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Abstract
In this paper, we completely classify the magnetic curves (also N−magnetic curves
with constant curvature) in a Galilean 3-space associated to a Killing vector field
V = v1∂x + v2∂y + v3∂z with v1, v2, v3 ∈ R.
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1. Introduction
A closed 2-form F on a complete Riemannian manifold (M, g) is called a magnetic field. The Lorentz force of a

magnetic background (M, g, F ) is the skew symmetric (1, 1)−type tensor field Φ on M satisfying

g (Φ (X) , Y ) = F (X,Y ) , (1.1)

for any X,Y ∈ Γ (TM) . Thus a trajectory described by a charged particle moving in a magnetic field F (or a magnetic
curve associated to F ) is a smooth curve γ on M satisfying the Lorentz equation (Newton equation or Landau–Hall
equation):

∇γ̇ γ̇ = Φ (γ̇) , (1.2)

where∇ is the Levi-Civita connection of g. Note that the Lorentz force is divergence free, divΦ = 0.

The fact that the Lorentz force is skew symmetric yields a basic property of magnetic curves, i.e. the following
conservation law: particles evolve with constant speed (and so with constant energy) along the magnetic trajectories.
If the magnetic curve γ has unit speed, then it is called a normal magnetic curve. In the sequel, and all over this paper
we study only the unit speed curves.

The study of magnetic fields and their trajectories on Riemannian (semi-Riemannian) manifolds, situated at the
interplay between physics and differential geometry, has great interest. First problem regarding this phenomenal
field was treated on Riemannian surfaces (see e.g. [8, 27]), then in 3-dimensional context, on E3 [16], E3

1 [17], S3 [9],
S2 × R [23] etc. For the study of the magnetic curves associated to magnetic fields on arbitrary dimensional Kähler,
contact manifolds and Walker 3-manifolds, we also refer the reader to [1, 2, 7, 10, 12, 13, 17, 18, 21, 22, 25].

Our aim is to obtain certain parametric equations of the magnetic curves in the Galilean 3-space G3 which
is one model of the real Cayley-Klein geometries. For this, in the present paper, we consider only the magnetic
curves associated to the Killing vector field of the form V = v1∂x + v2∂y + v3∂z with v1, v2, v3 ∈ R. We classify such
magnetic curves (also N−magnetic curves with constant curvature) in G3.
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2. Preliminaries
The Galilean geometry is one model of the real Cayley-Klein geometries (for details see [27]), which has projective

signature (0, 0,+,+). The absolute figure of the Galilean geometry is an ordered triple {ω, f, I}, where ω is the ideal
(absolute) plane, f a line in ω and I is the fixed elliptic involution of the points of f . Detailed properties of Galilean
space may be found in [3]-[6], [15, 19, 20, 24, 26].

A plane is called Euclidean if it contains f , otherwise it is called isotropic, i.e., planes x = const. are Euclidean, in
particular the plane ω. Other planes are isotropic. A vector X = (x1, x2, x3) is said to be non-isotropic (resp. isotropic)
if x1 6= 0 (resp. x1 = 0).

The Galilean scalar product between two vectors X = (x1, x2, x3) and Y = (y1, y2, y3) is given by

〈X,Y 〉G =

{
x1y1, when x1 6= 0 or y1 6= 0
x2y2 + x3y3, when x1 = y1 = 0.

The norm of the non-isotropic vector X is defined by ‖X‖G = |x1|; in case when X is isotropic, ‖X‖G =
√
x22 + x23.

X is called a unit vector if ‖X‖G = 1.
The cross product in the sense of Galilean space is (see [3])

X ×G Y =


(

0,−
∣∣∣∣x1 x3
y1 y3

∣∣∣∣ , ∣∣∣∣x1 x2
y1 y2

∣∣∣∣) , when x1 6= 0 or y1 6= 0(∣∣∣∣x2 x3
y2 y3

∣∣∣∣ , 0, 0) , when x1 = y1 = 0.
(2.1)

A smooth admissible curve γ (without isotropic tangent vectors) can be parameterized in G3 by

γ : I ⊂ R −→ G3, s 7−→ (s, y (s) , z (s)) , (2.2)

where s is the Galilean invariant of the arc length on γ (I).
For an admissible curve, the curvature κ (s) and torsion τ (s) are respectively given by

κ (s) = ‖γ̈‖G =

√
ÿ (s)

2
+ z̈ (s)

2

and
τ (s) =

det (γ̇, γ̈,
...
γ )

κ (s)
2 .

Obviously, κ (s) 6= 0, ∀s ∈ I. Thus, the orthonormal trihedron {T,N,B} in the sense of Galilean geometry becomes

T (s) = γ̇ (s) = (1, ẏ (s) , ż (s)) ,

N (s) =
1

κ (s)
(0, ÿ (s) , z̈ (s)) ,

B (s) =
1

κ (s)
(0,−z̈ (s) , ÿ (s)) .

In the sequel, the Frenet equations may be expressed by

d

ds

TN
B

 =

0 κ 0
0 0 τ
0 −τ 0

TN
B

 .
3. Killing Magnetic Trajectories in G3

A smooth vector field V on a Riemannian manifold (M, g) is a Killing vector field if the Lie derivative with respect
to V of the metric g vanishes, i.e

LV g = 0.

A smooth vector field V on M is Killing if and only if it fulfills the Killing equation

g (∇XV, Y ) + g (∇Y V,X) = 0
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for all X,Y ∈ Γ (TM), where ∇ is the Levi-Civita connection on M .
The 2-forms on 3-dimensional manifolds may be identified with the corresponding vector fields via the Hodge ?

operator and the volume form dvg of the manifold. Hence, the magnetic fields correspond to divergence-free vector
fields; in particular, the Killing vector fields yield an important class of the so called Killing magnetic fields.

Note that, the cross product of two vector fields X,Y on M can be defined as

g (X × Y,Z) = dvg (X,Y, Z) ,

where X,Y, Z ∈ Γ (TM) . Let FV = ιV dvg be the Killing magnetic field corresponding to the Killing vector field V,
where ι denotes the inner product. Equivalently, FV ∧ [V = dvg,where [ : TM −→ TM∗ is the musical isomorphism.
Then, the Lorentz force of FV is (see e.g. [9, 16])

Φ (X) = V ×X. (3.1)

Consequently, the relations (1.2) and (3.1) lead to the Lorentz force of the magnetic background (G3, 〈, 〉G , FV ) :

γ̈ = V ×G γ̇, (3.2)

where V is a Killing vector field on G3 and FV the corresponding Killing magnetic field.
Let γ be a curve in G3, parameterized by the arc length given in the coordinate form

γ (s) = (s, y (s) , z (s)) , s ∈ I ⊂ R, (3.3)

where y and z are smooth functions satisfying the initial conditions:

y (0) = y0, ẏ (0) = Y0 and z (0) = z0, ż (0) = Z0. (3.4)

We give a classification of the normal magnetic trajectories associated to the Killing vector V = v1∂x+v2∂y+v3∂z
in G3, v1, v2, v3 ∈ R.

Theorem 3.1. Let γ be a normal magnetic trajectory associated to the Killing vector V = v1∂x+v2∂y+v3∂z in G3, satisfying
the initial conditions (3.4) . Then γ has one of the following forms:

(i) if V is isotropic,
γ (s) =

(
s,
v3
2
s2 + Y0s+ y0,−

v2
2
s2 + Z0s+ z0

)
; (3.5)

(ii) otherwise, the cylindrical helix on S1
G (r)× l, where S1

G (r) is a Euclidean circle in G3 with radius r =

{(
Z0

v1
− v3

v21

)2
+(

Y0

v1
− v2

v21

)2} 1
2

and l is a straight line given by
(
s, v2v1 s+

(
y0 − Z0

v1
+ v3

v21

)
, v3v1 s +

(
z0 + Y0

v1
− v2

v21

))
, parameterized by

γ (s) =

s,
(
Z0 − v3

v1

)
v1

cos (v1s) +

(
Y0 − v2

v1

)
v1

sin (v1s) +
v2
v1
s+

y0 −
(
Z0 − v3

v1

)
v1

 ,

(
Z0 − v3

v1

)
v1

sin (v1s)−

(
Y0 − v2

v1

)
v1

cos (v1s) +
v3
v1
s+

z0 +

(
Y0 − v2

v1

)
v1

 .

Proof. The normal magnetic trajectories γ are the solutions of the Lorentz equation (3.2). We divide the proof in
two cases:

Case 1. V is isotropic. Using the Galilean cross product (2.1), we get{
ÿ = v3,
z̈ = −v2.

(3.6)

After considering the initial conditions (3.4) into (3.6) , the normal magnetic trajectory γ takes the form (3.5) , which
gives the statement (i).
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Case 2. V is non-isotropic. Then it follows from (2.1) and (3.2) that{
ÿ = v3 − v1ż,
z̈ = v1ẏ − v2.

(3.7)

We may formulate the Cauchy problem associated to system (3.7) and the initial conditions (3.4) as follows:{ ...
y = −v21 ẏ + v1v2,...
z = v1v3 − v21 ż.

(3.8)

After solving (3.8) , we derive

y (s) =
v2
v1
s+

(
Z0 − v3

v1

)
v1

cos (v1s) +

(
Y0 − v2

v1

)
v1

sin (v1s) +

y0 −
(
Z0 − v3

v1

)
v1

 ,

z (s) =
v3
v1
s+

(
Z0 − v3

v1

)
v1

sin (v1s)−

(
Y0 − v2

v1

)
v1

cos (v1s) +

z0 +

(
Y0 − v2

v1

)
v1

 ,

which constitutes the normal magnetic curves we are looking for. It is straightforward to prove that γ is a cylindrical
helix wrapped around S1

G (r)× l.

Example 3.1. Let γ be a normal magnetic trajectory associated to the Killing vector V = v2∂y + v3∂z in G3. It is then
expressed by (3.5) . Choosing Y0 = 5, y0 = 1, Z0 = 3, z0 = 4 and s ∈ I = [0, π] , the normal magnetic trajectories γ
becomes the curves in blue color for v2 = v3 = 0, in green color for v2 = v3 = 1 and in red color for v2 = v3 = 2 as
in Figure 1:

0123
0 10 20

5

10

Figure 1. The magnetic trajectories associated to the Killing vectors V ∈ {(0, 0, 0), (0, 1, 1) , (0, 2, 2)}.

4. N−Magnetic (B−Magnetic) Curves in G3

In [11], Bozkurt et al. introduced a new kind of magnetic curves calledN−magnetic curves (B−magnetic curves)
in oriented 3-dimensional Riemannian manifolds (M, g) defined as follows:

Definition 4.1. Let γ : I ⊂ R −→ M be a curve in an oriented 3-dimensional Riemannian manifold (M, g) and
F be a magnetic field on M . The curve α is an N−magnetic curve (respectively B−magnetic curve) if the normal
vector field N (respectively the binormal vector field B) of the curve satisfies the Lorentz force equation, i.e.,
∇γ̇N = Φ (N) = V ×N (respectively∇γ̇B = Φ (B) = V ×B).

Several characterizations of N−magnetic curves (of B−magnetic curves as well) on (M, g) were obtained in
terms of the curvatures of the magnetic curve and the curvature of (M, g) in [11].

In this section, we assume that the curve γ has nonzero constant curvature κ0 in order to obtain certain results.
Let consider the curve γ in G3, parameterized by

γ (s) = (s, y (s) , z (s)) ,

where y and z are smooth functions satisfying the initial conditions:

y (0) = y0, ẏ (0) = Y0, ÿ (0) = T0 and z (0) = z0, ż (0) = Z0, z̈ (0) = U0. (4.1)
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We classify the N−magnetic curves with constant curvature κ (s) = κ0 6= 0, corresponding to the Killing vector
V = v1∂x + v2∂y + v3∂z in G3, v1, v2, v3 ∈ R.

Theorem 4.1. Let γ be a normal N−magnetic trajectory with constant curvature κ0 associated to the Killing vector
V = v1∂x + v2∂y + v3∂z in G3, satisfying the initial conditions (4.1) . Then γ is one of the following forms:

(i) If v1 = v2 = v3 = 0 (V = 0, trivial Killing vector field),

γ (s) =

(
s,
T0
2
s2 + Y0s+ y0,

U0

2
s2 + Z0s+ z0

)
;

(ii) If v1 = v2 = 0 and v3 6= 0

γ (s) =

(
s, Y0s+ y0,

U0

2
s2 + Z0s+ z0

)
;

(iii) If v1 = v3 = 0 and v2 6= 0,

γ (s) =

(
s,
T0
2
s2 + Y0s+ y0, Z0s+ z0

)
(iv) If v1 = 0, v2 6= 0, v3 6= 0,

γ (s) =

(
s,
U0

T0
v2s

2 + Y0s+ y0,
U0

T0
v3s

2 + Z0s+ z0

)
;

(v) If V is non-isotropic, γ is the cylindrical helix on S1
G (r) × l, where S1

G (r) is a Euclidean circle in G3 with radius

r =

√(
T0

v21

)2
+
(
U0

v21

)2
and l is a straight line given by

(
s,
(
Y0 − U0

v1

)
s+

(
y0 + T0

v21

)
,
(
Z0 + T0

v1

)
s+

(
z0 + U0

v21

))
parameterized by

γ (s) =

(
s,
−T0
v21

cos (v1s) +
U0

v21
sin (v1s) +

(
Y0 −

U0

v1

)
s+

(
y0 +

T0
v21

)
,

−U0

v21
cos (v1s)−

T0
v21

sin (v1s) +

(
Z0 +

T0
v1

)
s+

(
z0 +

U0

v21

))
.

Proof. Assume that γ is a normal N−magnetic curve corresponding to the Killing vector V = v1∂x + v2∂y + v3∂z in
G3. By the Definition 4.1, we have

∇γ̇N = Φ (N) = V ×G N, (4.2)

where N = 1
κ0

(0, ÿ (s) , z̈ (s)) . If v1 = 0, it follows from (4.2) that
...
y = 0,...
z = 0,
v2z̈ − v3ÿ = 0.

(4.3)

By considering the initial conditions into (4.1) , we immediately derive the statements (i)-(iv).
In the case v1 6= 0, by using the cross product in G3 and (4.2) , we get that{ ...

y = −v1z̈,...
z = v1ÿ.

(4.4)

By solving the Cauchy problem associated to system (4.4) and the initial conditions (4.1) , we obtain

y (s) =
−T0
v21

cos (v1s) +
U0

v21
sin (v1s) +

(
Y0 −

U0

v1

)
s+

(
y0 +

T0
v21

)
,

z (s) =
−U0

v21
cos (v1s)−

T0
v21

sin (v1s) +

(
Z0 +

T0
v1

)
s+

(
z0 +

U0

v21

)
,

which completes the proof.
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Remark 4.1. For a trivial magnetic field, V = 0, i.e. in the case of vanishing Lorentz force, the magnetic curves are
given by the trajectories of the charged particles moving freely, only under the influence of gravity. So the solutions
of the Lorentz equation become the geodesics, which satisfy ∇γ̇ γ̇ = 0. This fact is not valid for N−magnetic curves
in G3.

Example 4.1. Let γ be a normal N−magnetic trajectory associated to the trivial Killing vector V = v2∂y + v3∂z in
G3. From the statements (i)-(iv) of Theorem 4.1, choose T0 = 1, Y0 = 3, y0 = 4 and U0 = 1, Z0 = 2, z0 = 1, I = [0, 5] .
Hence the pictures of the N−magnetic trajectories are the curves in blue color, in green color, in red color and in
black color when the Killing vector V is equal to zero, ∂z, ∂y and ∂y + 2∂z, respectively, as in Figure 2:
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Figure 2. The N−magnetic trajectories associated to the Killing vectors V ∈ {(0, 0, 0), (0, 1, 0) , (0, 0, 1) , (0, 1, 2)}.

Remark 4.2. Similar results can be obtained by considering B−magnetic curves (instead of N−magnetic curves).
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[4] Aydin, M.E. and Ergut, M., The equiform differential geometry of curves in 4-dimensional Galilean space G4.
Stud. Univ. Babes-Bolyai Math. 58 (2013), no. 3, 393-400.

[5] Aydin, M.E., Ogrenmis, A.O. and Ergut, M., Classification of factorable surfaces in the pseudo-Galilean space.
Glas. Mat. Ser. III. 50 (2015), no. 70, 441-451.

[6] Aydin, M.E., Mihai, A., Ogrenmis, A.O. and Ergut, M., Geometry of the solutions of localized induc-
tion equation in the pseudo-Galilean space. Adv. Math. Phys. vol. 2015, Article ID 905978, 7 pages, 2015.
doi:10.1155/2015/905978.

[7] Bao, T. and Adachi, T., Circular trajectories on real hypersurfaces in a nonflat complex space form. J. Geom. 96
(2009), 41-55.

[8] Barros, M., Romero, A., Cabrerizo, J. L., and Fernandez, M., The Gauss-Landau-Hall problem on Riemannian
surfaces. J. Math. Phys. 46 (2005), no. 11, 1-15.

[9] Barros, M., Cabrerizo, J. L., Fernandez, M., and Romero, A., Magnetic vortex filament flows. J. Math. Phys. 48
(2007), no. 8, 1-27.

[10] Bejan, C.-L. and Dructua-Romaniuc, S.L., Walker manifolds and Killing magnetic curves. Diff. Geom. Appl. 35
(2014), 106-16.



150 M.E. Aydin

[11] Bozkurt, Z., Gok, I., Yayli, Y. and Ekmekci, F.N., A new approach for magnetic curves in Riemannian manifolds.
J. Math. Phys. 55 (2014), no. 5, 1-12.

[12] Cabrerizo, J. L., Fernandez, M., and Gomez, J.S., On the existence of almost contact structure and the contact
magnetic field. Acta Math. Hungar. 125 (2009), no. 1-2, 191-199.

[13] Calvaruso, G., Munteanu, M.I. and Perrone, A., Killing magnetic curves in three-dimensional almost paracontact
manifolds. J. Math. Anal. Appl. 426 (2015), no. 1, 423-439.

[14] Chen, B.-Y., Geometry of Submanifolds. M. Dekker. New York, 1973.

[15] Dede, M., Tubular surfaces in Galilean space. Math. Commun. 18 (2013), no. 1, 209-217.

[16] Dructua-Romaniuc, S.L. and Munteanu, M.I., Magnetic curves corresponding to Killing magnetic fields in E3. J.
Math. Phys. 52 (2011), no. 11, 1-11.

[17] Dructua-Romaniuc, S.L. and Munteanu, M.I., Killing magnetic curves in a Minkowski 3-space. Nonlinear Anal.,
Real World Appl. 14 (2013), no. 1, 383-396.

[18] Dructua-Romaniuc, S.L., Inoguchi, J., Munteanu, M.I. and Nistor, A.I., Magnetic curves in Sasakian and
cosymplectic manifolds. J. Nonlinear Math. Phys. 22 (2015), 428-447.

[19] Erjavec, Z., Divjak, B. and Horvat D., The general solutions of Frenet’s system in the equiform geometry of
the Galilean, pseudo-Galilean, simple isotropic and double isotropic space. Int. Math. Forum. 6 (2011), no. 17,
837-856.

[20] Kamenarovic, I., Existence theorems for ruled surfaces in the Galilean space. Rad Hazu Math. 456 (1991), no. 10,
183-196.

[21] Mohamed, J. and Munteanu, M.I., Magnetic curves on flat para-Kahler manifolds. Turkish J. Math. 39 (2015), no.
6, 963-969.

[22] Munteanu, M.I. and Nistor, A.I., Magnetic trajectories in a non-flat R5 have order 5. In: Van der Veken, J., Van
de Woestyne, I., Verstraelen, L., Vrancken, L. (eds.) Proceedings of the Conference Pure and Applied Differential
Geometry, PADGE 2012, pp. 224–231, Shaker Verlag Aachen (2013).

[23] Munteanu, M.I. and Nistor, A.I., The classification of Killing magnetic curves in S2 ×R. J. Geom. Phys. 62 (2012),
170-182.

[24] Ogrenmis, A.O., Ergut, M. and Bektas, M., On the helices in the Galilean Space G3. Iranian J. Sci. Tech. A. 31
(2007), no. A2, 177-181.

[25] Ozdemir, Z., Gok, I., Yayli, Y. and Ekmekci, F.N., Notes on magnetic curves in 3D semi-Riemannian manifolds.
Turkish J. Math. 39 (2015), no. 3, 412-426.

[26] Oztekin, H., Special Bertrand curves in 4D Galilean space. Math. Probl. Eng. vol. 2014, Article ID 318458, 7
pages, 2014. doi:10.1155/2014/318458.

[27] Pavkovic, B.J. and Kamenarovic, I., The equiform differential geometry of curves in the Galilean space G3.
Glasnik Mat. 22 (1987), no. 42, 449-457.

[28] Sunada, T., Magnetic flows on a Riemann surface. in: Proceedings of KAIST Mathematics Workshop, pp. 93–108
(1993).

Affiliations

MUHITTIN EVREN AYDIN
ADDRESS: Firat University, Dept. of Mathematics, 23119, Elazig-Turkey.
E-MAIL: meaydin@firat.edu.tr


	Introduction
	Preliminaries
	Killing Magnetic Trajectories in G3
	N-Magnetic (B-Magnetic) Curves in G3

