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Abstract
In this paper we construct an almost para-quaternionic structure on the 3-jet bundle of an almost para-
hermitian manifold and we study its integrability. We give a necessary and sufficient conditions that are
provided for these structures to become para-hyper-Kähler and we prove that the 3-jet bundle can not be
a para-quaternionic Kähler manifold.
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1. Introduction
A para-quaternionic structure on a manifold consists of an almost para hypercomplex structure which is a triple

of endomorphisms of the tangent bundle J = {J1, J2, J3}, where J1 is almost complex structure and J2, J3 are
almost product structures satisfying anti-commutation relations and compatible with a semi-Riemannian metric
necessarily of neutral signature. Moreover, if the structures J are parallel with respect to the Levi-Civita connection
of the compatible metric, one arrives at the concept of para-hyper-Kähler structure and also named neutral hyper-
Kähler or hypersymplectic structure ([3], [13], [14], [16], [18]...). The para-quaternionic and para-hyperhermitian
structures are structures that appear in theorical physics, precisely, in string theory and integrable systems ([1], [9],
[11]...).

On the other hand, the 3-jet bundle or the third order tangent bundle T 3M of a smooth n-dimensional manifold
M is the 4n-dimensional smooth manifold of equivalent classes of curves c on M that agree up to their 3-velocity
or the manifold of 3-jet denoted j3c. That is a generalization of the tangent bundle TM . This bundle has been
studied with different names by many authors (see [5], [7]) for 2-jet bundle and generalized to the r-jet bundle in
([6]), where T rM is the smooth manifold of equivalent classes of curves c on M that agree up to their r-velocity or a
manifold of r-jets.

Dodson and Radivoiovici prove that T 2M becomes a vector bundle over M with structure group GL(2n;R) if
the manifold M is endowed with additional structure: a linear connection ∇ ([7]), this result was generalized to
T rM (r ≥ 2) in ([6]). Then, the 3-jet bundle of n-dimensional manifold M is a vector bundle when M is endowed
with a linear connection∇.

The linear connection ∇ on a manifold M defines a diffeomorphism S between the 3-jet bundle T 3M and the
Whitney sum of three copies of the tangent bundles TM . S is a fibre diffeomorphism of locally trivial bundle
but it is not an isomorphism of natural bundles. Next, using the vertical and horizontal lift (XV , XH) of vector
fields X ∈ Γ(TM) we define by the λ-lift the adapted frame {X0, X1, X2, X3}, so a sequence of distributions
E0, E1, E2 and E3 on T 3M such that T (T 3M) = ⊕

i=0,3
Ei, when λ = 1. E0, E1 coincide with H and V respectively

the horizontal and the vertical subspaces of TM. The λ-lift of tensor fields on manifold M to the 3-jet bundle T 3M ,
is a generalization of vertical and horizontal lift of geometric structures to the tangent bundle TM (see [6], [10]).
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The main purpose of this paper is to construct a para-quaternionic structure or para-hyperhermitian structure on
the 3-jet bundle which is the generalization of this construction on tangent bundle (see [13], [20]), we also investigate
its integrability, we obtain the necessary and sufficient conditions for these structures to become para-hyper-Kähler
and finally we prove that the 3-jet bundle can not be a para-quaternionic Kähler manifold.

2. Preliminaries
An almost product (resp. complex) structure on a smooth manifold M is given by a tensor field P (resp. J) of

type (1, 1) on M such that,
P 6= ±Id and P 2 = Id. (resp. J2 = −Id)

(M,P ) (resp. (M,J)) is called an almost product (resp. complex) manifold. Moreover, if M is endowed with
pseudo-Riemannian metric g satisfying

g(PX,PY ) = −g(X,Y ) (resp. g(JX, JY ) = g(X,Y ))

for all vector fields X,Y on M , (M, g, P ) (resp. (M, g, J)) is called an almost para-hermitian (resp. hermitian)
structure.

When M support three tensor fields J = (Jα)α=1,2,3 where J1 is an almost complex structure and J2, J3 are an
almost product structures satisfying: {

J2
α = −εαId
J1J2 = −J2J1 = J3

(2.1)

where α = 1, 2, 3, ε1 = 1, ε2 = ε3 = −1, then M is said to be an almost para-hypercomplex manifold and denoted
(M, J). Its dimension is multiple of 4.

A semi-Riemannian metric g on (M, J) is said to be compatible or adapted to the almost para-hypercomplex
structure J if it satisfies

g(J1X, J1Y ) = −g(J2X, J2Y ) = −g(J3X, J3Y ) = g(X,Y ) (2.2)

for all vector fields X,Y on M . The pair (g, J) is called an almost para-hyperhermitian structure on M and the triple
(M, g, J) is said to be an almost para-hyperhermitian manifold. Its adapted metric is of neutral signature (2n, 2n). If
J is parallel with respect to the Levi-Civita connection of g, then the manifold is called a para-hyper-Kähler.

Moreover, we say that J is integrable if its Nijenhuis tensor

Nα(X,Y ) = [JαX, JαY ]− Jα[X, JαY ]− Jα[JαX,Y ] + J2
α[X,Y ]; α = 1, 2, 3

is zero for all vector fields X and Y on M , then (M, J) is called a para-hypercomplex manifold. If g is a semi-
Riemannian metric adapted to structure J , then the pair (g, J) is said to be a para-hyperhermitian structure on M
and (M, g, J) is called a para-hyperhermitian manifold.

For a n-dimensional manifold M, let assume that there is a rank 3-sub bundle σ of End(TM) such that a local
basis {J1, J2, J3} of sections of σ exists satisfying the formula (2.1). Then the bundle σ is called a para-quaternionic
structure on M and {J1, J2, J3} is called a canonical local basis of σ. Moreover, (M,σ) is said to be an almost
para-quaternionic manifold.

A pseudo-Riemannian metric g is said to be adapted to the para-quaternionic structure σ if any local basis
{J1, J2, J3} of σ satisfies the formula (2.2). (M,σ, g) is said to be an almost hermitian para-quaternionic manifold.

3. Bundle of the 3-jet

Let M be an n-dimensional smooth differentiable manifold. For each x ∈M, we define an equivalence relation
on the set Cx = {c : (−ε, ε)→M / c is smooth and c(0) = x, ε > 0} by

c ≈x h⇐⇒ c(i)(0) = h(i)(0) for i = 1, 3,

where c(i) denote the derivation of order i of c :

c(i) : (−ε, ε)→ TM ; t→ [
dc(i)(t)

dt(i)
](0)
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Definition 3.1. The 3-jet space or the third order tangent space of M at the point x denoted by T 3
xM is the quotient

Cx/ ≈x and the 3-jet-bundle or the third order tangent bundle of M is the union of all the 3-jets spaces

T 3M = ∪
x∈M

T 3
xM.

We denote by j3xc the equivalence class of c with respect to ≈xand by j3c an element of T 3M.

Moreover, when M is endowed with a linear connection, T 3M becomes a vector bundle with structure group
the general linear group GL(2n;R) and (3 + 1)n-dimensional smooth manifold.

Now, let ∇ be a linear connection on M. Let π3 : T 3M → M be the projection defined by π3(j3c) = c(0), if
(U, x1, ..., xn) is a chart on M, then we consider the induced chart (π−13 (U), xi,λ)i=1,n,λ=0,3 on T 3M defined by

xi,λ([c]3) = 1
λ!

dλ

dtλ
(xi ◦ c)(0).

Using the connection∇we can define the diffeomorphism S by

S : T 3M → TM + TM + TM

S([c]3) = (
·
c(0), (∇c

·
c)(0), (∇c∇c

·
c)(0))

∇c denotes the covariant derivation along c and
·
c is the velocity vector field of c, with

∇c
·
c
i

= (
d2ci

dt2
+ pi1) ∂

∂xi and ∇c∇c
·
c
i

= (
d3ci

dt3
+ pi2) ∂

∂xi

where pi1 (resp. pi2) is a polynomial of degree one (resp. two) on dkcj

dtk
with k ≤ 1 (resp. k ≤ 2) and the coefficients of

pi1 (resp. pi2) depend on the connection coefficients Γijk (resp. DαΓijk, with |α| ≤ 1).

4. Lift from M to T 3M

Let (M, g) be a pseudo-Riemannian manifold,∇ it’s Levi-Civita connection and R it’s curvature tensor.

Some results of the lift from M to TM
Let be f a function on M. For any vector field X on M , we denote by fV the vertical lift of f to TM defined by

fV = f ◦ π ; π is projection from TM to M

Let be X a vector field on M. Then there is one and only one vector field XV on TM called the vertical lift of X
such that

XV (fV ) = 0, for every f

The connection∇ define a horizontal distribution H on TM such that

T (TM) = V ⊕H where V = ker dπ (4.1)

Since for every point z of TM
dzπ/Hz : Hz → Tπ(z)M

is an isomorphism, then, if X is a vector field on M, we can define

XH(z) = (dzπ/Hz )
−1(Xπ(z))

XH is a vector field on TM called the horizontal lift of X to TM.

Consequently,
{
XH , XV

}
is a 2n-frame which is called the adapted frame to∇ in TM.
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Lift from M to T 3M

Let X ∈ Γ(TM) be a vector field on M . For λ = 0, 3, the λ−lift of X to T 3M is defined by

X0 = S−1∗ (XH , XH , XH)
X1 = S−1∗ (XV , 0, 0)
X2 = S−1∗ (0, XV , 0)
X3 = S−1∗ (0, 0, XV )

when λ = 1 the λ−lift of (X0, X1) coincide with (XH , XV ) in TM. If λ = 2, the λ−lift was studied in ([5]) and for
any λ ≥ 1, it was studied in ([6]).

{
Xλ
}
λ=0,..,3

is a 4n-frame called the adapted frame in T 3M.

Proposition 4.1. For all vector fields X,Y ∈ Γ(TM) and p ∈ T 3M, we have the identities

[X0, Y 0]p = [X,Y ]0p − ((R(X,Y )u)1 + (R(X,Y )w)2 + (R(X,Y )z)3)

[X0, Y i] = (∇XY )i

[Xi, Y 0] = −(∇YX)i

[Xi, Y j ] = 0

where (u,w, z) = S(p) and i, j = 1, 3.

Proof. For proof see [5] and [6].

Definition 4.1. The diagonal lift of g to T 3M denoted by Dg is defined by{
i) Dg(Xi, Y i) = g(X,Y )
ii) Dg(Xi, Y j) = 0

(4.2)

for i, j = 0, 3 (i 6= j) and X,Y vector fields in TM. Dg coincide with Sasaki metric on TM . (see [6])

The Levi-Civita connection D∇ of Dg is given by Koszul formula as following

(D∇X0Y 0)p = (∇XY )0p − 1
2 ((R(X,Y )u)1 + (R(X,Y )w)2 + (R(X,Y )z)3)

(D∇X0Y i)p = (∇XY )ip + 1
2 (R(X,Y )u)0 (4.3)

(D∇XiY 0)p = 1
2 (R(X,Y )u)0

(D∇XiY j)p = 0 for i, j 6= 0

for all vector fields X, Y in TM, p ∈ T 3M and (u,w, z) = S(p).

Now, we suppose for sections 5 and 6 that (M,P, g) be an almost para-hermitian n-dimensional manifold.

5. Para-hyperhermitian structures

Definition 5.1. We define three tensor fields J̃ = (Jα)α=1,2,3 on T 3M by the equalities:
J1X

0 = X2

J1X
1 = X3

J1X
2 = −X0

J1X
3 = −X1

,


J2X

0 = PX2

J2X
1 = PX3

J2X
2 = PX0

J2X
3 = PX1

,


J3X

0 = PX0

J3X
1 = PX1

J3X
2 = −PX2

J3X
3 = −PX3

,

Then we have the theorem

Theorem 5.1. The 3-jet bundle T 3M admits an almost para-hypercomplex structure J̃ which is a para-hyperhermitian with
respect to Dg.
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Proof. From the definition (5.1), we have for J1
J2
1X

0 = J1X
2 = −X0

J2
1X

1 = J1X
3 = −X1

J2
1X

2 = −J1X0 = −X2

J2
1X

3 = −J1X1 = −X3

=⇒ J2
1 X̃ = −X̃

the calculations for J2
2 and J2

3 are analogous to J2
1 .

For the anti-commutation rules, we have
J2J1X

0 = J2X
2 = PX0 = J3X

0

J2J1X
1 = J2X

3 = PX1 = J3X
1

J2J1X
2 = −J2X0 = −PX2 = J3X

2

J2J1X
3 = −J2X1 = −PX3 = J3X

3

=⇒ J2J1X̃ = J3X̃.

Its similar for −J1J2 = J3, thus

J2
1 = −J2

2 = −J2
3 = −Id and J2J1 = −J1J2 = J3

Using the definition (5.1) for J1, we have
Dg(J1X

0, J1Y
0) = Dg(X0, Y 0)

Dg(J1X
0, J1Y

1) = 0 = Dg(X0, Y 1)
Dg(J1X

0, J1Y
2) = 0 = Dg(X0, Y 2)

Dg(J1X
0, J1Y

3) = 0 = Dg(X0, Y 3)
Dg(J1X

1, J1Y
1) = Dg(X1, Y 1)

and


Dg(J1X

1, J1Y
2) = 0 = Dg(X1, Y 2)

Dg(J1X
1, J1Y

3) = 0 = Dg(X1, Y 3)
Dg(J1X

2, J1Y
2) = Dg(X2, Y 2)

Dg(J1X
2, J1Y

3) = 0 = Dg(X2, Y 3)
Dg(J1X

3, J1Y
3) = 0 = Dg(X3, Y 3)

then
Dg(J1X̃, J1Ỹ ) =D g(X̃, Ỹ ).

And similarly for J2 and J3, we get the compatibility of J̃ with gD defined in formula (4.2)

Dg(J1X̃, J1Ỹ ) = − Dg(J2X̃, J2Ỹ ) = − Dg(J3X̃, J3Ỹ ) = Dg(X̃, Ỹ ).

Thus, J̃ is a para-hyperhermitian structure with respect to Dg.

6. Study of integrability

First of all, we mention a general proposition:

Proposition 6.1. Let (M, g, P ) be an almost product manifold, then we have

1/ [PX,PY ] = (∇PXP )(Y )− (∇PY P )(X) + P (∇PXY −∇PYX),
2/ P [PX, Y ] = P∇PXY − P∇Y PX,
3/ P [X,PY ] = P∇XPY − P∇PYX,

for all vector fields X,Y on M.

The integrability of structure J̃ is given by 16 equations for each j, i = 0, 3, in following proposition.

Proposition 6.2. The Nijenhuis tensor of structure J1 is given by

N1(X0, Y 0) = (R(X,Y )u)1 + (R(X,Y )v)2 + (R(X,Y )w)3

N1(X2, Y 2) = (R(X,Y )u)1 + (R(X,Y )v)2 + (R(X,Y )w)3

N1(X2, Y 0) = N1(X2, Y 0)

= J1((R(X,Y )u)1 + (R(X,Y )v)2 + (R(X,Y )w)3)

= (R(X,Y )u)3 − (R(X,Y )v)0 − (R(X,Y )w)1

N1(Xi, Y j) = 0 for all i, j = 0, 3 and (i, j) 6= {(0, 0), (0, 2), (2, 0), (2, 2)}
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Similarly, we deduce for J2

N2(X0, Y 0) = −(P (∇XP )Y )0 + (R(X,Y )u)1 + (R(X,Y )v)2 + (R(X,Y )w)3

N2(X0, Y 2) = −(P (∇XP )Y + (∇PY P )Y )2

+(R(X,PY )u)3 + (R(X,PY )v)0 + (R(X,PY )w)1

N2(X2, Y 0) = (P (∇Y P )X + (∇PXP )X)2

+(R(PX, Y )u)3 + (R(PX, Y )v)0 + (R(PX, Y )w)1

N2(X0, Y i) = (P (∇XP )Y )i for i = 1,3
N2(Xi, Y 0) = −(P (∇Y P )X)i for i = 1,3
N2(Xi, Y j) = 0 for i, j = 1,3
N2(X1, Y 2) = −((∇PY P )X)3

N2(X2, Y 1) = ((∇PXP )Y )3

N2(X2, Y 2) = ((∇PXP )Y − (∇PY P )X)0

−(R(PX,PY )u)1 + (R(PX,PY )v)2 + (R(PX,PY )w)3

N2(X2, Y 3) = ((∇PXP )Y )1

N2(X3, Y 2) = −((∇PY P )X)1

and finally for J3

N3(X0, Y 0) = ((∇PXP )Y − (∇PY P )X − P (∇XP )Y + P (∇Y PX))0 +

+(P (R(PX, Y )u) + P (R(X,PY )u)−R(PX,PY )u−R(X,Y )u)1

+(P (R(PX, Y )v) + P (R(X,PY )v)−R(PX,PY )v −R(X,Y )v)2

+(P (R(PX, Y )w) + P (R(X,PY )w)−R(PX,PY )w −R(X,Y )w)3

N3(X0, Y 1) = (∇PXPY − P (∇XP )Y − P∇PXY )1

= ((∇PXP )Y − P (∇XP )Y )1

N3(X1, Y 0) = −(∇PY PX − P (∇Y P )X − P∇PYX)1

= (P (∇Y P )X − (∇PY P )X)1

N3(X0, Y i) = (P∇PXY − P (∇XP )Y −∇PXPY )i

= −(P (∇XP )Y + (∇PXP )Y )i for i = 2, 3

N3(Xi, Y 0) = −(P∇PYX − P (∇Y P )X −∇PY PX)i

= (P (∇Y P )X + (∇PY P )X)i for i = 2, 3

N3(Xi, Y j) = 0 for i, j = 1, 3

for all X,Y vector fields on M and S(p) = (u,w, z).

Proof. We recall that the Nijenhuis tensor of the structures J̃ = (Jα)α=1,2,3 is

Nα(Xi, Y j) = [JαX
i, JαY

j ]− Jα[Xi, JαY
j ]− Jα[JαX

i, Y j ] + J2
α[Xi, Y j ]

for α = 1, 2, 3 and j, i = 0, 3.

Using the definition (5.1) and the formula (4.3), we get the Nijenhuis tensor of J1 (i.e N1). For N2 and N3, we use
also the proposition (6.1).

Then, we have the following theorem

Theorem 6.1. The structure J̃ = (Jα)α=1,3 is an almost para-hypercomplex structure on T 3M which becomes almost
para-hyperhermitian with respect to the diagonal lift metric Dg. Moreover, (T 3M,D g, J̃) is para-hyperhermitian (i.e J̃ is
integrable) if and only if (M,P, g) is a flat para-Kähler manifold.
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7. Para-quaternionic structures

Let (M,σ, g) be an almost hermitian para-quaternionic 4n-dimensional manifold. We can locally choose a
para-hypercomplex structure J ={J1, J2, J3} which is a basis of σ. In fact, by the definition an almost hermitian
para-quaternionic manifold is locally almost hermitian para-hypercomplex.

We can locally define a nondegenerate 2-forms

ΩJα(X,Y ) = g(X, JαY ), α = 1, 2, 3 (7.1)

However, the 4-form
Ω = ΩJ1 ∧ ΩJ1 − ΩJ2 ∧ ΩJ2 − ΩJ3 ∧ ΩJ3

is defined globally on M .

Definition 7.1. An almost hermitian para-hypercomplex 4n-dimensional manifold (M, g, J) (n ≥ 1) is para-
hyperKähler if∇J = 0 (i.e∇Jα = 0, α = 1, 3), where ∇ is the Levi-Civita connection with respect to the metric g.
An almost hermitian para-quaternionic 4n-dimensional manifold (M,σ, g) (n ≥ 2) is called para-quaternionic
Kähler manifold if∇Ω = 0 and M is not para-hyperKähler. (see [17],[13],[19])

Let (M,P, g) be an almost para-hermitian n-dimensional manifold. We shall call an almost para-quaternionic
structure on T 3M any sub bundle σ̃ of the vector bundle End(T 3M), locally spanned by a para-hyperhermitian
structure J̃. The pair (T 3M, σ̃) will be called an almost para-quaternionic manifold and (T 3M, σ̃,D g) is called an
almost hermitian para-quaternionic manifold.

We define three nondegenerate 2-forms in (T 3M, σ̃,D g) by

Ω̃Jα(X̃, Ỹ ) = Dg(X̃, JαỸ ), α = 1, 3 (7.2)

for any vector fields X̃ and Ỹ in T 3M. The 4-form is given by

Ω̃ = Ω̃J1 ∧ Ω̃J1 − Ω̃J2 ∧ Ω̃J2 − Ω̃J3 ∧ Ω̃J3

Proposition 7.1. The Levi-Civita connection of Dg satisfies D∇Ω̃ = 0 if and only if (M,P, g) is a flat para-Kähler manifold.

In order to prove the proposition, first, we need the following lemma.

Lemma 7.1. i. From the formulas (4.2), (7.1) and the definition (5.1), the three 2-forms Ω̃Jα are given by
Ω̃J1(Xi, Y j) = g(X,Y ) for (i, j) = (2, 0) and (3, 1)

Ω̃J1(Xi, Y j) = −g(X,Y ) for (i, j) = (0, 2) and (1, 3)

Ω̃J1(Xi, Y j) = 0 for the remaining cases (i, j){
Ω̃J2(Xi, Y j) = g(X,PY ) for (i, j) = (2, 0),(3, 1), (0, 2) and (1, 3)

Ω̃J2(Xi, Y j) = 0 for the remaining cases (i, j)
Ω̃J3(Xi, Y j) = g(X,PY ) for (i, j) = (0, 0),(1, 1)

Ω̃J3(Xi, Y j) = −g(X,PY ) for (i, j) = (2, 2),(3, 3)

Ω̃J3(Xi, Y j) = 0 for the remaining cases (i, j)

with i, j = 0, 3 and for any vector fields X,Y in TM.

ii.

D∇Ui(Ω̃Jα ∧ Ω̃Jα)(Xi, Y j , Zk,W l) = 2
∑

Y j ,Zk,W l

(Dg(Xi, (D∇UiJα)Y j)Ω̃Jα(Zk,W l)

+Ω̃Jα(Xi, Y j) Dg(Zk, (D∇UiJα)W l))

where the sum is taken over cyclic permutations of Y j , Zk,W l and i, j, k, l = 0, 3.
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iii.

(D∇XiJα)Y j =D ∇Xi(JαY j)− Jα(D∇XiY j) (7.3)

Using the formulas (4.3) and (7.3), we have

(D∇X0Jα)Y 0 = D∇X0(JαY
0)− Jα(∇XY )0 (7.4)

+ 1
2Jα((R(X,Y )u)1 + (R(X,Y )w)2 + (R(X,Y )z)3)

(D∇X0Jα)Y i = D∇X0(JαY
j)− Jα(∇XY )i + 1

2Jα(R(u, Y )X)0

(D∇XiJα)Y 0 = D∇Xi(JαY 0) + 1
2Jα(R(X,Y )u)0

(D∇XiJα)Y j = D∇Xi(JαY j) for i, j = 1, 3

Proof of the proposition 10. D∇Xi Ω̃ is given by 44 = 256 identities when the indices i, j, k, l varies from 0 to 3. For
this, we have used a computer program with matlab software. D∇Xi Ω̃ is calculated in three parts as follows

D∇XiΩ̃ = D∇Xi(Ω̃J1 ∧ Ω̃J1)−D ∇Xi(Ω̃J2 ∧ Ω̃J2)−D ∇Xi(Ω̃J3 ∧ Ω̃J3)

= I1 − I2 − I3 i = 0, 3 (7.5)

Taking account of lemma (7.1)-(i,ii) as databases of computer program, each part Iα(α = 1, 2, 3) is calculated in (256)
identities when the indices i, j, k, l vary from 0 to 3. We remark that all (256) identities are a sum of terms of types

g(X,Y ) Dg(Zk, (D∇XiJα)W l) and g(X,PY ) Dg(Zk, (D∇XiJα)W l) (7.6)

where X,Y, Z,W commutes over cyclic permutations except X in D∇Xi .
However, from the lemma (7.1) (iii), we have for the structure J1

(D∇X0J1)Y 0 = 1
2 ((R(X,Y )u)3 − (R(X,Y )z)1) (7.7)

(D∇X0J1)Y 1 = 1
2 ((R(u, Y )X)0 + (R(u, Y )X)2))

(D∇X0J1)Y 2 = 1
2 ((R(X,Y )u)1 + 2(R(X,Y )w)2 + (R(X,Y )z)3)

(D∇X0J1)Y 3 = 1
2 ((R(u, Y )X)2 − (R(u, Y )X)0)

(D∇XiJ1)Y 0 = 1
2 (R(u,X)Y )2 for i = 1, 3

(D∇X2J1)Y 2 = − 1
2 (R(u,X)Y )0

(D∇XiJ1)Y j = 0 for i, j = 1, 3

and for J2

(D∇X0J2)Y 0 = ((∇XP )Y )2 + 1
2 ((R(u, PY )X)0 (7.8)

+(PR(X,Y )w)0 + (PR(X,Y )z)1 + (PR(X,Y )u)3)

(D∇X0J2)Y 1 = ((∇XP )Y )3 + 1
2 ((R(u, PY )X)0 + (PR(u, Y )X)2)

(D∇X0J2)Y 2 = (∇XP )Y )0 − 1
2 ((R(X,PY )u)1 + ((R(PX, Y )w)2

−(PR(u, Y )X))2 + (R(PX, Y )z)3)

(D∇X0J2)Y 3 = (∇XP )Y )1 + 1
2 ((R(u, PY )X)0 + (PR(u, Y )X)2)

(D∇XiJ2)Y 0 = 1
2 (PR(X,Y )u)2 for i = 1, 3

(D∇XiJ2)Y 2 = 1
2 (R(u,X)PY )0 for i = 1, 3

(D∇XiJ2)Y j = 0 for i = 1, 2, 3 and j = 1, 3
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finally for J3

(D∇X0J3)Y 0 = ((∇XP )Y )0 − 1
2 ((R(X,PY )u)1 + (R(X,PY )w)2 + (7.9)

(R(X,PY )z)3) + (P (R(X,Y )u)1 − P (R(X,Y )w)2

−P (R(X,Y )z)3)

(D∇X0J3)Y 1 = ((∇XP )Y )1 + 1
2 (PR(u, Y )X)0

(D∇X0J3)Y 2 = −((∇XP )Y )2 + 1
2 (PR(u, Y )X)0

(D∇X0J3)Y 3 = −((∇XP )Y )3 + 1
2 (PR(u, Y )X)0

(D∇XiJ3)Y 0 = 1
2 (R(u,X)PY + P (R(X,Y )u))0 for i = 1, 3

(D∇XiJα)Y j = 0 for i, j = 1, 3

Taking into account the formulas (7.7), (7.8) and (7.9), the terms (7.6) vanishes if and only if P is parallel and without
curvature (i.e∇P = 0 andR ≡ 0). Then, D∇Xi Ω̃ vanishes if and only if (M,P, g) is a flat para-Kähler manifold.

Remark 7.1. If P is not parallel or R 6= 0 then D∇Xi Ω̃ 6= 0.

Finally, we have the following theorems

Theorem 7.1. Let (T 3M,D g) be the 3-jet bundle with para-hyperhermitian structure J̃ with respect to the diagonal lift metric
gD. (T 3M,D g) is para-hyperKähler manifold if and only if (M,P, g) is a flat para-Kähler manifold (i.e∇P = 0 and R ≡ 0).

Proof. The proof is given from the formulas (7.7), (7.8) and (7.9).

Theorem 7.2. The almost hermitian para-quaternionic manifold (T 3M, σ̃,D g) is never para-quaternionic Kähler manifold.

Proof. From the proposition (7.1), we have D∇Ω̃ = 0 if (M,P, g) is a flat para-Kähler manifold i.e∇P = 0 and R ≡ 0

or in this case, (T 3M, σ̃,D g) is para-hyper Kähler manifold (i.e D∇J̃ = 0) and taking account about the definition
(7.1), (T 3M, σ̃,D g) is never para-quaternionic Kähler manifold.

A possible extension of this paper is to construct a para-hyperhermitian (quaternionic) structures on r-jet bundle
with r = −1mod[4] as a naturally generalization of the tangent bundle of an almost para-hermitian manifold.
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