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Abstract
Parameter estimation is one of the important stages of regression analysis. In the regression analysis,
while parameter estimation by classical methods there are a number of assumptions need to be satisfied.
One of them is error are normally distributed. In the case that the data sets have outliers, providing of
this assumption becomes more difficult. When a data set has outliers, robust methods such as the M
method (Huber, Hampel, Andrews and Tukey) are used for estimating parameters. In this paper the
Adaptive Network Based Fuzzy Inference System (ANFIS) is used to parameter estimation which is the
neural network architecture based type-II fuzzy logic. The proposed method has the properties of a
robust method, because the process does not give permission to the intuitional and is not affected by the
outliers. Consequently, another aim of this study is, to compare the proposed method with the robust
methods that are mentioned above.
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1. Introduction
The first serious step for the fuzzy set theory has been taken in 1965 by Lotfi A. Zadeh. The last 35 years, the

theory and application of fuzzy sets have been developed rapidly. If there is uncertainty in the components of
the membership function, fuzzy set is converted in to Type-II fuzzy set. It can be say that Type-II fuzzy logic is
a gener-alization of Type-I fuzzy logic in the sense that fuzziness is not only limited to the linguistic variables
but also is present in definition of the component of membership function. Some of the studies on Type-II fuzzy
logic given as follows: Türkşen (1999), described the fuzzy rules for both the Type-I and Type-II fuzzy logic theory.
Karnik and Mendel (1999) defined a Type-II fuzzy inference system whit uncertainty rules. They also provided a
practical algorithm for performing union, intersection and complement to Type-II fuzzy sets (Karnik and Mendel,
2001). Mendel (2007), described the advances for general and interval Type-II fuzzy logic system in the study titled
Advance in Type-II fuzzy sets and systems. Definitions of robust M methods which are commonly used in the
literature (for details, see [4, 6, 7, 8, 11, 16] ).

The remainder of the paper is organized as follows. In the Section 2 the general information about Type-II fuzzy
logic are given. In the Section 3 which is the main part of this article, special algorithm for parameter estimation by
ANFIS in case where the component of membership function is fuzzy is given. Finally numerical example is given
in Section 4.
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2. Type-II Fuzzy Logic

Type-II fuzzy set, originally introduced by Zadeh as a generalization of concept of ordinary fuzzy set (Zadeh,
1975). Type-II fuzzy sets are characterized by suitable membership function. The degree of each element of Type-II
fuzzy set is takes values in interval [0,1]. Since the membership degree in the Type-I fuzzy set is a crisp number in
[0,1], Type-II is different from Type-I. If there is uncertainty in membership degree, in the shape of membership
function or in some of parameters, Type-II fuzzy sets can be used . When the membership of an element cannot
determine in a set as 0 or 1, Type-I fuzzy sets are used [12-15]. Similarly, when the situation is so fuzzy that
trouble determining the membership degree even as a crisp number in [0,1], Type-II fuzzy sets are used. There are
many real-world problems the exact form of the membership functions are indeterminable. Consider the fuzzy set
characterized by normal membership function with standard deviation and mean can take values in [m1,m2] , the
membership function is defined as;

µ (x) = exp

{
−
[
x−m
σ

]2}
; m ∈ [m1, m2] (2.1)

and in both cases µ(x) is a fuzzy set. In this study, the unknown parameters of regression model will be obtained
in the event of the independent variables are fuzzy sets that characterized by normal membership function and
mean of the membership function is a fuzzy number like as m ∈ [m1,m2] . Fuzzy adaptive network based fuzzy
inference system will be used in order to obtain the unknown parameters of regression model [1,2]. In this study,
the unknown parameters of regression model are determined by used the algorithm for parameter estimation that
given in Section three. In this regression model independent variables are fuzzy sets and characterized by Gaussian
membership function. The mean that one of the components of the membership function is a fuzzy number like as
m ∈ [m1,m2]. Fuzzy adaptive network will be used in obtain the unknown parameters of regression model that
based fuzzy logic and Type-II fuzzy set.

3. An Algorithm for Parameter Estimation

The determination process of unknown regression parameters is begins with definition class numbers of
independent variables. Than the priori parameters of each class are obtained which are characterized the distribution.
In this work independent variables are come from Gaussian distribution than we are interested in center (m)and
spread (σ). The algorithm to determine the unknown parameters of regression model is defined as follows:

STEP 1: Class numbers of independent variables are determinate heuristically.
STEP 2: A priori parameter set include center and spread is determined. These parameters values are depend

on class number of independent variables and its range.
STEP 3: wL weights are calculated using the membership function of Gaussian distribution. These weights are

outputs from the third layer of the adaptive network and obtained by the following ways; The hth node in the first
layer of the adaptive network is defined as

f1,h = µFh
(xi) . (3.1)

Where fuzzy cluster related to fuzzy rules are indicated with F1, F2, ..., Fh and µFh
is the membership function

related to Fh. Membership functions for Fh are defined as

µFh
(xi) = exp

[
−
(
xi −mh

σh

)2
]
. (3.2)

Here, {mh, σh} is priori parameter set suitable for Gaussin distribution and m is a fuzzy parameter and takes
values in the range of m ∈ [m1,m2]. wL weights are obtained from the multiplication of these membership degrees
and defined as wL = µFL

(xi)µFL
(xj).

wL weights are normalization of the wL and determinated by wL = wL∑m
L=1 wL .

STEP 4: If m is uncertain that one of the priori parameter, unknown coefficients of regression model that
called posterior parameter obtained as a fuzzy number shape of cLi =

(
aLi , b

L
i

)
(i = l, ..., p). In this case, equality

Z =
(
BTB

)−1
BTY is used for determining the cLi .

STEP 5: By using the posteriori parameter set, the regression model indicated with
Y L = cL0 + cL1 x1 + cL2 x2 + ...+ cLp xp.
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Setting out from the models and weights specified in Step 3, the prediction values are obtained using Ŷ =∑m
L=1 w

LY L.

STEP 6: The amount of the error of the model is obtained by ε =
∑n

k=1(Yk−Ŷk)
2

n .
If ε < φ, the process is completed. Then the posteriori parameter has been determinate as parameters of

regression model. If ε ≥ φ, then Step 7 is begins. Here, φ is a small fixed value that determinate by decision makers.
STEP7: Central priori parameters specified in Step 2 are updated with m

′

h = mh ± t. Here, t is size of step;
t =

max(xji)−min(xji)
a ; j = 1, 2, ..., n; i = 1, 2, ..., p and a is stable value which is determinant of size of step and

therefore iteration number.
STEP 8: Predictions for each priori parameter obtained by change and error criterion related to these predictions

are counted with εk = Yk − Ŷk. Here; Yk is k. predicted outcome and Ŷk is k. network output of input vector. The
lowest of error criterion is defined. Priori parameters giving the lowest error specified, and prediction obtained via
the models related to these parameters is taken as output.

4. Application

Data set used in numerical application is selected from the literature and consists of one dependent variable
which is indicated by Y and two independent variables which are indicated by X1 and X2. The data set have 30
observations and two of them are outliers. Outlier observation numbers are 22 and 25. This data set is given in
Table 1.

Table 1. Data set having one dependent and two independent variables
No X1 X2 Y No X1 X2 Y

1 24.7000 15.0000 2.6500 16 26.2000 22.6000 5.0200
2 24.8000 17.0000 2.6300 17 23.9000 22.6000 4.7700
3 26.5000 19.4000 4.9500 18 28.1000 23.4000 5.3600
4 29.6000 20.1000 4.4900 19 23.0000 18.5000 3.8500
5 25.7000 19.5000 3.1700 20 26.0000 16.4000 2.9400
6 25.0000 20.1000 3.8800 21 23.6000 21.0000 4.2800
7 21.6000 16.3000 3.9000 22 22.4000 15.0000 5.5000
8 24.7000 18.3000 3.5100 23 22.6000 19.4000 4.3100
9 25.9000 18.3000 3.9000 24 23.4000 20.3000 4.1300
10 25.6000 18.7000 3.4700 25 27.5000 22.0000 3.6400
11 27.9000 21.9000 5.5300 26 36.0000 19.4000 3.4200
12 25.8000 20.0000 3.4800 27 25.2000 20.2000 3.2100
13 26.2000 20.2000 4.3500 28 24.7000 14.6000 2.6200
14 24.8000 21.5000 4.3800 29 23.4000 21.7000 4.8600
15 27.7000 20.6000 4.3900 30 26.2000 21.8000 4.9700

The algorithm proposed in Section three and the defined methods M (Huber, Hampel, Tukey, Andrews) were
executed with programs written in MATLAB. From the program, the regression models based fuzzy inference
systems are as follows;

Ŷ1 = (17500; 1642) + (1040; 103)X1 + (140; 12)X2

Ŷ2 = (9550; 932)− (810; 79)X1 + (150; 13)X2

Ŷ3 = (−14150; 1544) + (860; 91)X1 + (20; 3)X2

Ŷ4 = (−152420; 14251) + (6600; 590)X1 + (430; 39)X2

Ŷ5 = (112640; 12213)− (4250; 421)X1 − (390; 40)X2

Ŷ6 = (−103450; 9894) + (4210; 398)X1 − (40; 5)X2

Ŷ7 = (−870560; 86121) + (25170; 2316)X1 + (2910; 289)X2

Ŷ8 = (389640; 37865)− (13030; 1298)X1 + (2360; 241)X2

Ŷ9 = (−40086; 3945) + (11600; 1063)X1 + (140; 12)X2.

(4.1)
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Regression model estimates, which are obtained from robust regression methods and the least squares method
(LSM), are located in Table 2.

Table 2. The estimation of regression parameters
Constant β̂1 β̂2

LSM 1.0904 −0.0576 0.2278
Huber −0.4174 −0.0426 0.2828

Hampel −0.8071 −0.0376 0.2950
Tukey −1.2326 −0.0328 0.3103

Andrews −1.1091 −0.0328 0.3036

The residuals,which belong to estimates for LSM, belong to estimates for models from robust regression methods
and belong to estimates from regression models for network, are located in Table 3.

Table 3. The residuals belong to observations for all methods
No LSM Huber Hampel Tukey Andrews Network

Residual Residual Residual Residual Residual Residual
1 -0.4353 -0.1207 -0.0391 0.0372 0.0156 -0.1341
2 -0.9052 -0.7020 -0.6453 -0.6002 -0.6084 0.1306
3 0.9660 1.0119 1.0307 1.0308 1.0387 0.0215
4 0.5250 0.4862 0.4807 0.4551 0.4680 -0.0022
5 -0.8829 -0.8305 -0.8089 -0.8065 -0.7979 0.2052
6 -0.3499 -0.3200 -0.3022 -0.3056 -0.2931 -0.3379
7 0.3400 0.6295 0.7109 0.7822 0.7691 0.0004
8 -0.2588 -0.1090 -0.0640 -0.0338 -0.0353 -0.0698
9 0.1320 0.2473 0.2826 0.3025 0.3030 0.0533

10 -0.4064 -0.3086 -0.2767 -0.2615 -0.2583 -0.2244
11 1.0570 0.9447 0.9259 0.8808 0.9056 0.0018
12 -0.6811 -0.6576 -0.6426 -0.6484 -0.6364 0.1585
13 0.1664 0.1729 0.1834 0.1727 0.1860 -0.2849
14 -0.1804 -0.2244 -0.2227 -0.2466 -0.2247 -0.0838
15 0.2017 0.1638 0.1618 0.1377 0.1538 0.0252
16 0.4263 0.3339 0.3225 0.2841 0.3095 -0.0220
17 0.0439 -0.0142 -0.0140 -0.0413 -0.0161 0.0565
18 0.5568 0.3591 0.3209 0.2519 0.2868 0.0007
19 -0.1306 0.0171 0.0646 0.0954 0.0971 0.0003
20 -0.3894 -0.1711 -0.1132 -0.0647 -0.0768 -0.0032
21 -0.2356 -0.2342 -0.2203 -0.2308 -0.2123 -0.0090
22 2.2823 2.6312 2.7245 2.8118 2.7901 0.0005
23 0.1014 0.2056 0.2441 0.2630 0.2707 -0.0101
24 -0.2376 -0.1948 -0.1713 -0.1701 -0.1563 0.0553
25 -0.8788 -0.9906 -1.0087 -1.0533 -1.0279 -0.0120
26 -0.0170 -0.1130 -0.1422 -0.1879 -0.1794 -0.0013
27 -1.0312 -1.0098 -0.9942 -1.0001 -0.9869 0.3667
28 -0.3742 -0.0376 0.0489 0.1313 0.1070 0.0910
29 0.1734 0.1393 0.1457 0.1254 0.1486 -0.0377
30 0.4219 0.3405 0.3315 0.2962 0.3202 0.0652

ERROR 0.4448 0.4678 0.4815 0.4979 0.4932 0.0173

The weights related to the observations that are used in estimation methods for regression models, are located
in Table 4. The weights for robust methods are expression of that observation’s effect on one model for each
of the outlier observations of the robust method. On the other hand, weight obtained from the network is an
expression of that observation’s effect on more than one model, which are expressed in Equation (4.1). For this
reason, eight different weights, which are called membership degrees of observation, are located in Table 4. The
residuals, which belong to estimates from regression models in Equation (4.1) and belong to estimates for models
from robust regression methods, are located in Table 4. The proposed algorithm was executed with a program
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written in MATLAB. In the stage of step operating, data sets have one dependent variables and this variable has an
outlier observation.

The defined methods M (Huber, Hampel, Tukey, Andrews) were executed with programs written in MATLAB.
The residuals of from the robust methods and LSM are large, but the residuals from the proposed algorithm based
network are small. This is because, this method depend on fuzzy clustering.

As it can be seen in a numerical example, error related to estimations obtained via the network according to
error criterion is lower than errors obtained via all the other methods.

Table 4. The weight related to observation for all methods

* N
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M
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y

* A
nd

re
w

s
The membership degrees of the observation to belong to the mod-
els in Equation (4.1)
w1 w2 w3 w4 w5 w6 w7 w8 w9

1 1 1 1 0.9992 0.4762 0.3397 0.3374 0.3351 0.2347 0.2331 0.2315 0.1101 0.1094 0.1087
2 1 0.8805 1 0.7940 0.4321 0.7464 0.7439 0.7413 0.5227 0.5209 0.5192 0.2487 0.2479 0.2471
3 1 0.6109 0.6838 0.4606 0.3546 0.9826 0.9833 0.9839 0.8691 0.8697 0.8703 0.5224 0.5227 0.5231
4 1 1 1 0.8786 0.4498 0.6705 0.6718 0.6730 0.9079 0.9096 0.9113 0.8353 0.8369 0.8385
5 1 0.7443 0.8713 0.6453 0.4019 0.9810 0.9818 0.9826 0.7774 0.7781 0.7787 0.4186 0.4190 0.4193
6 1 1 1 0.9443 0.4657 0.9005 0.9022 0.9039 0.6482 0.6494 0.6507 0.3171 0.3177 0.3183
7 1 0.9819 0.9913 0.6641 0.4069 0.3899 0.3881 0.3863 0.1759 0.1751 0.1743 0.0539 0.0537 0.0535
8 1 1 1 0.9993 0.4760 0.9011 0.8996 0.8981 0.6225 0.6214 0.6203 0.2922 0.2917 0.2912
9 1 1 1 0.9454 0.4650 0.9694 0.9683 0.9671 0.7896 0.7887 0.7878 0.4371 0.4365 0.4360
10 1 1 1 0.9591 0.4681 0.9910 0.9905 0.9900 0.7746 0.7742 0.7738 0.4114 0.4112 0.4110
11 1 0.6543 0.7612 0.5857 0.3819 0.5251 0.5277 0.5304 0.5630 0.5658 0.5686 0.4101 0.4121 0.4142
12 1 0.9399 1 0.7619 0.4281 0.9343 0.9359 0.9375 0.7507 0.7532 0.7532 0.4098 0.4105 0.4112
13 1 1 1 0.9820 0.4720 0.9073 0.9092 0.9110 0.7701 0.7717 0.7733 0.4442 0.4451 0.4460
14 1 1 1 0.9635 0.4700 0.6394 0.6421 0.6448 0.4478 0.4497 0.4516 0.2131 0.2140 0.2149
15 1 1 1 0.9886 0.4733 0.7853 0.7874 0.7896 0.8190 0.8213 0.8235 0.5805 0.5821 0.5836
16 1 1 1 0.9518 0.4645 0.5518 0.5546 0.5575 0.4684 0.4708 0.4732 0.2701 0.2715 0.2729
17 1 1 1 0.9990 0.4762 0.4967 0.4992 0.5018 0.3074 0.3090 0.3105 0.1293 0.1299 0.1306
18 1 1 1 0.9620 0.4662 0.2510 0.2529 0.2548 0.2766 0.2787 0.2808 0.2071 0.2087 0.2103
19 1 1 1 0.9945 0.4750 0.7919 0.7912 0.7905 0.4331 0.4327 0.4324 0.1610 0.1608 0.1607
20 1 1 1 0.9975 0.4755 0.6456 0.6428 0.6400 0.5332 0.5308 0.5285 0.2992 0.2979 0.2966
21 1 1 1 0.9680 0.4707 0.6676 0.6699 0.6722 0.3965 0.3979 0.3992 0.1600 0.1606 0.1611
22 1 0.2349 0.0978 0 0 0.2584 0.2566 0.2549 0.1301 0.1293 0.1284 0.0445 0.0442 0.0439
23 1 1 1 0.9586 0.4673 0.7473 0.7479 0.7484 0.3869 0.3872 0.3874 0.1361 0.1362 0.1363
24 1 1 1 0.9826 0.4732 0.7587 0.7604 0.7621 0.4384 0.4394 0.4403 0.1721 0.1725 0.1729
25 1 0.6240 0.6987 0.4415 0.3569 0.5224 0.5251 0.5277 0.5301 0.5328 0.5355 0.3655 0.3674 0.3693
26 1 1 1 0.9788 0.4723 0.0855 0.0856 0.0856 0.2789 0.2791 0.2793 0.6182 0.6186 0.6190
27 1 0.6122 0.7089 0.4865 0.3655 0.8947 0.8965 0.8983 0.6619 0.6633 0.6646 0.3328 0.3335 0.3341
28 1 1 1 0.9896 0.4748 0.2729 0.2709 0.2689 0.1885 0.1871 0.1857 0.0885 0.0878 0.0872
29 1 1 1 0.9905 0.4735 0.5249 0.5273 0.5297 0.3033 0.3047 0.3061 0.1191 0.1196 0.1202
30 1 1 1 0.9476 0.4637 0.5955 0.5983 0.6012 0.5054 0.5079 0.5103 0.2915 0.2929 0.2943

5. Conclusion
In this study, independent variables are Gaussian distributed and regression models are formed by adaptive

network using membership functions that are produced for Gaussian distribution. Since the central parameter
m that one of the posteriori parameters is uncertain and takes values in the range m ∈ [m1,m2] the unknown
parameters of regression model are obtained as fuzzy number. To demonstrate the validity of the regression
model that obtained from adaptive network, the predicted values from this model are compared whit predicted
values from least square estimates and predicted values from robust methods. In case of the data set have outliers,
according to the indicated error criterion, the error related to the predictions that are obtained from the adaptive
network are less than errors obtained from the other methods.
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