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Abstract
In this paper, we investigate the distribution of zeros of certain type of difference polynomial. At the
same time we also investigate the uniqueness results when two difference products of entire functions
share one value counting or ignoring multiplicities by considering that the functions share the value zero,
counting multiplicities. The results of the paper improve and generalize some recent concerning results
of W.L. Li and X.M. Li [Bull. Malay. Math. Sci. Soc., 39(2016), 499-515].
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1. Introduction, Definitions and Results
In this paper, a meromorphic function means meromorphic in the complex plane. We shall adopt the standard

notations in Nevanlinna’s value distribution theory of meromorphic functions as explained in [7], [8] and [17]. It
will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same
at each occurrence. For a nonconstant meromorphic function h, we denote by T (r, h) the Nevanlinna characteristic
function of h and by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)}(r →∞, r 6∈ E).

Let f and g be two nonconstant meromorphic functions and a ∈ C ∪ {∞}. If the zeros of f − a and g − a
coincide in locations and multiplicity, then we say that f and g share the value a CM (counting multiplicities). On
the other hand, if the zeros of f − a and g − a coincide only in their locations, then we say that f and g share the
value a IM (ignoring multiplicities). For a positive integer p, Np(r, a; f) denotes the counting function of a-points
of f , where an a-point of multiplicity m is counted m times if m ≤ p and p times if m > p. A meromorphic
function α( 6≡ 0,∞) is called a small function with respect to f , if T (r, α) = S(r, f). We define difference operators
4cf(z) = f(z + c)− f(z),4nc f(z) = 4n−1c (4cf(z)), where c is a nonzero complex number and n ≥ 2 is a positive
integer. In particular, if c = 1, we use the usual difference notation4cf(z) = 4f(z).

A lot of research works on entire and meromorphic functions whose differential polynomials share certain
value or fixed point have been done by many mathematicians in the world (see [4], [13], [14], [16]). In recent
value distribution in difference analogue has become a subject of great interest among the researchers. In 2006
R.G. Halburd and R.J. Korhonen [5] established a version of Nevanlinna theory based on difference operators. The
difference logarithmic derivative lemma, given by R.G. Halburd and R.J. Korhonen [6] in 2006, Y.M. Chiang and
S.J. Feng [3] in 2008 plays an important role in considering the difference analogues of Nevanlinna theory. With
the development of difference analogue of Nevanlinna theory, the researchers concentrate their attention on the
distribution of zeros of different types of difference polynomials and their corresponding uniqueness results. In
2007 I. Laine and C.C. Yang [9] proved the following result for difference polynomials.
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Theorem A. Let f be a transcendental entire function with finite order and η be a nonzero complex constant. Then for n ≥ 2,
fn(z)f(z + η) assumes every nonzero value a ∈ C infinitely often.

In 2010 X.G. Qi, L.Z. Yang and K. Liu [12] proved the following uniqueness result which corresponds to Theorem
A.

Theorem B. Let f and g be two transcendental entire functions of finite order, and η be a nonzero complex constant, and
let n ≥ 6 be an integer. If fn(z)f(z + η) and gn(z)g(z + η) share the value 1 CM, then either fg = t1 or f = t2g for some
constants t1 and t2 satisfying tn+1

1 = tn+1
2 = 1.

Let P (z) = anz
n + an−1z

n−1 + ... + a0 be a nonzero polynomial, where an(6= 0), an−1, ... , a0 are complex
constants. We denote Γ1, Γ2 by Γ1 = m1 +m2, Γ2 = m1 + 2m2 respectively, where m1 is the number of simple zeros
of P (z) and m2 is the number of multiple zeros of P (z). Throughout the paper we denote d = gcd(λ0, λ1, ..., λn),
where λi = n + 1 if ai = 0, λi = i + 1 if ai 6= 0. In 2011 L. Xudan and W.C. Lin [15] considered the zeros of one
certain type of difference polynomial and obtained the following result.

Theorem C. Let f be a transcendental entire function of finite order and η be a fixed nonzero complex constant. Also suppose
that P (z) = anz

n + an−1z
n−1 + ...+ a0 be a nonzero polynomial, where an(6= 0), an−1, ... , a0 are complex constants, and

m is the number of distinct zeros of P (z). Then for n > m, P (f(z))f(z+ η)−α(z) = 0 has infinitely many solutions, where
α(z)(6≡ 0) is a small function with respect to f .

In the same paper the author also proved the following uniqueness result corresponding to Theorem C.

Theorem D. Let f and g be two transcendental entire functions of finite order, η be a nonzero complex constant, and
n > 2Γ2 + 1 be an integer. If P (f(z))f(z + η) and P (g(z))g(z + η) share the value 1 CM, then one of the following cases
hold:
(i) f = tg, where td = 1;
(ii) f and g satisfy the algebraic equation R(f, g) = 0, where R(w1, w2) = P (w1)w1(z + η)− P (w2)w2(z + η);
(iii) f = eα, g = eβ , where α and β are two polynomials and α+ β = c, c is a constant satisfying a2ne(n+1)c = 1.

We recall the following example due to L. Xudan and W.C. Lin [15].

Example 1.1. Let P (z) = (z − 1)6(z + 1)6z11, f(z) = sin z, g(z) = cos z and η = 2π. It is easily seen that n > 2Γ2 + 1
and P (f(z))f(z + η) = P (g(z))g(z + η). Therefore P (f(z))f(z + η) and P (g(z))g(z + η) share the value 1 CM. It is also
clear that though f and g satisfy R(f, g) = 0, where R(w1, w2) = P (w1)w1(z+η)−P (w2)w2(z+η); f 6≡ tg for a constant
t satisfying tm = 1, where m ∈ Z+.

From the above example, we see that f and g do not share the value 0 CM. Regarding this one may ask the
following question.

Question 1. What can be said about the relationship between f and g, if f and g share the value 0 CM in Theorem D?

Keeping the above question in mind, recently W.L. Li and X.M. Li [10] proved the following results.

Theorem E. Let f and g be two transcendental entire functions of finite order such that f and g share the value 0 CM, let η
be a nonzero complex constant, and let n > 2Γ2 + 1 be an integer. If P (f(z))f(z + η) and P (g(z))g(z + η) share the value 1
CM, then one of the following two cases hold:
(i) f = tg, where td = 1;
(ii) f = eα, g = ce−α, where α is a nonconstant polynomial and c is a constant satisfying a2ncn+1 = 1.

Theorem F. Let f and g be two transcendental entire functions of finite order such that f and g share the value 0 CM, η be a
nonzero complex constant, and let n > 3Γ1 + 2Γ2 + 4 be an integer. If P (f(z))f(z+ η) and P (g(z))g(z+ η) share the value
1 IM, then one of the following two cases hold:
(i) f = tg, where td = 1;
(ii) f = eα, g = ce−α, where α is a nonconstant polynomial and c is a constant satisfying a2ncn+1 = 1.

Regarding Theorems E and F it is natural to ask the following question which is the motivation of the paper.

Question 2. What happen if one consider the difference polynomials of the form (P (f(z))f(z + η))(k) where k(≥ 0) is an
integer ?
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In the paper, our main purpose is to find out the possible answer of the above question. We prove three results
first one of which extends Theorem C, second one improves and generalizes Theorem E and the remaining improves
and generalizes Theorem F. We are now ready to state our main results.

Theorem 1.1. Let f be a transcendental entire function with finite order and α(z)( 6≡ 0) be a small function with respect
to f . Suppose that η is a nonzero complex constant, n(≥ 1) and k(≥ 0) are integers. Also suppose that P (z) = anz

n +
an−1z

n−1 + ...+ a0 be a nonzero polynomial, where an(6= 0), an−1, ... , a0 are complex constants. Then for n > Γ1 + km2,
(P (f(z))f(z + η))(k) − α(z) = 0 has infinitely many solutions.

Theorem 1.2. Let f and g be two transcendental entire functions of finite order such that f and g share the value 0 CM.
Suppose that η is a nonzero complex constant, n(≥ 1) and k(≥ 0) are integers satisfying n > 2Γ2 + 2km2 + 1. If
(P (f(z))f(z + η))(k) and (P (g(z))g(z + η))(k) share the value 1 CM, then one of the following two cases hold:
(i) f = tg, where td = 1;
(ii) f = eα, g = ce−α, where α is a nonconstant polynomial and c is a constant satisfying a2ncn+1 = 1.

Theorem 1.3. Let f and g be two transcendental entire functions with finite order such that f and g share the value 0 CM.
Suppose that η is a nonzero complex constant, n(≥ 1) and k(≥ 0) are integers such that n > 3Γ1 + 2Γ2 + 5km2 + 4. If
(P (f(z))f(z + η))(k) and (P (g(z))g(z + η))(k) share the value 1 IM, then one of the following two cases hold:
(i) f = tg, where td = 1;
(ii) f = eα, g = ce−α, where α is a nonconstant polynomial and c is a constant satisfying a2ncn+1 = 1.

2. Lemmas
In this section, we state some lemmas which will be needed in the sequel. We denote by H the following

function:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
,

where F and G are nonconstant meromorphic functions defined in the complex plane C.

Lemma 2.1. [2] Let f be a meromorphic function of finite order ρ and let c be a fixed nonzero complex constant. Then for each
ε > 0, we have

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= O{rρ−1+ε}.

Lemma 2.2. [3] Let f be a meromorphic function of finite order ρ, c( 6= 0) be a fixed complex constant. Then for each ε > 0,
we have

T (r, f(z + c)) = T (r, f) +O{rρ−1+ε}+O{log r}.

Lemma 2.3. [11] Let f be a meromorphic function of finite order ρ and let c be a fixed nonzero complex constant. Then

N(r, 0; f(z + c)) ≤ N(r, 0; f) + S(r, f),

N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

N(r, 0; f(z + c)) ≤ N(r, 0; f) + S(r, f),

N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

outside of possible exceptional set with finite logarithmic measure.

Lemma 2.4. Let f be a transcendental entire function of finite order and F = P (f(z))f(z + c). Then

T (r, F ) = (n+ 1)T (r, f) + S(r, f).

From the lemma it is clear that S(r, F ) = S(r, f) and similarly S(r,G) = S(r, g).
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Proof. Noting that f is an entire function of finite order we deduce from Lemma 2.1 and the standard Valiron
Mohon’ko theorem that

(n+ 1)T (r, f) = T (r, f(z)P (f(z))) + S(r, f)

= m(r, f(z)P (f(z))) + S(r, f)

≤ m

(
r,

f(z)P (f(z))

f(z + c)P (f(z))

)
+m(r, F ) + S(r, f)

≤ m

(
r,

f(z)

f(z + c)

)
+m(r, F ) + S(r, f)

≤ T (r, F ) + S(r, f). (2.1)

On the other hand, by Lemma 2.2 and the fact that f is a transcendental entire function of finite order, we obtain

T (r, F ) ≤ T (r, P (f(z))) + T (r, f(z + c)) + S(r, f)

= nT (r, f) + T (r, f(z + c)) + S(r, f)

≤ (n+ 1)T (r, f) + S(r, f). (2.2)

Now the lemma follows from (2.1) and (2.2).

Lemma 2.5. [18] Let f be a nonconstant meromorphic function, and p, k be two positive integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f), (2.3)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (2.4)

Lemma 2.6. [16] Let f and g be two nonconstant meromorphic functions sharing the value 1 CM. Then one of the following
cases hold:
(i) T (r) ≤ N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r),
(ii) f = g,
(iii) fg = 1,
where T (r) = max{T (r, f), T (r, g)} and S(r) = o{T (r)}.

Lemma 2.7. [1] Let F and G be two nonconstant meromorphic functions sharing the value 1 IM and H 6≡ 0. Then
T (r, F ) ≤ N2(r, 0;F )+N2(r, 0;G)+N2(r,∞;F )+N2(r,∞;G)+2N(r, 0;F )+N(r, 0;G)+2N(r,∞;F )+N(r,∞;G)+
S(r, F ) + S(r,G),
and the same inequality holds for T (r,G).

Lemma 2.8. Let f and g be two entire functions, n(≥ 1), k(≥ 0) be integers, and let

F = (P (f(z))f(z + η))(k), G = (P (g(z))g(z + η))(k).

If there exists nonzero constants c1 and c2 such that N(r, c1;F ) = N(r, 0;G) and N(r, c2;G) = N(r, 0;F ), then n ≤
2Γ1 + 2km2 + 1.

Proof. We put F1 = P (f(z))f(z + η) and G1 = P (g(z))g(z + η). By the second fundamental theorem of Nevanlinna
we have

T (r, F ) ≤ N(r, 0;F ) +N(r, c1;F ) + S(r, F )

≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ). (2.5)

Using (2.3), (2.4), (2.5), Lemma 2.3 and Lemma 2.4 we obtain

(n+ 1)T (r, f) ≤ T (r, F )−N(r, 0;F ) +Nk+1(r, 0;F1) + S(r, f)

≤ N(r, 0;G) +Nk+1(r, 0;F1) + S(r, f)

≤ Nk+1(r, 0;F1) +Nk+1(r, 0;G1) + S(r, f) + S(r, g)

≤ (m1 +m2 + km2 + 1)(T (r, f) + T (r, g)) + S(r, f) + S(r, g). (2.6)
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Similarly

(n+ 1)T (r, g) ≤ (m1 +m2 + km2 + 1)(T (r, f) + T (r, g)) + S(r, f) + S(r, g). (2.7)

Combining (2.6) and (2.7) we obtain

(n− 2m1 − 2m2 − 2km2 − 1)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which gives n ≤ 2Γ1 + 2km2 + 1. This proves the lemma.

3. Proof of the Theorem
Proof of Theorem 1.1. Let F1 = P (f(z))f(z + η). Then F1 is a transcendental entire function. If possible, we may
assume that F (k)

1 − α(z) has only finitely many zeros. Then we have

N(r, α;F
(k)
1 ) = O{log r} = S(r, f). (3.1)

Using (2.3), (3.1) and Nevanlinna’s three small function theorem we obtain

T (r, F
(k)
1 ) ≤ N(r, 0;F

(k)
1 ) +N(r, α;F

(k)
1 ) + S(r, f)

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+1(r, 0;F1) + S(r, f). (3.2)

Applying Lemma 2.4 we obtain from (3.2)

(n+ 1)T (r, f) ≤ Nk+1(r, 0;F1) + S(r, f)

≤ (m1 +m2 + km2 + 1)T (r, f) + S(r, f).

This gives

(n−m1 −m2 − km2)T (r, f) ≤ S(r, f),

a contradiction with the assumption that n > Γ1 + km2. This proves the theorem.

Proof of Theorem 1.2. Let F1 = P (f(z))f(z + η), G1 = P (g(z))g(z + η), F = F
(k)
1 and G = G

(k)
1 . Then F and G are

transcendental entire functions that share the value 1 CM. Using (2.3) and Lemma 2.4 we get

N2(r, 0;F ) ≤ N2(r, 0; (F1)(k)) + S(r, f)

≤ T (r, (F1)(k))− (n+ 1)T (r, f) +Nk+2(r, 0;F1) + S(r, f)

≤ T (r, F )− (n+ 1)T (r, f) +Nk+2(r, 0;F1) + S(r, f).

From this we get

(n+ 1)T (r, f) ≤ T (r, F ) +Nk+2(r, 0;F1)−N2(r, 0;F ) + S(r, f). (3.3)

Also by (2.4) we obtain

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 ) + S(r, f)

≤ Nk+2(r, 0;F1) + S(r, f). (3.4)

Suppose, if possible, that (i) of Lemma 2.6 holds. Then using (3.4) we obtain from (3.3)

(n+ 1)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +Nk+2(r, 0;F1)

+S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + S(r, f) + S(r, g)

≤ (m1 + 2m2 + km2 + 1){T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.5)

Similarly

(n+ 1)T (r, g) ≤ (m1 + 2m2 + km2 + 1){T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.6)
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(3.5) and (3.6) together gives

(n− 2m1 − 4m2 − 2km2 − 1){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicting with the fact that n > 2Γ2 + 2km2 + 1. Therefore by Lemma 2.6 we have either FG = 1 or F = G. Let
FG = 1. Then

(P (f(z))f(z + η))(k)(P (g(z))g(z + η))(k) = 1. (3.7)

Since f and g are entire functions, from (3.7) we deduce that P (f(z)) 6= 0 and P (g(z)) 6= 0. If possible, we assume
that P (z) = 0 has two distinct roots, say, z1 and z2. Then

P (f(z)) = an(f − z1)n1(f − z2)n2

where n1, n2 are positive integers with n1 + n2 = n. Therefore N(r, z1; f) = O{log r} and N(r, z2; f) = O{log r}.
Now using Nevanlinna second fundamental theorem we immediately obtain a contradiction. Next we suppose
that P (z) = 0 has only one root. Then P (f(z)) = an(f − a)n and P (g(z)) = an(g − a)n, where a is a complex
constant. Hence, from the assumption that f and g are two transcendental entire functions of finite order, we
have f(z) = eα(z) + a and g(z) = eβ(z) + a, α(z), β(z) being nonconstant polynomials. From (3.7), we also see
that f(z + η) 6= 0 and g(z + η) 6= 0 and therefore a = 0. Thus f(z) = eα(z), g(z) = eβ(z), P (z) = anz

n and
[ane

nα(z)+α(z+η)](k)[ane
nβ(z)+β(z+η)](k) = 1. If k = 0 then proceeding similarly as in case 3 of the proof of Theorem

2 [10] we obtain f(z) = eα(z), g(z) = ce−α(z) where c is a constant satisfying a2ncn+1 = 1. If k ≥ 1 then we deduce

[ane
nα(z)+α(z+η)](k) = ane

nα(z)+α(z+η)P (α′, α′η, ..., α
(k), α(k)

η ),

where αη = α(z + η). Obviously, P (α′, α′η, ..., α
(k), α

(k)
η ) has infinite zeros, so it is impossible. Next we assume that

F = G. Then

(P (f(z))f(z + η))(k) = (P (g(z))g(z + η))(k).

Integrating once we obtain

(P (f(z))f(z + η))(k−1) = (P (g(z))g(z + η))(k−1) + ck−1,

where ck−1 is a constant. If ck−1 6= 0, using Lemma 2.8 it follows that n ≤ 2Γ1 + 2(k − 1)m2 + 1, a contradiction as
n > 2Γ2 + 2km2 + 1 and Γ2 ≥ Γ1. Hence ck−1 = 0. Repeating the process k-times, we deduce that

P (f(z))f(z + η) = P (g(z))g(z + η).

Then arguing similarly as in Case 2 in the proof of Theorem 2 [10] we obtain f = tg for a constant t such that td = 1.
This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let F , G, F1 and G1 be defined as in Theorem 1.2. Then F and G are transcendental entire
functions that share the value 1 IM. We assume, if possible, that H 6≡ 0. Using Lemma 2.7 and (3.4) we obtain from
(3.3)

(n+ 1)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2N(r, 0;F ) +N(r, 0;G)

+2N(r,∞;F ) +N(r,∞;G) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + 2Nk+1(r, 0;F1)

+Nk+1(r, 0;G1) + S(r, f) + S(r, g)

≤ (3m1 + 4m2 + 3km2 + 3)T (r, f) + (2m1 + 3m2 + 2km2 + 2)T (r, g)

+S(r, f) + S(r, g)

≤ (5m1 + 7m2 + 5km2 + 5)T (r) + S(r). (3.8)

Similarly

(n+ 1)T (r, g) ≤ (5m1 + 7m2 + 5km2 + 5)T (r) + S(r). (3.9)
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(3.8) and (3.9) together yields

(n− 5m1 − 7m2 − 5km2 − 4)T (r) ≤ S(r),

a contradiction with the assumption that n > 3Γ1 + 2Γ2 + 5km2 + 4. We now assume that H = 0. Then(
F ′′

F ′
− 2F ′

F − 1

)
−

(
G′′

G′
− 2G′

G− 1

)
= 0.

Integrating both sides of the above equality twice we get

1

F − 1
=

A

G− 1
+B, (3.10)

where A(6= 0) and B are constants. From (3.10) it is obvious that F , G share the value 1 CM. Therefore n >
2Γ2 + 2km2 + 1. We now discuss the following three cases separately.

Case 1. We first assume that B 6= 0 and A = B. Then from (3.10) we obtain

1

F − 1
=

BG

G− 1
. (3.11)

If B = −1, then from (3.11) we obtain FG = 1. Then the result follows from the proof of Theorem 1.2.
If B 6= −1, from (3.11), we have 1

F = BG
(1+B)G−1 and so N(r, 1

1+B ;G) = N(r, 0;F ). Using (2.3), (2.4) and the second
fundamental theorem of Nevanlinna, we deduce that

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

1 +B
;G

)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) + S(r,G)

≤ Nk+1(r, 0;F1) + T (r,G) +Nk+1(r, 0;G1)

−(n+ 1)T (r, g) + S(r, g).

This gives

(n+ 1)T (r, g) ≤ (m1 +m2 + km2 + 1){T (r, f) + T (r, g)}+ S(r, g).

Thus we obtain

(n− 2m1 − 2m2 − 2km2 − 1){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction as n > 2Γ2 + 2km2 + 1.

Case 2. Next we assume that B 6= 0 and A 6= B. Then from (3.10) we get F = (B+1)G−(B−A+1)
BG+(A−B) and so N(r, B−A+1

B+1 ;G) =

N(r, 0;F ). Proceeding in a manner similar to Case 1 we arrive at a contradiction.

Case 3. Let B = 0 and A 6= 0. Then from (3.10) we get F = G+A−1
A and G = AF − (A − 1). If A 6= 1, it follows that

N(r, A−1A ;F ) = N(r, 0;G) and N(r, 1− A;G) = N(r, 0;F ). Then by Lemma 2.8 it follows that n ≤ 2Γ1 + 2km2 + 1, a
contradiction. Thus A = 1 and hence F = G. Now the result follows from the proof of Theorem 1.2.

This completes the proof of Theorem 1.3.
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