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Abstract
The aim of the paper to construct the Sierpinski triangle with deterministic algorithm iteration method
in the Galilean plane G2. Self-similar figures which are the result of similarity IFS, reveal the most

fundamental characteristic properties of fractals. We investigate the effects of rotation matrix
[
1 0
ϕ 1

]
to Sierpinski triangle under the iterations in Galilean plane and compare with the Euclidean plane.
Furthermore, we obtain Galilean self-similarity system and Galilean box-counting dimension using the
similar idea in Euclidean plane.
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1. Introduction
A fractal is a fascinating mathematical set known as expanding or evolving symmetry. It is different from other

geometric figures because it is a natural phenomenon. The word “fractal” was coined by Benoît Mandelbrot in 1975
and was derived from the Latin fractus meaning "broken" or "fractured". Although there are many definitions about
fractals, Mandelbrot defined that they are rough or fragmented geometric shapes which are made up smaller copies
of itself [17]. Two important features of fractals are self-similarity and fractal dimension. An object is precisely
or nearly self-similar if it looks approximately the same on any scale. Self-similarity is an essential property of a
fractal object and may be quantified by a fractal dimension. The dimension is a characteristic value which gives
some geometric information about fractals. It can be any real number and this is its an unusual feature from other
geometric objects behind it. The historical roots of the definition of fractal dimension were given in Haussdorff’s
[14] and Falconer’s studies ([9], [10], [11]). There are many different definitions of fractal dimension. One of the
method is the box-counting which is widely used for the reason that its simplicity ([11], [18]). Fractals are used
in some applications of geology, psychology and medicine ([4], [10], [17], [19]). Mathematical introduction about
fractals was obtained by Mandelbrot [17], Barnsley [2] and concepts of iterated functions and self-similarity by
Edgar [8]. Many fractals can be generated by mathematical systems which a collection of transformations. These
systems called iterated function system (IFS) were first studied by Hutchinson in 1981 [15] and then Barnsley and
Demko [3] gave global construction of the fractals. Also there are two type of algorithms to generate fractals,
called deterministic and random iteration algorithms. Deterministic iteration depends on the specific rule or
recursive algorithm. In literature Sierpinski Gasket (1916), Koch Curve (1904), Cantor Set (1872) can be given
as the best known deterministic fractals and details of them are given by Peitgen ([21], [22]). Sierpinski triangle,
which is a perfect self-similar fractal, was named after Waclaw Sierpinski in 1916 and some studies generated the
Sierpinski triangle (gasket) and carpet with computer technology [23]. In recent years, Sierpinski-type fractals and
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mathematical properties have been studied using computer programming ([5], [16]) and also have been studied
their mathematical background ([18], [24], [26]). In this letter, we want to obtain some Sierpinski triangles using a
new idea. First of all, we obtain them in Galilean 2-plane using the shear motion of the Galilean 2-plane.

2. Preliminaries
A fractal which is detailed on arbitrarily small scales, with some degree of self-similarity is an object. An affine

transformation on the Euclidean plane F : R2 → R2 is of the form

F (x, y) = (ax+ by + e, cx+ dy + f) = (x′, y′) (2.1)

where a, b, c, d, e, f ∈ R and ad− bc 6= 0. We can also rewrite the last equation in matrix form as follows:

F

([
x
y

])
=

[
a b
c d

] [
x
y

]
+

[
e
f

]
(2.2)

The matrix
[
a b
c d

]
can be written in the form of

[
cos θ − sin θ
sin θ cos θ

]
which corresponds to a rotation eiθ or cos θ+ i sin θ

in Euclidean 2-plane.
Affine transformations which are composition of rotation, translations, dilations and shears are linear trans-

formations. Self-affine sets are attractors of IFSs where all of the maps are contracting affine transformations on
Euclidean space and have been studied recently in ([6], [12], [20]). Self-similar sets in Euclidean space are a very
special class of self-affine sets. So we can define the similarity transformation.

A similarity in R2 is a function Fi : R2 → R2 satisfying

|F (x)− F (y)| = r|x− y|, x, y ∈ R2 (2.3)

for some constant r. If {F1, F2, . . . , Fn} is a finite family of similarities, than it is known ([1], [10]) that there exists a
unique non-empty compact set S ⊂ R2 such that

S =

k⋃
i=1

Fi(S), (2.4)

called the generator or invariant set of the Fi iterated function system ([12], [15]). For r < 1 the transformation is
called contraction similarity.

Similarity transformations are the rigid motions (reflection, translation, and rotation) that preserve distance and
angles. An important concept related to the similarity transformations is that of invariant. Geometrical similarity
can be define by saying that two figures are similar if all the ratios between corresponding lengths, angles or areas
are identical. Fractal dimension which is a measure is also useful for comparing two fractal objects. The basic
principle to estimate fractal dimension is based on the concept of self-similarity. Then lets give the definition of
box-counting dimension which is the aim of the study via Galilean transformations.

Definition 2.1 (Box-counting dimension). Box-counting dimension of a bounded set A in Euclidean space, i.e. D, is
defined by

D = lim
r→0

logN(r)

log(
1

r
)

(2.5)

where N(r) is the smallest number of boxes (closed sets)/discs of side length/radius r that cover A ([11], [16]).

Then lets introduce and create Sierpinski triangle. The Sierpinski triangle, also known as the Sierpinski gasket,
consists of three self-similar pieces corresponding to the three functions in the IFS. Triangle has the same basic
shape of itself on any different part of it, this is its self-similarity property.

2.1 Construction of Sierpinski triangle
First of all we consider an equilateral triangle S0 with side unit lengths where points (0, 0), (0.5, 0.86), (1, 0) .

The first iteration of F gives us S1. We can see that this is the same dividing S0 into four smaller equilateral triangle
and remove the middle triangle. The second iteration gives us S2 which is the same as dividing each triangle in S1
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(a) S0 (b) S1 (c) S2

Figure 1. Two iteration of Sierpinski triangle

into four smaller triangles and again removing the middle triangle from each of the larger triangles.
If we continue with this process we see that the Sierpinski triangle can be defined as S =

⋂
k∈N

Sk, where each Sk

consists of 3k triangles with side lengths
1

2k
.

Then the iterated function system, F = {F1, F2, F3}where the Fi : R2 → R2 for equilateral Sierpinski triangle
are constructed by

F1

([
x
y

])
=

[
0.5 0
0 0.5

] [
x
y

]
,

F2

([
x
y

])
=

[
0.5
0 0.5

] [
x
y

]
+

[
0.5
0

]
,

F3

([
x
y

])
=

[
0.5
0 0.5

] [
x
y

]
+

[
0.25
0.43

]
,

respectively.
The Sierpinski triangle, S (Fig. 2), is the invariant set of F , i.e.,

S =

k⋃
i=1

Fi(S) = F1(S) ∪ F2(S) ∪ F3(S),

and has zero area.

Figure 2. S Sierpinski triangle (fifth iteration)

The box-counting dimension is calculated as following:
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(a) S0

r0 = 1, N(r0) = 1

(b) S1

r1 =
1

2
, N(r1) = 3

(c) S2

r2 =
1

4
, N(r2) = 9

Figure 3. Box-counting dimension of Sierpinski triangle in Euclidean plane

For Sn, the scaling factor r and the boxes number are rn =

(
1

2

)n

, N(rn) = 3n. From (2.5) the box-counting

dimension of Sierpinski triangle isD =
log 3

log 2
≈ 1.585. And from (2.1) and (2.4) we can write IFS tables for equilateral

Sierpinski triangle easily:

F a b c d e f θ
1 0.5 0 0.5 0 0 0 0
2 0.5 0 0.5 0 0.5 0 0
3 0.5 0 0.5 0 0.25 0.43 0

Table 1. IFS for Equilateral Sierpinski Triangle

If we add rotation with different θ angles to the IFS of the equilateral Sierpinski triangle we get (Fig. 4). θL, θR
and θT are the angles of the transformations F1, F2 and F3 respectively.

(a) θL = θR = θT = 10◦
(b) θL = 30◦, θR = 5◦,
θT = 0◦

(c) θL = 84◦, θR = 60◦,
θT = 47◦

(d) θL = 90◦, θR = 10◦,
θT = 0◦

Figure 4. θL − θR − θT rotated Sierpinski fractals

θL − θR − θT rotated self-similar Sierpinski fractals (Fig. 4) have the same box-counting dimension with θ = 0
rotated Sierpinski triangle (Fig. 1). Because all of them are created by similarity transformations which preserve
geometric properties of the original shape as length, angle and area. (One of them, b) is shown below:
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(a) M0

r0 = 1, N(r0) = 1

(b) M1

r1 =
1

2
, N(r1) = 3

(c) M2

r2 =
1

4
, N(r2) = 9

(d) M3

r3 =
1

8
, N(r3) = 27

Figure 5. Box-counting dimension of rotating Sierpinski triangle

Each of these variations of the Sierpinski triangle is self-similar with 3 non-overlapping copies of itself. Each

scaled by the factor r =
1

2
and each attractor has the same box-counting dimension, D, as that of the Sierpinski

triangle, i.e., which is calculated with D =
log 3

log 2
≈ 1.585.

3. Galilean Plane and Galilean Transformations
In the last two centuries new types of geometries have been invented and developed besides Euclidean geometry.

These geometries are distinguished with their metric properties. Measuring lengths between two points and angles
between lines relates to the metric. Galilean geometry is one of these geometries [26].

The set of dual numbers D = {z = x+ εy|x, y ∈ R, ε 6= 0, ε2 = 0} is a commutative ring. R2 with inner product
given by

〈 , 〉g : D× D −→ R
(z1, z2) −→ 〈z1, z2〉g = x1x2, x1 6= x2.

where z1 = x1 + εy1, z2 = x2 + εy2 ∈ D is the Galilean plane and shown (R2, 〈 , 〉g) or G2.
On the Galilean Plane, the distance d(A,B) between two points A(x1, y1) and A(x2, y2) is defined by the formula

dAB = d(A,B) = |x2 − x1| (3.1)

and this length (PP1) is the projection of the AB on the x-axis (Fig. 6a). If the points A(x1, y1) and B(x2, y2) belong
to the same special line, i.e., x1 = x2 (Fig. 6b), then d(A,B) is a special distance and defined by following formula,
[26],

δ(A,B) = |y2 − y1|. (3.2)

(a) dAB distance in G2 (b) δAB special distance in G2

Figure 6
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Then, the Galilean metric d is defined by

d(A,B) =

{
|x1 − x2|, x1 6= x2

|y1 − y2|, x1 = x2
(3.3)

The modulus of a point X = (x, y) in Galilean plane is also defined by

‖X‖ =

{
|x|, x 6= 0

|y|, x = 0
(3.4)

A circle is the set of points a given distance from the center. The set of all points on the Galilean plane that satisfy
the equation ‖X‖d = |x| = r > 0 is the two special lines x = ±r and is called the Galilean circle (Fig. 7a) [26].

(a) K(x, y) Galilean circle (b) S1
G Galilean unit circle

Figure 7

It is clear that for r = 1 the Galilean unit circle (Fig. 7b) has two branches, the vertical lines x = ±1, and is defined
by

S1
G = {P (x, y)|x = ±1, y ∈ R} (3.5)

ABC is any triangle in Galilean plane, (Fig. 10) there are following equations between dBC = a, dAC = b,
dAB = c side lengths and δbc = Â, δca = B̂, δab = Ĉ angles, [26]:

dBC + dAC = dAB (3.6)
Â+ B̂ = Ĉ (3.7)

Figure 8. ABC triangle in Galilean plane

The angle between two ordinary lines y = m1x+ n1 and y = m2x+ n2 intersecting at a point Q(x0, y0) (Fig. 9) is
defined by

δl1l2 = |m2 −m1| (3.8)



Sierpinski Triangle in Galilean Plane 157

Figure 9. Angle between two lines in Galilean plane

The Galilean Cosine cosg(ϕ) and the Galilean Sine sing(ϕ) can be defined by the following equations:

x = rcosg(ϕ), y = rsing(ϕ) (3.9)

where z is a point on the Galilean unit circle with centered at O and for all ϕ, cosg(ϕ) = 1 and sing(ϕ) = ϕ. Then
the polar form of z can be written

z = r(cosg(ϕ) + εsing(ϕ)) (3.10)

Such the analogue of Euler’s formula for the dual numbers, every dual number z = x+ εy with r modulus can be
writtten

z = reεϕ = r(1 + εϕ) = r(cosg(ϕ) + εsing(ϕ)) (3.11)

The equation 1 + εϕ = eεϕ can be derived from a power series expansion ex for all ϕ and r = 1, [1]. A rotation in

Galilean plane by eεϕ corresponds to multiplication by the matrix,
[
1 0
ϕ 1

]
and also is called Shear transformation.

Thus, the dual number multiplication can be used to produce a shear transformation [26].

Figure 10. Rotation in Galilean plane

Shear transformation is the most interesting application of dual numbers. Furthermore, they are also used in
spatial geometry and in non-Euclidean geometry [26]. In Galilean plane unit dual numbers play the same role with
the unit complex numbers in Euclidean plane. Thus the rotation on Galilean plane can be defined by in matrix form[

x′

y′

]
=

[
1 0
ϕ 1

] [
x
y

]
(3.12)

{
x′ = x

y′ = ϕx+ y
(3.13)

Galilean transformation given by the formula {
x′ = x+ e

y′ = ϕx+ y + f
. (3.14)
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is a composition of shear and translation. Galilean transformation preserve the distance between the points where
ϕ shows the measure of the angle.

In Galilean geometry transformations (3.14) map

1. Lines onto lines;

2. Parallel lines onto parallel lines;

3. Collinear segments onto collinear segments;

4. A figure F onto a figure F ′ of the same area [26].

4. Sierpinski-type Fractals in Galilean Plane

In this section we will introduce fractals on Galilean plane geometrically and we calculate the box-counting
dimension of Galilean meaning. There are two important features of fractals which are self-similarity and fractal
dimension as the same to Euclidean plane. IFSs of affine transformations in Galilean plane which have no rotation,
behave the same in Euclidean plane.

As an illustration we get a triangle L0 which has corner points (0, 0), (0.5, 0.86), (1, 0). L0 under IFS (Table 1) has
the same shape in Euclidean and Galilean plane. Even though L0 is an equilateral triangle in Euclidean plane, it is
an isosceles triangle in Galilean plane which two side lengths are 0.5 and the other is 1 (Fig. 1). The first iteration of
F gives us L1. We can see that this is the same dividing L0 into three smaller isosceles triangle. The second iteration
gives us L2, is the same as dividing each triangle in L1 into three smaller triangles. If we continue with this process
we see that the Sierpinski triangle can be written as L =

⋂
k∈N

Lk, where each Lk consists of 3k triangles with side

lengths
1

2k
.

Lets explain the rotation in Galilean plane geometrically without scaling. Let AOB be the isosceles triangle

(Fig. 11a) in Galilean plane which side lengths are 0.5, 0.5, 1 and
[
1 0
ϕ 1

]
be the rotation matrix. If we rotate AOB

for ϕ = 1 with
[
1 0
1 1

]
matrix, we get A′OB′ (Fig. 11b). And if we rotate A′OB′ again with

[
1 0
1 1

]
matrix, we get

A′′OB′′ (Fig. 11c). As seen in Fig. 11, it can be said that in the Galilean plane from (3.1) |AO| = |A′O| = |A′′O| = 0.5,

(a) (b) (c)
Figure 11. Rotation of AOB in Galilean plane

|AB| = |A′B′| = |A′′B′′| = 0.5, |OB = |OB′| = |OB′′| = 1 and the angles are protected from the equation (3.7). In

this case, under the
[
1 0
1 1

]
rotation AOB, A′OB′ and A′′OB′′ are self-similarity in Galilean meaning.

In this case, in the Galilean plane, any ABC which has the vertices A(x1, y1), B(x2, y2), C(x3, y3), rotates with

the matrix
[
1 0
ϕ 1

]
and forms the new triangle of vertices A′(x′1, y

′
1), B′(x′2, y

′
2) and C ′(x′3, y

′
3). After the ϕ-shear
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transformation, this correlation can be seen:

x′1 = x1 x′2 = x2 x′3 = x3

y′1 = ϕx1 + y1 y′2 = ϕx2 + y2 y′3 = ϕx3 + y3. (4.1)

ABC and A′B′C ′ are self-similar in Galilean meaning under the ϕ-shear transformation which preserves the
distance and angles. There will be this general correlation between the triangles and vertices when ABC rotates n.
times:

x′n = x1,

y′n = nϕx1 + y1.
(4.2)

The following difference should be put forward: the self-similarity of a triangle after rotation is different from the
similarity of triangles in the Galilean plane.

(a) L0

(b) L1

(c) L2 (d) L3

(e) L4 (f) L5

Figure 12. ϕ = 1 rotated Sierpinski triangle in Galilean plane
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Then, lets apply a Galilean rotation to IFS (Table 1) and see the result. The iterated function system, F =
{F1, F2, F3}where the Fi : G2 −→ G2 for isosceles Sierpinski triangle L0 are defined by

F1

([
x
y

])
=

[
0.5 0
0 0.5

] [
x
y

]
,

F2

([
x
y

])
=

[
0.5
0 0.5

] [
x
y

]
+

[
0.5
0

]
,

F3

([
x
y

])
=

[
0.5
0 0.5

] [
x
y

]
+

[
0.25
0.43

]
,

respectively. Hence, we can write the IFS table for L0 easily:

F a b c d e f θ
1 0.5 0 0.5 0.5 0 0 0
2 0.5 0 0.5 0.5 0.5 0 0
3 0.5 0 0.5 0.5 0.25 0.435 0

Table 2. IFS codes for rotating Sierpinski in Galilean plane

and the ϕ = 1 rotated Sierpinski triangle is shown in (Fig. 12).
Then, we can define the Galilean meaning self-similarity. A similarity transformation in G2 is a function

Fi : G2 −→ G2 satisfying
|F (x)− F (y)| = r|x− y|, x, y ∈ R2 (4.3)

for some constant r which preserve the distance, angle and area measures.
When two triangles are similar in Galilean meaning, corresponding angles are congruent and corresponding

sides are proportional. Finally the definition of box-counting dimension in Galilean plane is the same one in
Euclidean plane. If the IFS has a Galilean rotation then we develop new approach to calculate box-counting
dimension. Lets introduce this with geometrically and L0 be the isosceles triangle. To cover L0 we use a box which
is proportioned by side and height lengths. After the first iteration the shape will be (Fig. 13b) and we cover each
part of it with rotationed box which is called parallelogram.

(a)

(b)
(c)

Figure 13. Box-counting with parallelogram

Under each iteration, parallelograms will be scaled, rotated and translated. So the Galilean box-counting dimension
DG in Galilean plane is defined by

DG = lim
r→0

=
logN(r)

log(
1

r
)

(4.4)

where N(r) is the smallest number of parallelograms of side length r that cover A.
Examples of Galilean Sierpinski fractals formed by the similarity transformations corresponding to the ϕ-shear
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values of each Fi isoscele triangle L0 in the Galilean plane and the IFS of each fractals are given in the table below.

b and c values in the F
([
x
y

])
=

[
a b
c d

] [
x
y

]
+

[
e
f

]
transformation which refer x-shear and y-shear respectively

are associated with only rotational movement. Rotation and its quantity does not change fractal’s box-counting
Galilean dimension as the same to Euclidean plane. Thus the fractals in Fig. 14 have the same box-counting Galilean

dimension which is calculated as before D =
log 3

log 2
≈ 1.585.

(a)

(b)

(c)

(d)

(e)

Figure 14. Sierpinski-type fractals for different ϕ values in Galilean plane
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(a)

F a b c d e f θ
1 1 0 1 1 0 0 0
2 1 0 5 1 0.5 0 0
3 1 0 1 1 0.25 0.5 0

(b)

F a b c d e f θ
1 1 0 1 1 0 0 0
2 1 0 1 1 0.5 0 0
3 1 0 1 1 0.5 0.75 0

(c)

F a b c d e f θ
1 1 0 1.4 1 0 0 0
2 1 1.62 0 1 0.28 0 0
3 1 0 1.23 1 0.64 0.32 0

(d)

F a b c d e f θ
1 1 0 1.4 1 0 0 0
2 1 0 1.2 1 0.7 0 0
3 1 0 1.34 1 0.65 0.35 0

(e)

F a b c d e f θ
1 1 1 0 1 0 0 0
2 1 1 0 1 0.8 0.1 0
3 1 1 0 1 0.44 0.66 0

Table 3. IFS codes of different Sierpinski-type fractals
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