gamma priors for both shape and scale parameters. We
have are also derived the Bayes interval of this distribution. Monte Carlo simulations are performed to
compare the performances of the proposed methods.

Keywords: explicit expression, Recurrence relation, Lower generalized order statistics, Order statistics, Record values, Expo-
nentiated moment exponential distribution, Bayes estimator, General entropy loss function, Maximum likelihood estimator.

AMS Subject Classification (2010): Primary: 62G30,; Secondary: 62E10.

*Corresponding author

1. Introduction
The concept of generalized order statistics (gos) was introduced by Kamps [16] as a general framework for

models of ordered random variables (rv′s). Moreover, many other models of ordered rv′s, such as, ordinary order
statistics (oos), order statistics with non-integral sample size (nonI), progressively type-II censored order statistics
(PCO), upper record values, upper Pfeifer records and sequential order statistics (sos) are seen to be particular
cases of gos. These models can be effectively applied, e.g., in reliability theory. However, decreasingly ordered rv′s
cannot be integrated into this framework. Consequently, this model is inappropriate to study, e.g. reversed ordered
order statistic and lower record values models. Using the concept of gos Pawlas and Szynal [28] introduced the
concept of lower generalized order statistics (lgos) to enable a common approach to descending order statistics,
which was further studied by Burkschat et al. [6] with the name dual generalized order statistics. The lgos models
enable us to study decreasingly ordered random variables like reversed order statistics, lower record values and
lower Pfeifer records, through a common approach below:

Suppose X∗(1, n,m, k), . . . , X∗(n, n,m, k), (k ≥ 1, m is a real number), are n lgos from an absolutely continuous
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cumulative distribution function (cdf) F (x) with probability density function (pdf) f(x). Their joint pdf of the form

k

n−1∏
j=1

γj

(n−1∏
i=1

[F (xi)]
mf(xi)

)
[F (xn)]k−1f(xn), (1.1)

for F−1(1) > x1 ≥ x2 ≥ . . . ≥ xn > F−1(0), where γj = k + (n− j)(m+ 1) > 0 for all j, 1 ≤ j ≤ n, k is a positive
integer and m ≥ −1. If m = 0 and k = 1, we obtain the joint pdf of the ordinary order statistics. If k = 1 and
m = −1, we obtain the joint pdf of the first n record values of the identically and independently distributed (iid)
random variables with cdf F (x) and corresponding pdf f(x). Other statistics contained as particular cases include
sos, progressively type II censored order statistics.

In view of (1.1), the marginal pdf of the rth lgos, X∗(r, n,m, k) 1 ≤ r ≤ n is

fX∗(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F (x)]γr−1f(x)gr−1m (F (x)). (1.2)

The joint pdf of X∗(r, n,m, k) and X∗(s, n,m, k), 1 ≤ r < s ≤ n is

fX∗(r,n,m,k),X∗(s,n,m,k)(x, y) =
Cs−1

(r − 1)!(s− r − 1)!
[F (x)]mf(x)gr−1m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1f(y), x > y, (1.3)

whereCr−1 =
∏r
i=1 γi, hm(x) = −lnx, ifm = −1, hm(x) = 1

m+1x
m+1, ifm 6= −1 and gm(x) = hm(x)−hm(1), x ∈

[0, 1).

The recurrence relations for moments of ordered random variables are important because they reduce the
amount of direct computations for moments, evaluation of higher moments and they can be used to characterize
the distributions. The recurrence relations of higher joint moments enable us to derive single, product, triple and
quadruple moments which can be used in Edgeworth approximate inference.

In the context of lgos, related topics have been studied by Pawlas and Szynal [28], Ahsanullah [1], Mbah and
Ahsanullah [26] and Kumar [20, 21, 22]. Khan and Kumar [18] established recurrence relations for single and
product moment of lgos from the exponentiated Pareto distribution. Keseling [17] characterized some continuous
distributions based on conditional distributions of gos. Bieniek and Szynal [5] characterized some distributions via
linearity of regression of gos. Cramer et al. [9] gave a unifying approach on characterization via linear regression of
ordered random variables. The study of record values and associated statistics are of great significance in many
real life situations such as meteorology, seismology, athletic events, economics, and life testing. The frequency of
weather conditions inspired Chandler [8] to study the distributions of lower records, record times, and inter-record
times for iid sequences of random variables. Computation of Fisher information for any particular distribution is
quite important; see, for example, Zheng [35]. Fisher information matrix can be used to compute the asymptotic
variances of the different functions of the estimators, for example, maximum likelihood estimators.

Recently, Hasnain [14] have introduced a new extension of moment exponential distribution, called exponenti-
ated moment exponential distribution (EMED). He showed that this distribution is more flexible than Dara and
Ahmad [10] moment exponential distribution and Gupta and Kundu [11] exponentiated exponential distribution.
He obtained some basic properties and discussed unbiasedness and sufficiency of the parameters of EMED. He
also discussed different properties of EMED of nth order statistics and finally obtained dual generalized order
statistics for EMED. The moment distributions have applicability in numerous situations. For example, in the field
of physics, Krumbein and Pettijohn [19] and Gy [13] studied moment distributions to examine the relation between
particle diameter and its frequency. Preston [29] applied canonical distributions in ecology. Zelen [33] analyzed
cell cycle and pulse labeling on length biased data. Zelen [34] also used length biased sample for the screening
of disease and scheduling of examinations of patients. Brown [4] studied various aspects of the traffic streams.
Warren [32] examined different case studies to observe the role of statistical distributions in forest and forestry
products research. Taillie et al. [30] modelled populations of fish stocks using weighted distributions. Temkin [31]
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studied length biased survival models to analyze the cardiac transplantation situations and so on. In these and
other application areas, it is pertinent that one has accurate estimation and prediction procedures based on records
and moments of record values.

A random variable X is said to have exponentiated moment exponential distribution (EMED) if its probability
density function (pdf) is of the form

f(x;α, β) =
αx

β2

[
1−

(
1 +

x

β

)
e−x/β

]α−1
e−x/β , x > 0, α, β > 0 (1.4)

and the corresponding cdf is

F (x;α, β) =

[
1−

(
1 +

x

β

)
e−x/β

]α
, x > 0, α, β > 0, (1.5)

the survival function

S(x;α, β) = 1−
[
1−

(
1 +

x

β

)
e−x/β

]α
, x > 0, α, β > 0 (1.6)

and the hazard function

h(x;α, β) =

αx
β2

[
1−

(
1 + x

β

)
e−x/β

]α−1
e−x/β

1−
[
1−

(
1 + x

β

)
e−x/β

]α , x > 0, α, β > 0 (1.7)

where the parameter α controls the shape of the distribution, while β controls the scale of the distribution. EMED
have a vital role in mathematics and statistics, in particular probability theory, in the perspective research related to
ecology, reliability, biomedical field, econometric, survey sampling and in life testing. A recurrence relation for
single and product moments of lgos from the EMED is obtained making use of the following differential equation
(obtained from (1.4) and (1.5)).

F (x;α, β) =
β2

αx

(
ex/β − 1− x

β

)
f(x;α, β). (1.8)
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Figure 1. EME Density Function

Plotted above are the probability density function (figure 1), for α = 1, 2, 3 and β = 1, 2, 3 and the hazard
functions (figure 2) and Survival Function (figure 3) for EMED when α = 1, 2, 3 and β = 1, 2, 3.

The presentation of the content of this work is as follows: In Section 2, we obtain explicit expressions and
recurrence relations for single moments of lgos from EMED. The explicit expressions and recurrence relations for
product moments of lgos from EMED are discussed in Section 3. In Section 4, we characterize the distribution
by using recurrence relation for single moment of lgos. The Fisher information matrices of EMED are discussed
in Section 5. We use maximum likelihood estimation (MLE) method as a part of frequentist methodology for
parameter estimation in Section 6. The asymptotic confidence intervals based on the observed Fisher’s information
matrix is also discussed here. Next, we consider Bayesian estimation of the unknown parameters in Section 7.
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Figure 2. EME Hazard Function
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Figure 3. EME Survival Function

The Bayesian inference mainly depends on two features: choice of prior distribution of the parameters and the
loss function to be used for Bayesian computations. In this article, we use gamma priors for both scale and shape
parameters and they are assumed to be independent of each other. For Bayesian inference, we use a general entropy
loss function. The main idea behind using this loss function is that with particular choices of the parameter involved
in the form of loss function produces estimates under several well known loss functions, which are both symmetric
and asymmetric in nature. A brief discussion of this loss function is presented later in this article in section 7. The
joint posterior distribution is complicated and thus the posterior sampling is not straightforward to implement.
Here we propose a Markov Chain Monte Carlo technique which involve Metropolis-Hasting algorithm for posterior
sampling. Besides Bayes estimates, we also obtain a two-sided Bayes probability intervals as a Bayesian counter
part of the asymptotic confidence intervals in section 7. Bayes estimation heavily dependent on the choice of hyper
parameters involved in the prior distributions, which is quite sensitive for the Bayesian inference. An alternative
way to avoid the issue is to use an empirical Bayes estimation procedure for parameter estimation; section 8
introduces this procedure for the aforementioned distribution. The performances of the two estimation methods are
compared by simulation in Section 9. In Section 10, two applications are demonstrated to illustrate the utility of the
results derived in Section 3 and 4. Section 11 contains a brief conclusion.

2. Relations for single moments

For the EME distribution as given in (1.4), the j-th moments of X∗(r, n,m, k) is given as

E[X∗j(r, n,m, k)] =

∫ ∞
−∞

xjfX∗(r,n,m,k)(x)dx

=
Cr−1

(r − 1)!

∫ ∞
−∞

xj [F (x)]γr−1f(x)gr−1m (F (x))dx

=
Cr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)u
(
r − 1
u

)
×

∫ ∞
−∞

xj [F (x)]γr−1f(x). (2.1)
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Further, on using (1.4) and (1.5) in (2.1), and simplifying the resulting expression we get

E[X∗j(r, n,m, k)] =
αCr−1

βj(r − 1)!(m+ 1)r−1

r−1∑
u=0

∞∑
p=0

p∑
q=0

(−1)u+p
(
r − 1
u

)

×
(
αγr−u − 1

p

)(
p
q

)
Γ(j + q + 2)

(p+ 1)j+p+2
. (2.2)

and when m = −1 that

E[X∗j(r, n,−1, k)] =
(αk)r

βj(r − 1)!

∞∑
p=0

∞∑
u=0

r−1+u+p∑
q=0

(−1)uαp(r − 1)

×
(
αk − 1
p

)(
r − 1 + u+ p

q

)
Γ(j + q + 2)

(r + p+ u)j+p+2
. (2.3)

where αp(r − 1) is the coefficient of
[(

1 + x
β

)
e−x/β

]r−1+p
in the expansion of

[∑∞
u=1

1
u

(
1 + x

β

)
e−x/β

]r−1
(see

Balakrishnan and Cohan [3]).

If α is a positive integer, the relations (2.2) and (2.3) then give

E[X∗j(r, n,m, k)] =
αCr−1

βj(r − 1)!(m+ 1)r−1

r−1∑
u=0

αγr−u−1∑
p=0

p∑
q=0

(−1)u+p
(
r − 1
u

)

×
(
αγr−u − 1

p

)(
p
q

)
Γ(j + q + 2)

(p+ 1)j+p+2
. (2.4)

and

E[X∗j(r, n,−1, k)] =
(αk)r

βj(r − 1)!

∞∑
p=0

αk−1∑
u=0

r−1+u+p∑
q=0

(−1)uαp(r − 1)

(
αk − 1
p

)
×

(
r − 1 + u+ p

q

)
Γ(j + q + 2)

(r + p+ u)j+p+2
. (2.5)

Special cases
i) Putting m = 0, k = 1 in (2.4), the explicit formula for the single moments of ordinary order statistics of the
EMED can be obtained as

E[Xj
n−r+1:n] =

αCr:n
βj

r−1∑
u=0

α(n−r+1)−1∑
p=0

p∑
q=0

(−1)u+p
(
r − 1
u

)
×

(
α(n− r + 1)− 1

p

)(
p
q

)
Γ(j + q + 2)

(p+ 1)j+p+2
.

That is

E[Xj
r:n] =

αCr:n
βj

n−r∑
u=0

αr−1∑
p=0

p∑
q=0

(−1)u+p
(
n− r
u

)(
αr − 1
p

)
×

(
p
q

)
Γ(j + q + 2)

(p+ 1)j+p+2
,

where

Cr:n =
n!

(r − 1)!(n− r)!
.
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ii) Putting k = 1 in (2.5), the explicit expressions for the moments of lower record values for the EMED can be
obtained as

E[Xj
L(r)] =

αr

βj(r − 1)!

∞∑
p=0

αk−1∑
u=0

r−1+u+p∑
q=0

(−1)uαp(r − 1)

×
(
α− 1
p

)(
r − 1 + u+ p

q

)
Γ(j + q + 2)

(r + p+ u)j+p+2
.

A recurrence relation for moments of lgos from (1.5) can be obtained in the following theorem.

Theorem 2.1. For the distribution as given in (1.5) and for 2 ≤ r ≤ n, n ≥ 2 and k = 1, 2, . . .

E[X∗j(r, n,m, k)] = E[X∗j(r − 1, n,m, k)] =
jβ2

αγr

{
E[X∗j−2(r, n,m, k)]

+
1

β
E[X∗j−1(r, n,m, k)]− E[φ(X∗(r, n,m, k))]

}
(2.6)

where
φ(x) = xj−2ex/β .

Proof: From (1.2), we have

E[X∗j(r, n,m, k)] =
Cr−1

(r − 1)!

∫ ∞
0

xj [F (x)]γr−1f(x)gr−1m (F (x))dx.

By integrating by parts, we get

E[X∗j(r, n,m, k)] − E[X∗j(r − 1, n,m, k)]

= − jCr−1
γr(r − 1)!

∫ ∞
0

xj−1[F (x)]γrgr−1m (F (x))dx

= − jCr−1
γr(r − 1)!

∫ ∞
0

xj−1[F (x)]γr−1f(x)

×
{
β2

αx

(
ex/β − x

β
− 1

)}
gr−1m (F (x))dx.

= − j β2Cr−1
αγr(r − 1)!

∫ ∞
0

xj−2 ex/β [F (x)]γr−1f(x)gr−1m (F (x))dx

+
j β2Cr−1
αγr(r − 1)!

∫ ∞
0

xj−2[F (x)]γr−1f(x)gr−1m (F (x))dx

+
j βCr−1

αγr(r − 1)!

∫ ∞
0

xj−1[F (x)]γr−1f(x)gr−1m (F (x))dx.

The result follows.

Remark 2.1. Under the assumptions of Theorem 2.1, with k = 1; m = 0, we shall deduce the recurrence relation for
single moments of ordinary order statistics from EMED.

Remark 2.2. Putting k = 0; m = −1 in Theorem 2.1, we obtain the recurrence relation for single moments of lower
record values from EMED.

3. Relations for product moments

For EMED, the product moments of X∗(r, n,m, k) and X∗(s, n,m, k) is given as

E[X∗i(r, n,m, k)X∗j(s, n,m, k)] =

∫ ∞
−∞

∫ ∞
y

xiyjfX∗(r,n,m,k)X∗(s,n,m,k)(x, y)dxdy.
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=
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

r−1∑
a=0

s−r−1∑
b=0

(−1)u+v
(
r − 1
u

)(
s− r − 1

v

)

×
∫ ∞
0

yj [F (y)]γs−b−1f(y)G(y)dy, x > y. (3.1)

where

G(y) =

∫ ∞
y

xi[F (y)](s−r+a−b)(m+1)−1f(x)dx

= αβi
∞∑
c=0

c∑
d=0

i+d+1∑
p=0

(−1)c
(
α(s− r + a− b)(m+ 1)− 1

c

)

×
(
c
d

)
e−[(c+1)/β]y[((c+ 1)/β)y]pΓ(i+ d+ 2)

p!(c+ 1)i+d+2
.

On substituting the above expression of G(y) in (3.1), and simplifying the resulting expression we get

E[X∗i(r, n,m, k)X∗j(s, n,m, k)] =
α2βi+jCs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

r−1∑
a=0

s−r−1∑
b=0

×
∞∑
c=0

c∑
d=0

i+d+1∑
p=0

∞∑
u=0

u∑
v=0

(−1)a+b+c+u
(
r − 1
a

)(
s− r − 1

b

)

×
(
α(s− r + a− b)(m+ 1)− 1

c

)(
c
d

)(
αγs−b − 1

u

)(
u
v

)
× Γ(i+ d+ 2)Γ(j + p+ v + 2)

p!(c+ 1)i+d+2−p(c+ u+ 2)j+p+v+2
. (3.2)

and when m = −1 that

E[X∗i(r, n,−1, k)X∗j(s, n,−1, k)] =
βi+j(αk)s

(r − 1)!(s− r − 1)!

s−r−1∑
a=0

∞∑
b=0

s−a−2+p+b∑
c=0

i+c+1∑
d=0

×
∞∑
p=0

∞∑
q=0

∞∑
u=0

u+a+q∑
v=0

(−1)s−r−1+a+u
(
s− r − 1

a

)(
s− a− 2 + b+ p

c

)(
αk − 1
u

)

×
(
u+ a+ q

v

)
Γ(i+ c+ 2)Γ(j + d+ v + 2)

d!(s− a− 1 + b+ p)i+c+2−d(s+ b+ p+ q + u)j+d+v+2
. (3.3)

If α is a positive integer, then the relations (3.2) and (3.3) take the form

E[X∗i(r, n,m, k)X∗j(s, n,m, k)] =
α2βi+jCs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

r−1∑
a=0

s−r−1∑
b=0

×
α(s−r+a−b)(m+1)−1∑

c=0

c∑
d=0

i+d+1∑
p=0

αγs−b−1∑
u=0

u∑
v=0

(−1)a+b+c+u
(
r − 1
a

)(
s− r − 1

b

)

×
(
α(s− r + a− b)(m+ 1)− 1

c

)(
c
d

)(
αγs−b − 1

u

)(
u
v

)
× Γ(i+ d+ 2)Γ(j + p+ v + 2)

p!(c+ 1)i+d+2−p(c+ u+ 2)j+p+v+2
. (3.4)

and

E[X∗i(r, n,−1, k)X∗j(s, n,−1, k)] =
βi+j(αk)s

(r − 1)!(s− r − 1)!

s−r−1∑
a=0

∞∑
b=0

s−a−2+p+b∑
c=0

i+c+1∑
d=0
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×
∞∑
p=0

∞∑
q=0

αk−1∑
u=0

u+a+q∑
v=0

(−1)s−r−1+a+u
(
s− r − 1

a

)(
s− a− 2 + b+ p

c

)(
αk − 1
u

)

×
(
u+ a+ q

v

)
Γ(i+ c+ 2)Γ(j + d+ v + 2)

d!(s− a− 1 + b+ p)i+c+2−d(s+ b+ p+ q + u)j+d+v+2
. (3.5)

Special cases
i) Putting m = 0, k = 1 in (3.4), we obtain the explicit formula for the product moments of ordinary order statistics
for the EMED.

ii) Putting k = 1 in (3.5), we obtain the explicit expressions for the product moments of lower record values for
the EMED.

Making use of (1.6), we can derive the recurrence relations for product moments of lgos.

Theorem 3.1. For the distribution given in (1.5) and for 1 ≤ r < s ≤ n, n ≥ 2 and k = 1, 2, . . .

E[X∗i(r, n,m, k)X∗j(s, n,m, k)]− E[X∗i(r, n,m, k)X∗j(s− 1, n,m, k)]

+
β2j

αγs

{
E[X∗i(r, n,m, k)X∗j−2(s, n,m, k)] +

1

β
E[X∗i(r, n,m, k)X∗j−1(s, n,m, k)]

}

− β2j

αγs
E[φ(X∗(r, n,m, k)X∗(s, n,m, k))], (3.6)

where

φ(x, y) = xiyj−2ey/β .

Proof: From (1.3), we have

E[X∗i(r, n,m, k)X∗j(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!

∫ ∞
0

∫ x

0

xiyj [F (x)]mf(x)

× gr−1m (F (x))[hm(F (y))− hm(F (x))]s−r−1

× [F (y)]γs−1f(y)dydx.

By integrating by parts we get

E[X∗i(r, n,m, k)X∗j(s, n,m, k)] − E[X∗i(r, n,m, k)X∗j−1(s− 1, n,m, k)]

=
jCs−1

γs(r − 1)!(s− r − 1)!

∫ ∞
0

∫ x

0

xiyj−1[F (x)]mf(x)gr−1m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1f(y)dydx. (3.7)

On using the relation (1.8) in (3.7), we get the result given in (3.6).

Remark 3.1. Under the assumptions of Theorem 3.1, with k = 1; m = 0, we shall deduce the recurrence relations for
product moments of ordinary order statistics from EMED.

Remark 3.2. Putting k = 0; m = −1 in Theorem 3.1, we obtain the recurrence relations for product moments of lower
record values from EMED.

Remark 3.3. At i = 0, Theorem 3.1 reduces to Theorem 2.1.
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4. Characterization
In this section, we shall characterize EMED based on recurrence relation for single moment of lgos.

Let L(a, b) stand for the space of all integrable functions on (a, b) . A sequence (fn) ⊂ L(a, b) is called complete on
L(a, b) if for all functions g ∈ L(a, b) the condition∫ b

a

g(x)fn(x)dx = 0, n ∈ N,

implies g(x) = 0 a.e. on (a, b). We start with the following result of Lin [24].
Proposition 1: Let n0 be any fixed non-negative integer, −∞ ≤ a < b ≤ ∞ and g(x) ≥ 0 an absolutely continuous
function with g′(x) 6= 0 a.e. on (a, b). Then the sequence of functions {(g(x))ne−g(x), n ≥ n0} is complete in L(a, b)
iff g(x) is strictly monotone on (a, b).
Using the above Proposition we get a stronger version of Theorem 2.1.

Theorem 4.1. Let X be a non-negative random variable having an absolutely continuous distribution function F (x) with
F (0) = 0 and 0 < F (x) < 1 for all x > 0, then

E[X∗j(r, n,m, k)] = E[X∗j(r − 1, n,m, k)] =
jβ2

αγr

{
E[X∗j−2(r, n,m, k)]

+
1

β
E[X∗j−1(r, n,m, k)]− E[φ(X∗(r, n,m, k))]

}
. (4.1)

if and only if

F (x;α, β) =

[
1−

(
1 +

x

β

)
e−x/β

]α
, x > 0, α, β > 0.

Proof. The necessary part follows immediately from equation (2.6). On the other hand if the recurrence relation
in equation (4.1) is satisfied, then on using equation (1.2), we have

Cr−1
(r − 1)!

∫ ∞
0

xj [F (x)]γr−1f(x)gr−1m (F (x))dx

=
(r − 1)Cr−1
γr(r − 1)!

∫ ∞
0

xj [F (x)]γr+mf(x)gr−2m (F (x))dx

− β2jCr−1
αγr(r − 1)!

∫ ∞
0

xj−2ex/β [F (x)]γr−1f(x)gr−1m (F (x))dx

+
β2jCr−1
αγr(r − 1)!

∫ ∞
0

xj−2[F (x)]γr−1f(x)gr−1m (F (x))dx

+
βjCr−1

αγr(r − 1)!

∫ ∞
0

xj−1[F (x)]γr−1f(x)gr−1m (F (x))dx. (4.2)

Integrating the first integral on the right hand side of equation (4.2), by parts, we get

jCr−1
γr(r − 1)!

∫ ∞
0

xj−1[F (x)]γr−1f(x)gr−1m (F (x))dx

×
{
F (x)− β2

αxe−x/β
f(x) +

β2

αx
f(x) +

β

α
f(x)

}
dx = 0. (4.3)

It now follows from Proposition 1

F (x;α, β) =
β2

αx

(
ex/β − 1− x

β

)
f(x;α, β),

which proves that

F (x;α, β) =

[
1−

(
1 +

x

β

)
e−x/β

]α
, x > 0, α, β > 0.

Remark 4.1. For k = 1, m = 0 and k = 1, m = −1, we obtain the characterization results of the EMED based on
order statistics and record values, respectively.
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5. Fisher Information Matrix
The Fisher information matrix summarizes the amount of information in the data relative to the quantities of

interest. There are many applications of the information matrix in modeling, systems analysis, and estimation,
including confidence region calculation, input design, prediction bounds, and "noninformative" priors for Bayesian
analysis. Let X be a continuous random variable with cdf F (x; Θ) and the pdf f(x; Θ) . For the simplicity, we
consider only two parameters α and β, although the results are true for any finite-dimensional vector. Under the
standard regularity conditions Gupta and Kundu [12], the Fisher information matrix for the parameter vector
Θ = (α, β) based on an observation in terms of the expected values of the first and second derivatives of the
log-likelihood function is

I(Θ) =
1

n

E
(
−∂

2lnL(α,β)
∂2α

)
E
(
−∂

2lnL(α,β)
∂α∂β

)
E
(
−∂

2lnL(α,β)
∂α∂β

)
E
(
−∂

2lnL(α,β)
∂2β

) 

=
1

n

(
φ11 φ12
φ21 φ22

)
, (5.1)

where

φij =

∫ ∞
−∞

(
∂

∂Θi
f(x; Θ)

)(
∂

∂Θj
f(x; Θ)

)
f(x; Θ)dx for i, j = 1, 2. (5.2)

Now, we will derive Fisher information matrix of EMED. It can be shown that

lnf(x;α, β) = lnα+ lnx− 2lnβ − x

β
+ (α− 1)ln

[
1−

(
1 +

x

β

)
e−x/β

]
. (5.3)

Taking partial derivatives with respect to α and β respectively from (5.3), we have

∂lnf(x;α, β)

∂α
=

1

α
+ ln

[
1−

(
1 +

x

β

)
e−x/β

]
and

∂lnf(x;α, β)

∂β
= − 2

β
+

x

β2
− x2e−x/β(α− 1)

β3
[
1−

(
1 + x

β

)
e−x/β

] .
Therefore, the second partial derivatives are

∂2lnf(x;α, β)

∂α2
= − 1

α2
,

∂2lnf(x;α, β)

∂β2
=

2

β2
− 2x

β3
+

x2e−x/β(α− 1)

β4
[
1−

(
1 + x

β

)
e−x/β

]

− x3e−x/β(α− 1)

β5
[
1−

(
1 + x

β

)
e−x/β

] − x3e−2x/β(α− 1)
[
1−

(
1 + x

β

)]
β5
[
1−

(
1 + x

β

)
e−x/β

]2
and

∂2lnf(x;α, β)

∂α∂β
= − x2e−x/β

β4
[
1−

(
1 + x

β

)
e−x/β

] .
Thus the elements of Fisher information matrix for single observation from EMED is in the form

φ11 = E

(
−∂

2lnL(α, β)

∂2α

)
=

1

α
, (5.4)
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φ12 = φ21 = E

(
−∂

2lnL(α, β)

∂α∂β

)
=
β[2− α {2 + ψ1(α)}]

α− 1
, (5.5)

and

φ22 = E

(
−∂

2lnL(α, β)

∂2β

)
=
α2β2[ψ2(α)− (4 + (2/α)ψ1(α)− 2]

α− 1
, (5.6)

where

ψj(α) =

∞∑
u=0

u∑
v=0

(−1)u
(
α− 1
u

)(
u
v

)
Γ(j + v + 2)

(1 + u)j+v+2
, j = 1, 2, . . . . (5.7)

Moreover, Fisher information matrix for a sample of size n from EME distribution is simple nI(α, β).

6. Non-Bayesian estimation

In this section we discuss the process of obtaining the maximum likelihood estimators of the parameters α and
β of the EMED. Suppose X1, X2, . . . , Xn be the random sample with observed values x1, x2, . . . , xn from EMED.
Let Θ = (α, β) be the parameter vector. The likelihood function based on the observed random sample of size n is
obtained from

L(α, β;x) =
αn

β2n

n∏
i=1

[
1−

(
1 +

xi
β

)
e−xi/β

]α−1
xie
−xi/β . (6.1)

The maximum likelihood estimates are the values of α and β that maximize this likelihood function.

6.1 Maximum likelihood estimation
The log likelihood function l(α, β|x) = logL(α, β|x), dropping terms that do not involve α and β, is

l(α, β|x) = n(lnα− 2lnβ) +

n∑
i=1

lnxi −
1

β

n∑
i=1

xi

+ (α− 1)

n∑
i=1

ln

[
1−

(
1 +

xi
β

)
e−xi/β

]
. (6.2)

We assume that the parameters α and β are unknown. To obtain the normal equations for the unknown parameters,
we differentiate (6.2) partially with respect to α and β and equate to zero. The resulting equations are

0 =
∂l(α, β|x)

∂α
=
n

α
+

n∑
i=1

ln

[
1−

(
1 +

xi
β

)
e−xi/β

]
, (6.3)

0 =
∂l(α, β|x)

∂β
= −2n

β
+

1

β2

n∑
i=1

xi −
n∑
i=1

(α− 1)x2i e
−xi/β

β3
[
1−

(
1 + xi

β

)
e−xi/β

] . (6.4)

The solutions of the above equations are the maximum likelihood estimators of the EMED parameters α and β,
denoted α̂MLE and β̂MLE , respectively. As the equations expressed in (6.3) and (6.4) cannot be solved analytically,
one must use a numerical procedure to solve them.
The profile log-likelihood of β can be obtained by Substituting α̂MLE from (6.3) in (6.2),

h(β) = lnL[α̂(β), β] = nlnn− nln

{
n∑
i=1

ln

[
1−

(
1 +

xi
β

)
e−xi/β

]}

− n+ 2nlnβ − 1

β

n∑
i=1

xi −
n∑
i=1

ln

[
1−

(
1 +

xi
β

)
e−xi/β

]
. (6.5)

Therefore, the MLE of β , say β̂MLE can be obtained by minimizing (6.5) with respect to β as follows:

∂h(β)

∂β
=

n∑
i=1

x2i e
−xi/β

β3
[
1−

(
1 + xi

β

)
e−xi/β

] +
2n

β
+

1

β2

n∑
i=1

xi
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− n∑n
i=1 ln

[
1−

(
1 + xi

β

)
e−xi/β

] n∑
i=1

x2i e
−xi/β

β3
[
1−

(
1 + xi

β

)
e−xi/β

] . (6.6)

Once β̂MLE is obtained, the MLE of α say α̂MLE can be obtained from (6.4) as α̂MLE = α̂(βMLE).

Now, consider the MLE of α when the scale parameter β is known. Without loss of generality, we can take
β = 1. If β is known, the MLE of α say α̂MLESCK ,is

α̂MLESCK = − n∑n
i=1 ln

[
1−

(
1 + xi

β

)
e−xi/β

] .
It follows, by the asymptotic properties of the MLE, that

α̂MLESCK ≈ N
(
α,

1

nφ11

)
,

where φ11 is the single information about α which is define in (5.4).
Let us consider the MLE of β when the shape parameter α is known. For known α the MLE of β say β̂MLESHK

can be obtained by numerical solving of the following equation:

1

β2

n∑
i=1

xi −
2n

β
−

n∑
i=1

(α− 1)x2i e
−xi/β

β3
[
1−

(
1 + xi

β

)
e−xi/β

] = 0.

It follows, by the asymptotic properties of the MLE, that

β̂MLESHK ≈ N
(
β,

1

nφ22

)
,

where φ22 is the single information about β which is defined in (5.6).

6.2 Approximate confidence intervals
Since the MLEs of the unknown parameters α and β cannot be derived in closed form, it is not easy to

derive the exact distributions of the MLEs. Hence, we cannot obtain exact confidence intervals for the parame-
ters. We must use the large sample approximation. It is known that the asymptotic distribution of the MLE is
[
√
n(α̂MLE − α),

√
n(β̂MLE − β)] → N2(0, I−1(α, β)), we can refer Lawless [23], where I−1(α, β), the inverse of

observed information matrix of the unknown parameters Θ = (α, β), is

I−1(Θ) =

(
−∂

2l(α,β)
∂2α −∂

2l(α,β)
∂α∂β

−∂
2l(α,β)
∂α∂β −∂

2l(α,β)
∂2β

)−1
(α,β)=(α̂,β̂)

=

(
V ar(α̂) Cov(α̂, β̂)

Cov(α̂, β̂) V ar(α̂)

)
.

The derivatives in I(Θ) are given in
∂2l(α, β|x)

∂α2
= − n

α2
. (6.7)

∂2l(α, β|x)

∂α ∂β
=

n∑
i=1

(α− 1)x2e−xi/β

β4
[
1−

(
1 + xi

β

)
e−xi/β

] =
∂2l(α, β|x)

∂β ∂α
. (6.8)

∂2l(α, β|x)

∂β2
=

2n

β2
− 2

β3

n∑
i=1

xi +

n∑
i=1

3(α− 1)x2i e
−xi/β

β4
[
1−

(
1 + xi

β

)
e−xi/β

]
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−
n∑
i=1

(α− 1)x3i e
−xi/β

β5
[
1−

(
1 + xi

β

)
e−xi/β

] +

n∑
i=1

(α− 1)x3i e
−2xi/β

[
1−

(
1 + xi

β

)]
β5
[
1−

(
1 + xi

β

)
e−xi/β

]2 . (6.9)

The above approach is used to derive approximate 100(1− τ)% confidence intervals of the parameters α and β of
the forms

α̂± zτ/2
√
var(α̂)

and

β̂ ± zτ/2
√
var(β̂),

where zτ/2 is the upper (τ/2)th percentile of the standard normal distribution.

7. Bayesian estimation

In this section we consider Bayesian inference of the unknown parameters of the EMED. It is assumed that α
and β has the independent gamma prior distributions with probability density functions

h(α) ∝ αa−1e−bα, α > 0. (7.1)

and
h(β) ∝ βc−1e−dβ , β > 0. (7.2)

The hyper-parameters a, b, c, and d are known and non-negative. If both the parameters α and β are unknown,
joint conjugate priors do not exist. It is not unreasonable to assume independent gamma priors on the shape and
scale parameters for a two-parameter EMED, because gamma distributions are very flexible, and the Jeffreys
(non-informative) prior, introduced by Jeffreys [15] is a special case of this. The joint prior distribution in this case is

h(α, β) ∝ αa−1e−bαβc−1e−dβ , α, β > 0. (7.3)

Combining (6.2) with (7.3) and using Bayes theorem, the joint posterior distribution is derived as

π(α, β|x) = αn+a−1βc−2n−1e−bα−dβ
1

I0

n∏
i=1

xie
−xi/β[

1−
(

1 + xi

β

)
e−xi/β

]α−1 . (7.4)

where

I0 =

∫ ∞
0

∫ ∞
0

αn+a−1βc−2n−1
n∏
i=1

xie
−xi/βe−bα−dβ[

1−
(

1 + xi

β

)
e−xi/β

]α−1 dαdβ. (7.5)

The marginal posterior distribution of a parameter is obtained by integrating the joint posterior distribution with
respect to the other parameter. Hence, the marginal posterior probability density functions of α and β are given,
respectively, by

π1(α|x) =
αn+a−1e−bα

I0

∫ ∞
0

βc−2n−1
n∏
i=1

xie
−xi/βe−dβ[

1−
(

1 + xi

β

)
e−xi/β

]α−1 dβ. (7.6)

and

π2(β|x) =
βc−2n−1e−dβ

I0

∫ ∞
0

αn+a−1
n∏
i=1

xie
−xi/βe−bα[

1−
(

1 + xi

β

)
e−xi/β

]α−1 dα. (7.7)

Next, we must consider the question of what loss function will be used to derive the estimators from the marginal
posterior distributions.
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7.1 Bayes estimators under the general entropy loss function
Calabria and Pulcini [7] have derived the point estimation under asymmetric loss function from left-truncated

exponential samples. According to this theory, the Bayes estimators for the parameters α and β for the probability
density function (1.4) under the general entropy loss function may be defined as

α̂BGE = [E(α)−q]−1/q (7.8)

and
β̂BGE = [E(β)−q]−1/q (7.9)

respectively, provided that E(α)−q and E(β)−q exist and are finite. These estimators can be expressed as

α̂BGE =
[Iα
I0

]−1/q
and

β̂BGE =
[Iβ
I0

]−1/q
,

where

Iα =

∫ ∞
0

∫ ∞
0

αn+a−q−1βc−2n−1
n∏
i=1

xie
−xi/βe−bα−dβ[

1−
(

1 + xi

β

)
e−xi/β

]α−1 dαdβ
and

Iβ =

∫ ∞
0

∫ ∞
0

αn+a−1βc−q−2n−1
n∏
i=1

xie
−xi/βe−bα−dβ[

1−
(

1 + xi

β

)
e−xi/β

]α−1 dαdβ
All the double integrals above have no closed form. Therefore, we will implement the Metropolis-Hastings (M-H)
algorithm to compute the estimators. The M-H algorithm is a powerful Markov Chain Monte Carlo algorithm. The
M-H algorithm was introduced by Metropolis et al. [27]. For a discussion of the algorithm, the reader is referred
to any Bayesian statistics textbook. In this chapter, we consider three special cases of the general entropy loss
function, corresponding to q = −1, q = 1 and q = −2. It should be mentioned that for q = −1 the general entropy
loss function simplifies to the squared-error loss function. The weighted squared-error loss function results from
q = 1. For q = −2, the general entropy loss function is referred to as the precautionary loss function which is an
asymmetric loss function.

7.2 Two-sided Bayes probability intervals
The Bayesian method to interval estimation is much more direct than the frequentist method based on confidence

intervals. Once the marginal posterior distribution of α has been obtained, a symmetric 100(1 − τ)% two-sided
Bayes probability interval estimate of α, denoted by [αL, αU ], can be obtained by solving the two equations∫ αL

0

π1(w|x)dw =
τ

2
(7.10)

and ∫ ∞
αU

π1(w|x)dw =
τ

2
(7.11)

for the limits αL and αu. Similarly, a symmetric 100(1 − τ)% two-sided Bayes probability interval estimate of β,
denoted by [βL, βU ] , can be obtained by solving∫ βL

0

π2(w|x)dw =
τ

2
(7.12)

and ∫ ∞
βU

π2(w|x)dw =
τ

2
(7.13)

for the limits βL and βU . Again, these equations cannot be solved in close form.
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8. Empirical Bayes estimation

In the preceding sections, we have assumed the hyper-parameters a, b, c, and d are known. Empirical Bayes
estimation addresses the question of estimating the hyper-parameters from existing data. When the current sample
is observed, assume that p past samples Xj1, Xj2, . . . , Xjn, for j = 1, 2, . . . , p, are available. Each sample is assumed
to be sample of size n from a EME distribution. The likelihood function for each sample j is given by

L(α, β;x) =
αn

β2n

n∏
i=1

[
1−

(
1 +

xji
β

)
e−xji/β

]α−1
xjie

−xji/β . (8.1)

For each sample j, let α̂j and β̂j be the maximum likelihood estimates for α and β, respectively, based on sample
j, which are obtained from (8.1). We then calculate the mean and variance of the maximum likelihood estimators
for each of the j samples, equate these to the mean and variance of the gamma prior distribution, and solve for the
hyper-parameters. We can find â and b̂, estimators for a and b, by solving

1

p

p∑
i=1

α̂j =
b

a

and
1

(p− 1)

p∑
i=1

(
α̂j −

1

p

p∑
i=1

α̂j

)2
=

b

a2
.

We can find ĉ and d̂, estimators for c and d, by solving

1

p

p∑
i=1

β̂j =
d

c

and
1

(p− 1)

p∑
i=1

(
β̂j −

1

p

p∑
i=1

β̂j

)2
=

d

c2
.

Solving the above equations yields the estimators for the hyper-parameters

â =

(
1
p

∑p
i=1 α̂j

)
(

1
p−1

∑p
i=1

(
α̂j − 1

p

∑p
i=1 α̂j

)2)
and

b̂ =

(
1
p

∑p
i=1 α̂j

)2
(

1
p−1

∑p
i=1

(
α̂j − 1

p

∑p
i=1 α̂j

)2)
for the prior distribution for α. Similarly, estimators for the hyper-parameters for the prior distribution for β can be
found as

ĉ =

(
1
p

∑p
i=1 β̂j

)
(

1
p−1

∑p
i=1

(
β̂j − 1

p

∑p
i=1 β̂j

)2)
and

d̂ =

(
1
p

∑p
i=1 β̂j

)2
(

1
p−1

∑p
i=1

(
β̂j − 1

p

∑p
i=1 β̂j

)2) .
The empirical Bayes estimators of α and β are found by substituting â, b̂, ĉ, and d̂ into (7.6) and (7.7) and proceeding
as before.
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9. Numerical Experiments and Discussions

In this section, we present the results of some numerical experiment to examine and compare the performance
of maximum likelihood and Bayes estimators for the two-parameter EMED proposed in the previous section.
We apply Monte Carlo simulations to examine the performance of the MLEs, mainly with respect to their biases
and mean squared errors (MSEs) for different sizes and different parameter values, since β is the scale parameter
and all the estimaters are scale invariant, we take β = 1 in all computations we set α = 0.25, 0.5, 1.0, 2, 2.5 and
n = 10, 20, 50, 100. We compute the biase estimates and MSEs over 1000 replications for different cases. Table 1
and Table 2 lists the bias estimates of maximum likelihood estimators of the two model parameters along with
the respective MSEs. From the results, we see that as the sample size n increases, MSEs of the parameters are
decreases. It indicate that the deduce asymptotically unbiased and consistent estimators of the parameters α and β.

The Bayes estimators cannot be found in closed form. Therefore, we use the Metropolis-Hastings algorithm to
compute Bayes estimates. We use informative priors for both α and β. The chosen hyper-parameters are a = c = 4
and b = d = 1. Bayes estimators are computed using the general entropy loss function with q = −2,−1, 1. This
allows us to consider the Bayes estimators under both symmetric and asymmetric loss functions. The proposal
distribution used for the M-H algorithm is a chi-square distribution. We generate 5000 samples after 5000 burn-in
samples. To evaluate the convergence of the M-H algorithm, we use Gelman-Rubin diagnostics, using the R package
coda. For both α and β, three different Markov chains are simulated. The potential scale reduction factor (psrf) for
α is 1.01, and the psrf for β is 1. Since both are close to 1, we can conclude that the Markov chains converged quite
well to the stationary distribution.

The following observations can be drawn from the Tables 1, 2, and 3

1. All the estimators show the property of consistency i.e., the bias and MSE decreases as sample size increases.

2. The bias of α̂ generally increases with increasing α for any n and for all methods of estimation.

3. The bias of β̂ generally increases with increasing β for any given n and for all methods of estimation.

4. All estimates of α and β are biased and their bias distribution have different spreads. On the other hand, the
distributions of MSE seem to have fairly similar spreads.

5. We observe that the Bayesian estimates based on WSB are considerably less biased than the corresponding
Bayesian estimates based on SB and PL.

6. We also observe that the Bayesian estimates based on WSB have a much smaller MSE than the corresponding
Bayesian estimates based on their counterparts in all cases considered.

7. Results show that the performance of the Bayes estimates is better than the MLEs, in terms of the bias and
MSE.

8. Finally, this clearly demonstrates the efficiency of inference based on WSB and also the usefulness of the
Bayesian estimates based on WSB developed here for the parameters of the exponentiated moment exponential
distribution.

Table 1. Average bias estimates of α are presented, when β is known and their associated MSEs (in parentheses)
n α = 0.25 α = 0.5 α = 1.0 α = 2.0 α = 2.5

10 0.12179 0.13471 0.14358 0.18824 0.23975
(0.03759) (0.16337) (0.16887) (0.67852) (0.98213)

20 0.03697 0.03568 0.05673 0.08734 0.17528
(0.02178) (0.04824) (0.07152) (0.08953) (0.17032)

50 0.02926 0.03272 0.03813 0.03972 0.05792
(0.00126) (0.00631) (0.02561) (0.09573) (0.11958)

100 0.02872 0.03156 0.03507 0.03603 0.05579
(0.00119) (0.00203) (0.01203) (0.03527) (0.05917)

Table 4-5 lists some numerical values for the first four moments, variances, skewness and kurtosis of order
statistics and lower record values. The parameter values are taken as α = 2 and β = 5.
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Table 2. Average bias estimates of β are presented, when α is known and their associated MSEs (in parentheses)
n α = 0.25 α = 0.5 α = 1.0 α = 2.0 α = 2.5

10 0.19287 0.19868 0.22039 0.38992 0.42352
(0.60359) (0.27659) (0.08038) (0.03731) (0.04178)

20 0.07357 0.09962 0.13274 0.18203 0.22972
(0.23078) (0.08351) (0.02171) (0.02756) (0.01763)

50 0.02702 0.03979 0.04692 0.05099 0.05371
(0.06926) (0.03752) (0.01078) (0.00572) (0.00572)

100 0.02207 0.02976 0.039832 0.04875 0.04903
(0.05872) (0.00181) (0.00581) (0.00690) (0.00792)

Table 3. Average bias and MSEs (in parentheses) of empirical Bayes estimators for α and β
n α̂SB α̂WSB α̂PL β̂SB β̂WSB β̂PL

10 0.8062 0.2078 0.4984 1.3437 0.6934 0.6524
(0.5807) (0.2143) (0.3065) (1.6707) (0.6389) (6.4378)

20 0.6254 0.1801 0.3267 0.4734 0.4068 0.4502
(0.0894) (0.0254) (0.0302) (0.3724) (0.0804) (0.9361)

50 0.4262 0.1504 0.1943 0.3264 0.3032 0.3406
(0.0307) (0.0191) (0.0014) (0.4932) (0.0462) (0.7402)

100 0.3213 0.0385 0.1567 0.2045 0.2871 0.1841
(0.0189) (0.0021) (0.0046) (0.2186) (0.03482) (0.4847)

Note: The subscript WSB stands for the Bayes estimate under weighted squared error loss function; SB represent
the squared error loss function, PL stands for the precautionary loss function.

Table 4. First four moments, variances, skewness and kurtosis of some order statistics
Xr:5 ↓ j = 1 j=2 j = 3 j = 4 Variance Skewness Kurtosis

1 0.231304 0.107003 0.074250 0.068697 0.053501 3.187607 8.999998
2 0.346955 0.187255 0.139219 0.133101 0.066877 5.762311 7.080104
3 0.424056 0.252645 0.197657 0.194060 0.072822 2.141937 6.480995
4 0.481882 0.308376 0.251153 0.252152 0.076166 12.42950 6.193655
5 0.528143 0.357240 0.300732 0.307800 0.078305 16.28332 6.025762

Table 5. First four moments, variances, skewness and kurtosis of some lower record values
r ↓ j = 1 j=2 j = 3 j = 4 Variance Skewness Kurtosis
1 4.323324 37.38225 484.8467 8384.597 18.69112 4.000005 9.000004
2 8.646647 112.14676 1939.3869 41922.99 37.38226 1.999998 6.000002
3 12.969971 224.2935 4848.467 125768.96 56.07335 1.333339 5.000002
4 17.29329 373.8225 9696.935 293460.91 74.76462 0.999993 4.499990
5 21.61662 560.7338 16969.636 586921.8 93.45554 0.800008 4.199993

10. Applications

The recurrence relations obtained in the preceding sections allow us to evaluate the means, variances and
covariances of all order statistics for all sample sizes in a simple recursive manner. Means, variances and covariances
of all order statistics can be used for various inferential purposes; for example, they are useful in determining
BLUEs of location/scale parameters and best linear unbiased predictors (BLUPs) of censored failure times. More
details on BLUEs and BLUPs based on order statistics can be seen in Balakrishnan and Cohen [3] and Arnold et al.
[2].

11. Concluding remarks

The EMED provided excellent model for life time data for a variety of situations. Thus, it is important for
the analyst to have reliable statistical methods to use for this distribution. We have provided in this study, a new
explicit expressions and recurrence relations for single and product moments of lgos from the EMED. Further, a
characterizing result of this distribution on using the recurrence relation of single moments of the lgos discussed.
We have examined and compared the different methods, including Bayesian methods under different loss function.
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