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Abstract
Shannon entropy is the creation of Shannon (1948) based on the experiences in Bell System Company
during and after the Second World War. Then, Renyi (1961) generalized it for one parameter families of
entropies. This entropy for discrete random variables is non-negative but it can be negative in continuous
case.
In this paper, we show that Renyi entropy for continuous random variables is not equal to the limit of it
for discrete random variables. Also, some notes are derived in view of the variate versions of entropy
criteria.
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1. Introduction and Preliminaries
Entropy describes the amount of uncertainty associated with a random variable. Information theory has

mathematical origin in entropy notion that is related to Thermodynamic and Statistical Mechanics. Hartley (1928)
presented definitions of information theory in engineering and for this reason, information theory has been taken as
subdivision of the communication theory. Then, Shannon (1948) presented mathematical definition of entropy and
succeed to determine the capacity of channel for transmission of numerical information using information sources.
To improve his attempt on information theory, other scientists arrived to the Shannon entropy via considering
different properties. For example, we can refer to Fadeev (1956), Tverberg (1958), Lee (1964), Didrrich (1975),
Darroczy and Maksa (1979) and Aczel (1970).
After 1948, variate extensions of the Shannon entropy has been introduced such as Renyi entropy (1961), Harvda
Charvat (1967) and Tsallis entropy (1988), which included Shannon entropy as a special case. Two other measures
are exponential and generalized exponential entropies which were introduced by Koski and Persson (1992) and
Campbell (1966).
Renyi and Tsallis entropies converge to the Shannon entropy. The generalized exponential entropy can be related
to a generalized version of the Renyi entropy, generalized Renyi entropy and generalized exponential entropy
converge to the Shannon entropy .
Renyi information divergence, Renyi mutual information are two other information measures that converge to the
Kullback-Leibler information and mutual information respectively. We summarize these information measures in
Table 1.
In this paper, we show that Renyi entropy for continuous random variables is not equal to the limit of it for discrete
random variables. These results are hold for Tsallis entropy (by use of monotone relation that exists between these
two measures of entropy) and generalized Renyi entropy. However, the Renyi mutual information between two
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random variables is the limit of the mutual information between their quantized versions.

Table 1. Discrete and Continuous entropy and Generalizations.

Information measure discrete Continuous
Shannon entropy H(X) = −

∑
x pxlogpx H(X) = −

∫∞
−∞ f(x)logf(x)dx

Kullback-Leibler D(P ||Q) =
∑
x,y P(x,y)log(

P(x,y)

Q(x,y)
) D(f ||g) =

∫
x,y

f(x, y)log( f(x,y)
g(x,y) )dxdy

Mutual information I(X,Y ) =
∑
x,y P (x, y)log P (x,y)

P (x)P (y) I(X,Y ) =
∫
x,y

f(x, y)log f(x,y)
f(x)f(y)dxdy

Renyi entropy Hα(X) = 1
1−α log

∑
x p

α
x Hα(X) = 1

1−α log
∫
x
fα(x)dx

α > 0, α 6= 1 α > 0, α 6= 1
Renyi information Dα(P ||Q) = 1

α−1 log
∑
x,y Dα(f ||g) = 1

α−1 log
∫
x,y

Divergence (P (x,y)
Q(x,y) )α−1P (x, y) ( f(x,y)

g(x,y) )α−1f(x, y)dxdy

Renyi Mutual MDα(X,Y ) = 1
α−1

∑
x,y MDα(X,Y ) = 1

α−1

∫
x,y

Information ( P (x,y)
P (x)P (y) )α−1P (x, y) ( f(x,y)

f(x)f(y) )α−1f(x, y)dxdy

Tsallis entropy Sα(X) = 1
α−1

∑
x p

α
x − 1 Sα(X) = 1

α−1

∫
x
fα(x)dx− 1

α > 0, α 6= 1 α > 0, α 6= 1

Generalized Renyi HGR
α,β (X) =


1

β−α ln
∑
x P

α
x∑

x p
β
x
, α 6= β∑

x p
α
x lnp(x)∑
x p

α
x

, α = β
HGR
α,β (X) =


1

β−α ln
∫
x
fα(x)dx∫

x
fβ(x)dx

, α 6= β∫
x
fα(x)lnf(x)dx∫
x
fα(x)dx

, α = β

entropy
Generalized exponential HGE

α,β (X) = exp(HGR
α,β (X)) HGR

α,β (X) = exp(HGR
α,β (X))

2. Main Results
A wide variety of competing measures of entropy have emerged in other papers, a number of these measures

that can be considered as generalizations of the Shannon entropy in continuous and discrete cases, are shown in
Table 1. We suppose X as a random variable with density function f(x) and pmf P (x) for continuous and discrete
random variables respectively.
Shannon entropy is always non-negative for discrete random variables, but it can be negative for continuous case.
It is because of the Shannon entropy for continuous random variables is not equal to limit of the Shannon entropy
for discrete random variables, this limit is infinite.
In what follows, firstly we express a theorem in view of comparing the Shannon entropy in continuous and discrete
cases, (see Cover and Thomas 2006). Then, we extend it to Renyi and Tsallis cases.

Theorem 2.1. Let X be a continuous random variable with density function f(x) which is Riemann integrable, suppose that
we divide the range of X into bins of the length ∆, consider the quantized random variable X∆ which is defined by

X∆ = xi if i∆ ≤ X < (i+ 1)∆,

then,
lim

∆→0
{H(X∆) + log∆} = H(X). (2.1)

Proof: See page 248 of Cover and Thomas (2006) for more details.

From the definition of mutual information it is clear that,

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

If (X,Y ) ∼ p(x, y), the conditional Shannon entropy, is defined as

H(X|Y ) =
∑
y

pyH(X|Y = y) = −
∑
y

∑
x

p(x, y)logp(x|y).

In continuous case the summation is replaced by integrals.
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Remark 2.1. (Cover and Thomas 2006) The mutual information of two random variables is the limit of the mutual
information between their quantized versions as follow:

I(X∆, Y ∆) = H(X∆) +H(X∆|Y ∆)

≈ H(X)− log(∆) +H(X|Y ) + log(∆) = I(X,Y ). (2.2)

The Renyi entropy for discrete random variables is always non-negative, but in continuous case it can be
negative. We express and prove the following theorem, in this direction:

Theorem 2.2. Consider a random variable X with density f(x) illustrated in Figure 1 and f(x) is Riemann integrable, then
we have:

lim
∆→0
{Hα(X∆) + log∆} = Hα(X). (2.3)

Figure 1. Quantization of a continuous random variable (Cover and Thomas (2006))

Proof: Suppose that we divide the range of X into bins of length ∆. Now consider the quantized random variable X∆

which is defined by,

X∆ = xi if i∆ ≤ X < (i+ 1)∆.

The density function is continuous within the bins. By the mean value theorem, there exists a value xi within each bin such
that,

f(xi)∆ =

∫ (i+1)∆

i∆

f(x)dx.

Then the probability that X∆ = xi is,

pi =

∫ (i+1)∆

i∆

f(x)dx = f(xi)∆.

Now we calculate The Renyi entropy for discrete random variable X∆:

Hα(X∆) =
1

1− α
log

∑
i

pαi =
1

1− α
log

∑
i

(f(xi)∆)α

=
1

1− α
log

∑
i

(f(xi))
α +

α

1− α
log∆

=
1

1− α
log

∑
i

(f(xi))
α +

α

1− α
log∆ +

1

1− α
log∆− 1

1− α
log∆

=
1

1− α
log

∑
i

(f(xi))
α∆ +

α− 1

1− α
log∆

=
1

1− α
log

∑
i

(f(xi))
α∆− log∆. (2.4)
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Since function (f(x))α is Riemann integrable, the first term in (2.4) approaches to:

1

1− α
log

∫
(f(x))αdx, as ∆→ 0.

In other word,

lim
∆→0

1

1− α
log

∑
i

(f(xi))
α∆→ 1

1− α
log

∫
(f(x))αdx,

Hence:
lim

∆→0
{Hα(X∆) + log∆} = Hα(X).

This conclusion implies Equation (2.1) as α→ 1 .

Corollary 2.1. Theorem 2.2 holds for Tsallis entropy also as follows:

lim
∆→0

Sα(X∆) = Sα(X)∆α−1 +
1

α− 1
,

We can prove this corollary according to the fact, "Renyi entropy is a monotonically increasing function of Tsallis entropy" (see
for more details Renyi, 1961 ) and related by following relation

Hα(X) =
1

1− α
log[1 + (1− α)Sα(X)]. (2.5)

Remark 2.2. Theorem 2.2 holds for both Generalized Renyi and Generalized exponential entropies and we can say
that both of them in continuous cases are not the limit of the quantized versions. since,

HGR
α,β (X∆) =

1

β − α
log

∑
i p
α
i∑

i p
β
i

=
1

β − α
log

∑
(f(xi)∆)α∑
(f(xi)∆)β

=
1

β − α
log

∑
(f(xi))

α∑
(f(xi))β

+
1

β − α
log∆α−β

=
1

β − α
log

∑
(f(xi))

α∆∑
(f(xi))β∆

− log∆, (2.6)

Function (f(x))α is Riemann integrable, so if ∆→ 0 relation (2.6) approaches to:

1

β − α
log

∫∞
−∞ fα(x)dx∫∞
−∞ fβ(x)dx

− log∆,

And we have:

lim
∆→0
{HGR

α,β (X∆) + log∆} = HGR
α,β (X). (2.7)

Generalized exponential is increasing function of generalized Renyi entropy and Equation (2.7) holds for it.

Theorem 2.3. The Renyi mutual information between two random variables is the limit of the mutual information between
their quantized versions.
We show this topic for Renyi information divergence, then conclude the Renyi mutual information between two random
variables is the limit of the mutual information between their quantized versions via the following relations:

Dα(X∆, Y ∆) =
1

α− 1
log

∑
i

(
pi
qi

)α−1pi

=
1

α− 1
log

∑
i

(
f(xi)∆

g(xi)∆
)α−1f(xi)∆

=
1

α− 1
log

∑
i

(
f(xi)

g(xi)
)α−1f(xi)∆. (2.8)
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Since ( f(x)
g(x) )α−1f(x) is Riemann integrable, we obtain:

lim∆→0
1

α− 1
log

∑
i

(
f(xi)

g(xi)
)α−1f(xi)∆ =

1

α− 1
log

∫
(
f(x)

g(x)
)α−1f(x)dx.

Corollary 2.2. Now by applying relation (2.8) and MDα(X,Y ) as have shown in Table 1, we come to this conclusion that
Renyi mutual information between two random variables is the limit of the Renyi mutual information between their quantized
versions.

3. Conclusion
In this article, we have shown that Renyi entropy for continuous random variables is not limit of it for discrete

case. Then we have proved this result for other generalized entropies, including Tsallis and generalized Renyi
entropy. Also, we have found that Renyi divergence, Renyi mutual information in continuous cases are limit of
their discrete cases.
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