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Abstract
Dual-quaternions are an elegant and useful mathematical tools for representing rigid-body (screw)
motions in three-dimensional Euclidean space R3. The aim of this paper is to consider the algebra of dual
semi-quaternions with their basic properties and generalize the results of the Euclidean-planar motion
given by Blaschke and Grünwald to dual planar motion.
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1. INTRODUCTION
Quaternions are discovered by Sir William R. Hamilton in the middle of 19th century. He want to construct an

algebraic system whose elements comprise of a real and two imaginary part. The predicament in the development
of this algebraic system occured by defining the mulitiplication rule. He overcame with this problem by using the
three imaginary part i, j, k with the multiplication rules

i2 = j2 = k2 = ijk = −1,

and called the real space spanned by the elements 1, i, j, k as quaternions, see [1].

Quaternions have some applications in physics, kinematics, mechanism, computer simulations, etc. For example,
rotations in three-dimensional Euclidean space R3 can be represented by real-quaternions, while rigid-body motions
in R3 can be represent by dual-quaternions, see [2–4]. Also, quasi-elliptic motions obtained by the kinematic
mapping of Blaschke and Grünwald can be represented by semi-quaternions, see [5, 6]. In this paper, firstly a brief
summary of the concepts dual-projective plane, dual quasi-elliptic geometry and dual semi-quaternions are given.
Afterwards, the results of the Euclidean-planar motion given by Blaschke and Grünwald are generalized to dual
planar-motion.

2. PRELIMINARIES
In this section, an overview of each of the concepts dual-projective plane, dual-quasi elliptic geometry and dual

semi-quaternions is given.

2.1 Dual-Projective Plane
The set of dual-numbers is defined to be

D = {A = a+ εa∗ : ( a, a∗) ∈ R2, ε 6= 0 and ε2 = 0 }
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where ε is the dual unit and commutes with real-numbers that is rε = εr for all r ∈ R. Also, the real-numbers a and
a∗ are called the non-dual and the dual parts of A, respectively. If a = 0 (resp. a 6= 0), then A is said to be a pure (resp.
non-pure). The set of all pure (resp. non-pure) dual-numbers is denoted by D (resp. D̆).

Let A = a+ εa∗ and B = b+ εb∗ be any two dual-numbers. Then,

• The addition of A and B is
A+B = (a+ b) + ε(a∗ + b∗).

• The multiplication (known as the Study multiplication) of A and B is

AB = BA = (ab) + ε(ab∗ + ba∗).

• The equality of A and B is defined to be

A = B iff a = b and a∗ = b∗.

• The dual conjugate of A is defined to be
A? = a− εa∗.

• The square root of A = a+ εa∗ exists only for a > 0 and is defined to be

√
A =

√
a+ ε

a∗

2
√
a
.

• The norm of A is defined to be
NA = AA? = A?A = a2,

while its modulus is defined to be
‖A‖ =

√
NA = |a|

where | , | denotes the absolute value of a real-number. If NA = ‖A‖ = 1 (that is, A = ±1 + εa∗), then A is
said to be a unit.

• The multiplicative inverse of a dual-number is obtained by dividing its dual-conjugate by its norm. It is
important to emphasize that the multiplicative inverse of a dual-number exists only if it is a non-pure one.
For example, the multiplicative inverse of A exists only for a 6= 0 and is defined to be

A−1 =
A?

NA
=

1

a
− ε a

∗

a2
.

The dual angle Θ = θ + εθ∗ ∈ D represents the relative displacement and orientation between any two lines l1, l2
in space R3, see Fg. 1, where

θ ∈ R is the projected angle between the lines l1 and l2,

θ∗ ∈ R is the shortest distance between the lines l1 and l2.

The trigonometric functions sine, cosine and tangent of a dual angle Θ = θ + εθ∗ are defined to be

sinΘ = sinθ + εθ∗cosθ,

cosΘ = cosθ − εθ∗sinθ,

tanΘ = tanθ + εθ∗sec2θ.
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Fig. 1. The dual angle         expresses the relationship between the lines    and    in   . 

 

Figure 1. The dual angle Θ = θ + εθ∗ ∈ D expresses the relationship between the l1 and l2 in R3.

For further information about dual-numbers see [7, 8].

The set
D2 = { Ã = (X,Y ) : X, Y ∈ D }

is a two-dimensional module over the ring D and is called the dual-plane. The elements of D2 are also called the
dual-vectors in D2. A dual-vector Ã = (X,Y ) can be written in dual form as

Ã = ~z + ε ~z∗

where X = x+ εx∗, Y = y + εy∗ ∈ D and ~z = (x, y), ~z∗ = (x∗, y∗) ∈ R2.

The set
D3 = { Â = (X,Y, Z) : X, Y, Z ∈ D }

is a three-dimensional module over the ring D and is called the dual-space (or D−module). The elements of D3 are
also called the dual-vectors in D3. A dual-vector Â = (X,Y, Z) can be written in dual form as

Â = ~w + ε ~w∗

where
X = x+ εx∗ , Y = y + εy∗ , Z = z + εz∗ ∈ D

and
~w = (x, y, z) , ~w∗ = (x∗, y∗, z∗) ∈ R3.

Let
Â = (X,Y, Z) = ~w + ε ~w∗ , B̂ = (P,Q,R) = ~v + ε ~v∗

be any two dual-vectors where

X = x+ εx∗ , Y = y + εy∗ , Z = z + εz∗ ∈ D

P = p+ εp∗ , Q = q + εq∗ , R = r + εr∗ ∈ D

and
~w = (x, y, z) , ~w∗ = (x∗, y∗, z∗) ∈ R3

~v = (p, q, r) , ~v∗ = (p∗, q∗, r∗) ∈ R3.

Then,
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1. The addition of Â = (X,Y, Z) = ~w + ε ~w∗ and B̂ = (P,Q,R) = ~v + ε ~v∗ is

Â+ B̂ = (X + P, Y +Q, Z +R)

= (~w + ~v) + ε( ~w∗ + ~v∗)

2. The inner product of Â = (X,Y, Z) = ~w + ε ~w∗ and B̂ = (P,Q,R) = ~v + ε ~v∗ is

< Â, B̂ >d = XP + Y Q+ ZR

= < ~w, ~v > + ε (< ~w, ~v∗ > + < ~w∗, ~v >)

where "<,>" denotes the usual inner-product in R3. If< Â, B̂ >d= 0, then Â and B̂ are said to be perpendicular
in the sense of dual.

3. The vector product of Â = (X,Y, Z) = ~w + ε ~w∗ and B̂ = (P,Q,R) = ~v + ε ~v∗ is

Â×d B̂ = (Y R−QZ,ZP −RX,XQ− PY )

= ~w× ~v + ε (~w× ~v∗ + ~w∗ × ~v)

where "×" denotes the usual vector-product in R3.

For further information about dual-plane and dual-space see [7, 9, 10].

Let P̂0 = (X0, Y0, Z0) be a point and N̂ = (A,B,C) be a non-zero vector in D3. The plane passes through P̂0 and

perpendicular to N̂ consists of all the points P̂ = (X,Y, Z) ∈ D3 such that the vector from P̂0 to P̂ (that is,
−−→
P̂0P̂ ) is

perpendicular to the vector N̂, see Fig. 2. In other words,

< N̂,
−−→
P̂0P̂ >d = A(X −X0) +B(Y − Y0) + C(Z − Z0) = 0.

Thus, the plane through P̂0 and perpendicular to N̂ has the equation (in general form)

AX +BY + CZ = D

where D = AX0 +BY0 + CZ0 . For the special case D = 0, the plane passes through the origin.

 

 

 

 

 

 

 

                                                                               

                                                                                                           

                                                                

                                                                                     

                                                                  

                                                        
                                                                                                                                                         

                                                                                                                   

                                                                                                                                      

                                                                                                                                                              

                                                                                                     

Fig. 2. A planar displacement in    of the point  , where    denotes 

the point obtained after rotating the point   by an angle     in 

positive direction around the point           and   denotes the 

   -plane. 

 

Figure 2. The dual-plane passing through the point P̂0 and perpendicular to the vector N̂ in D3

Let the linear space D3 be equipped with the coordinates X,Y, Z. The set of the one-dimensional subspaces of
D3 is called the dual-projective plane and is denoted by P2. A two-dimensional dual-plane D2 can be embedded into
P2 by

Ã = (Y,Z) 7−→ ÂD = (1, Y, Z)D = (λ, λY, λZ), λ ∈ D.
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Figure 3. Dual-projective plane P2 where Â = (1, Y, Z) ∈ P2.

For the special case X = 0, the point ÂD = (X,Y, Z)D is called the ideal point , see Fig. 3.

If ÂD = (X,Y, Z)D is a proper point (that is X ∈ D̆), its coordinates are recovered in D2 by

(X,Y, Z)D ∈ P2 ⇐⇒ (Y/X, Z/X) ∈ D2.

If a line L of D2 is parallel to the vector (L1, L2), then it has the ideal point (0, L1, L2)D. The plane X = 0
corresponds to the ideal (or absolute) line W which contains all the ideal points. The homogeneous coordinate vector of
the point ÂD is the coordinate vector Â which is represented as column vector in matrix notation.

2.2 Dual-Quasi Elliptic Geometry
Suppose that L is a non-horizontal line in D3 intersecting the dual-planes Z = 0, Z = +1, Z = −1, respectively,

at the points M, L1, L2. And suppose that L
′

1, L
′

2 are the normal piercing points, respectively, of the points L1, L2

on the plane Z = 0. Moreover, let β−, β+ be two mappings that rotates, respectively, the points L
′

2, L
′

1 in the plane
Z = 0 around the point M (which is the midpoint of the points L

′

1, L
′

2) with a positive oriented hyperbolic right
angle as

L
′

2β
− = L

′′

2 , L
′

1β
+ = L

′′

1 ,

see Fig. 4. In this case, β− and β+ are linear mappings from the dual-space of lines onto the horizontal dual-plane
Z = 0, and there exists an ordered point pair L

′′

1 , L
′′

2 associated with every ideal line W . That means, if we choose
an ordered pair of dual in the plane Z = 0, then there exists a unique line L associated with them. Also, there exists
an invertible relationship L↔ (L

′′

1 , L
′′

2 ) between the non-horizontal lines L of D3 and the ordered pairs (L
′′

1 , L
′′

2 ) of
dual.

2.3 Dual Semi-Quaternions
A dual semi-quaternion is defined by

Q = Q0 +Q1i +Q2j +Q3k

where Qi = qi + εq∗i are dual-numbers for i = 0, 1, 2, 3. Also, 1, i, j, k may be interpreted as the four basic vectors
of Cartesian set of coordinates satisfying the following non-commutative multiplication rules

i2 = −1, j2 = k2 = 0,
ij = −ji = k, jk = −kj = 0, ki = −ik = j.

The set of all dual semi-quaternions is denoted by HDS. A dual semi-quaternion Q = Q0 +Q1i +Q2j +Q3k can
be written as a sum of a scalar part SQ = Q0 ∈ D and vector part VQ = Q1i +Q2j +Q3k ∈ D3 that is Q = SQ + VQ.
If SQ = 0, then Q is said to be a pure and is denoted by boldface letter Q. The set of all pure dual-quaternions is
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Figure 4. Dual-quasi elliptic motion.

denoted by HDS.

Let Q = SQ + VQ = Q0 + Q1i + Q2j + Q3k and P = SP + VP = P0 + P1i + P2j + P3k be any two dual
semi-quaternions. Then,

• The addition of Q and P is

Q+ P = (SQ + SP ) + (VQ + VP )

= (Q0 + P0) + (Q1 + P1)i + (Q2 + P2)j + (Q3 + P3)k

• The multiplication of Q and P is

QP = SQSP − < VQ,VP >
′

d +SQVP + SP VQ + VQ ×
′

d VP

= (Q0P0 −Q1P1) + (Q1P0 +Q0P1) i +

(Q2P0 +Q3P1 +Q0P2 −Q1P3) j +

(Q0P3 +Q1P2 +Q3P0 −Q2P1) k

where < VQ,VP >
′

d = Q1P1 and VQ ×
′

d VP = 0 i + (Q3P1 −Q1P3) j + (Q1P2 −Q2P1) k.

• The equality of Q and P is defined to be

Q = P iff SQ = SP and VQ = VP .

• The quaternionic conjugate of Q is defined to be

Q = SQ − VQ = Q0 −Q1i−Q2j−Q3k,

while its dual conjugate is defined to be

Q? = S?
Q + V?

Q = Q?
0 +Q?

1i +Q?
2j +Q?

3k.

• The norm of Q is defined to be

NQ = QQ = QQ = Q2
0 +Q2

1 = (q20 + q21) + 2ε(q0q
∗
0 + q1q

∗
1),

while its modulus is defined to be

‖Q‖ =
√
NQ =

√
q20 + q21 + ε

q0q
∗
0 + q1q

∗
1√

q20 + q21

for q20 + q21 6= 0. If NQ = ‖Q‖ = 1, then Q is said to be a unit.
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• The multiplicative inverse of a dual semi-quaternion is obtained by dividing its quaternionic-conjugate by its
norm. It is important to emphasize that the multiplicative inverse of a dual semi-quaternion exists only if its
norm is non-zero. For example, the multiplicative inverse of Q exists only for q0 6= 0 6= q1 and is defined to be

Q−1 =
Q

NQ
.

The matrix representation of a dual semi-quaternion Q = Q0 +Q1i +Q2j +Q3k can be given by

Q := Q =


Q0 −Q1 0 0
Q1 Q0 0 0
Q2 Q3 Q0 −Q1

Q3 −Q2 Q1 Q0

 .

For the special case, if Q is unit then Q can be given in general form as
cosΘ −sinΘ 0 0
sinΘ cosΘ 0 0
Q2 Q3 cosΘ −sinΘ
Q3 −Q2 sinΘ cosΘ


where Θ = θ + εθ∗ ∈ D. It can be easily checked that Q is orthogonal because I = QT I Q and det Q = 1 for the
metric tensor

I =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

where QT denotes the transpose of Q. Hence, unit dual semi-quaternions can be used to represent rotations.

The algebra HDS is isomorphic to the Clifford algebra Cl0,1,3 (i.e., HDS ∼= Cl0,1,3) in dimension 4 when we identify
the quaternionic units i, j, k, respectively, with e1, e2, e12(= e1e2), and the dual unit ε with e34(= e3e4) which
commutes with a subalgebra of Cl0,1,3 generated by e1 and e2. Here, the standard anti-commuting generators
ei, i = 1, 2, 3, 4, satisfy

e21 = −1, e22 = e23 = e24 = 0 and eiej = −ejei for i 6= j.

3. DUAL-QUASI ELLIPTIC MOTION IN D3

Let Q = Q0 +Q1i +Q2j +Q3k be a unit dual semi-quaternion and Q1 be a non-pure dual-number, i.e., Q1 ∈ D̆.
Then the map

βQ : QD ∈ P2 7→

 1 0 0
2(Q1Q2 +Q0Q3) Q2

0 −Q2
1 −2Q0Q1

2(Q1Q3 −Q0Q2) 2Q0Q1 Q2
0 −Q2

1

 = A

corresponds to each point a negative oriented rotation in the dual-projective plane P2. That is because the matrix A
is orthogonal (i.e., I = AT I A) with det A = 1.

Proposition 3.1. The unit dual semi-quaternion

Q = −cos
Θ

2
+ sin

Θ

2
i +Q2j +Q3k

represents a negative oriented rotation in dual-plane D2, where sin(Θ/2) is a non-pure dual-number, i.e., sin(Θ/2) ∈ D̆.

Proof. If we take Q0 = −cos(Θ/2) , Q1 = sin(Θ/2) then the map

fQ :

(
X
Y

)
7→
(
Q2

0 −Q2
1 −2Q0Q1

2Q0Q1 Q2
0 −Q2

1

)(
X
Y

)
+

(
2(Q1Q2 +Q0Q3)
2(Q1Q3 −Q0Q2)

)
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represents a dual-planar motion. Also, it is straightforward to show that

fQ(
Q2

sin
Θ

2

,
Q3

sin
Θ

2

) = (
Q2

sin
Θ

2

,
Q3

sin
Θ

2

).

Thus, the linear map fQ represents a negative oriented rotation through an angle Θ ∈ D about the center

M = (
Q2

sin
Θ

2

,
Q3

sin
Θ

2

) ∈ D2

in dual-plane D2.

Corollary 3.1. If a non-horizontal line L is incident with a point P ∈ P2, then the rotation corresponding to P maps L
′′

2 to
L

′′

1 as in Fig. 4.
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