
MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES
5 (1) 27-33 (2017) c©MSAEN

Curvature Inequalities between a Hessian Manifold
with Constant Curvature and its Submanifolds

Münevver Yıldırım Yılmaz* and Mehmet Bektaş
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Abstract
In this paper after a short description of Hessian manifolds, we establish new curvature inequalities
between a Hessian manifold and its submanifolds.
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1. Introduction
Among the many Riemannian metrics that may exist on a flat manifold, Hessian metrics are the most compatible

with the flat structure. A Riemannian metric on a flat and affine manifold is called a Hessian metric if it is locally
expressed by the Hessian of functions with respect to the affine coordinate systems. A pair of a flat structure and a
Hessian metric is called Hessian structure and a manifold equipped with a Hessian structure is said to be a Hessian
manifold. Typical examples of of these manifolds are regular convex cones and the space of all positive definite real
symmetric matrices [1–3] Hirohiko Shima introduced Hessian sectional curvature and its relations with Kaehlerian
manifold. He also proved the theorems and gave important remarks on the spaceform of Hessian manifolds. In
the light of these studies Yi ldiri m Yilmaz and Bektaş obtained some curvature conditions, results and integral
inequalities on this type of manifolds, [4, 5, 8]

In this paper we focus on some new curvature estimates on Hessian manifolds and its submanifolds analogous
with [6, 7].

2. Preliminaries
Let Mm be a Hessian manifold with Hessian structure (D, g).We express various geometric concepts for the

Hessian structure (D,g)in terms of affine coordinate system x1, ..., xm with respect to D , i.e Ddxi = 0

i ) The Hessian metric ;

gij =
∂2u

∂xi∂xj

ii ) Let γ be a tensor field of type (1, 2) defined by

γ (X,Y ) = 5XY −DXY

where ∇ is the Riemannian connection for g . Then we have

γijk = Γijk =
1

2
gir

∂grj
∂xk
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γijk =
1

2

∂gij
∂xk

=
1

2

∂3u

∂xi∂xj∂xk

γijk = γjik = γkji

where Γijk are the Christoffel ’ s symbols of∇ .
iii )Let Q be a tensor field of type (1, 3) defined by

Q = Dγ

and call it the Hessian curvature tensor for (D , g ) .Then we have

Q i
jkl =

∂γijl
∂xk

Qijkl =
1

2

∂4u

∂xi∂xj∂xk∂xl
− 1

2
grs

∂3u

∂xi∂xk∂xr
− ∂3u

∂xj∂xl∂xs

Qijkl = Qilkj = Qkjil = Qjilk = Qklij .

iv ) The Riemannian curvature tensor for∇ is given by ;

Rijkl = γirkγ
r
jl − γirlγrjk ,

Rijkl =
1

2
(Qjikl −Qijkl) . (2.1)

Definition 2.1. For a non-zero contravariant symmetric tensor ξx of degree 2 at x, we set

h (ξx) =
〈ς (ξx) , ξx〉
〈ξx , ξx〉

and call it the Hessian sectional curvature in the direction ξx, [1].

Theorem 2.1. Let (M ,D , g ) be a Hessian manifold of dimension ≥ 2. If the Hessian sectional curvature h (ξx) depends
only x then (M ,D , g ) is of constant Hessian sectional curvature .(M ,D , g ) is of constant Hessian sectional curvature c if
and only if

Qijkl =
c

2
(gijgkl + gilgkj) . (2.2)

Corollary 2.1. If a Hessian manifold (M ,D , g ) is a space of constant Hessian sectional curvature c , then the Riemannian
manifold (M , g) is a space of constant sectional curvature − c

4 , [1].

3. Curvature equations between a Hessian manifold and Its Submanifolds

Let Mn be an n-dimensional submanifolds of (n+ p)− dimensional Hessian manifold Mn+p. We choose a local
field of orthonormal vectors such that e1, ..., en are tangent to Mn. We use the following convention on the ranges
of indices: 1 ≤ i, j, k, .. ≤ n, n+ 1 ≤ α, β , γ, ... ≤ p .

We denote by hαij the components of the second fundamental form ofMn with respect to the frame e1, ..., en, ..., en+p
the the mean curvature vector

−→
H of Mn, the square H2 of the mean curvature H of Mn and the square S of the

length of the second fundamental form are given , respectively by

−→
H =

1

n

n∑
α=1

hαeα where hα =
∑
i

hαii (3.1)

H2 =
1

n2

n∑
α=1

(hα)
2 (3.2)

S =
∑
α

 n∑
i,j

(
hαij
)2 =

∑
α

Sα Sα,=

n∑
i,j

(
hαij
)2 (3.3)
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S and H2 are independent of the choice of the orthonormal basis.
And for S and H2 we have

(hα)
2 ≤ nSα , nH2 ≤ S (3.4)

Let X be an arbitrary unit vector tangent to Mn at a point x ∈Mn. We denote the the Ricci curvature of Mn in
the direction ofX byRic (X,X) and the Ricci curvature ofMn+p in the some directionX byRic (X,X) . Supposing
that the local frame e1, ..., en, ...en+p is chosen that en = X. Then the Ricci curvature Ric (X,X) = Ric (en, en) of
Mn at a point x ∈Mn is equal to

Ric (en, en) =

n−1∑
i=1

Kin (3.5)

where Kin is the sectional curvature of Mn at x ∈Mn for the 2-plane section spanned by ei and en.

Let us consider TxMn as an n-plane section of Mn+p at a point x ∈Mn spanned by the n− orthonormal vectors
e1, ..., en then the n− Ricci curvature RicTxMn (X,X) of Mn+p for the n-plane section TxM

n in the direction of
X = en is equal to

RicTxMn (X,X) =

n−1∑
i=1

Kin (3.6)

where Kin is the sectional curvature of Mn+p at x ∈Mn for the 2-plane section spanned by the vectors ei and
en.

Using Gauss equation
Rijkl = Kijkl + hαikh

α
jl − hαilhαjk (3.7)

then the Ric (en, en) of Mn at x ∈Mn is equal to the following

Ric (en, en) =

n∑
i=1

Kin +
∑
α

[
hαnn

n∑
i=1

hαii −
n∑
i=1

(hαin)
2

]
(3.8)

or

Ric (en, en) = RicTXMn (en, en) +
∑
α

[
hαnn

n∑
i=1

hαii −
n∑
i=1

(hαin)
2

]
(3.9)

In [6] the author estimates for the Ricci curvature of a submanifold Mn of an arbitrary Riemannian manifold
Mn+p . After routine calculations we get similar results for Hessian manifolds as follows:

Theorem 3.1. Let Mn be an n− dimensional submanifold of an (n+ p) dimensional Hessian manifold Mn+p. For the Ricci
curvature Ric (X,X) of Mn at a non-totally geodesic point x ∈Mn in the direction of a unit vector X tangent to Mn we
have

Ric (X,X) ≤ RicTxMn (X,X) +
n2H2

4
(3.10)

Ric (X,X) ≥ RicTxMn (X,X) + (n− 1)
∑
α

λα1λ
α
n

= RicTxMn (X,X) + (3.11)

(n− 1)

n

[
2nH2 − S − (n− 2)

√
nH2 (S − nH2)

n− 1

]

where λα1 and λαn are two different eigenvalues of each one of the matrices
(
hαij
)

of the second fundamental form. The
equality in (3.10) is held only when all the matrices

(
hαij
)

of the second fundamental form with respect to an orthonormal basis
e1, ..., en = X, ..., en+p are of the form 

h̃α11 h̃α12 ... h̃α1n−1 0

h̃α12 h̃α22 ... h̃α2,n−1 0
...

...
...

...
...

h̃α1,n−1 h̃α2,n−1 ... h̃αn−1,n−1 0

0 0 ... 0 h̃α

2

 (3.12)
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where h̃α11 + h̃α22 + ...+ h̃αn−1,n−1 = h̃α
2 , h̃

α
ij− arbitrary 1 ≤ i ≤ j ≤ n− 1.

The equality in (2.11) is fulfilled if and only if the matrices
(
h̃αij

)
are the following


λα1 0 ... 0
0 λα1 ... 0
...

...
. . .

... ... ... λαn

 (3.13)

where

λα1 =
1

n

hα ∓
√
nSα − (hα)

2

n− 1

 , ..., λαn =
1

n

hα ∓ (n− 1)

√
nSα − (hα)

2

n− 1


as (n− 1)λα1 + λαn = hα and (n− 1) (λα1 )

2
+ (λαn)

2
= Sα.

For the proof of the Riemannian version of the theorem we refer to [6] .

Corollary 3.1. If
n2H2

4
≤ −RicTxMn (X,X) (3.14)

then Ric (X,X) ≤ 0 at x ∈Mn for the unit vector x ∈ TxMn. Particularly when the ambient space Mn+p is a space form
on positive curvature then

Ric (X,X) ≤ 0 if H2 ≤ (n− 1) c

n2
.

Corollary 3.2. If

2 (n− 1)H2 − n− 1

n
S − (n− 2)

n

√
n (n− 1)H2 (S − nH2) ≥ 0 (3.15)

then Ric (X,X) ≥ RicTxMn (X,X) at x ∈Mn in the direction of x ∈ TxMn.

Corollary 3.3. If

RicTxMn (X,X) ≥ 2 (1− n)H2 +
n− 1

n
S +

n− 2

n

√
n (n− 1)H2 (S − nH2) ≥ 0 (3.16)

then Ric (X,X) ≥ 0 for x ∈ TxMn. Next we may expess the following theorem

Theorem 3.2. Let Mn be an n-dimensional submanifold isometrically immersed in an (n+ p)− dimensional arbitrary
Hessian manifold Mn+p. The equality

Ric (X,X) = RicTxMn (X,X) +
n− 1

n

[
2nH2 − S − (n− 2)

√
nH2 (S − nH2)

n− 1

]
(3.17)

is fulfilled at a non-totally geodesic point x ∈ Mn in the direction of a tangent unit vector X ∈ TxMn if and only if the
following conditions are satisfied:

i)Rαβkl = K
α

βkl at x ∈Mn.

ii) Each one of the matrices
(
hαij
)

of the second fundamental form of Mn has exactly (n− 1) eigenvalues equal to λα1 and
are equal to the corresponding λαn from (3.13).

iii) The vector X is their common eigenvector corresponding to their simple eigenvalue λαn.
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4. Submanifold of a Hessian space form

In the case when the ambient spaceMn+p is a space form with curvature− c
4 , then we may compute the equation

(3.10) and (3.11) as follows by using (3.17) and i)

Ric (X,X) ≤ (1− n)
c

4
+
n2H2

4
(4.1)

Ric (X,X) ≥ (1− n)
c

4
+
n− 1

n

[
2nH2 − S − (n− 2)

√
nH2 (S − nH2)

n− 1

]
(4.2)

Ric (X,X) = (n− 1)

[
2H2 − 1

n
S − (n− 2)

n

√
nH2 (S − nH2)

n− 1
− c

4

]
(4.3)

Applying Theorem 2.1 to an arbitrary submanifold Mn of a space form Mn+p
(
− c

4

)
gives the following

Theorem 4.1. Let Mn be a non-totally geodesic submanifold isometrically immersed in a Hessian space form Mn+p
(
− c

4

)
.

The equality

min
X
Ric (X,X) = (n− 1)

[
2H2 − 1

n
S − (n− 2)

n

√
nH2 (S − nH2)

n− 1
− c

4

]
(4.4)

when X runs over all unit tangent vectors of Mn at a point x ∈Mn, holds for all points x ∈Mn if and only if the normal
bundle of Mn is flat, each one of the matrices

(
hαij
)

has exactly (n− 1) eigenvalues equal to the corresponding λα1 and one
equal to λαn from (3.13) and the vector X0, for which the minimum of Ric (X,X) is achieved, is their common eigenvector
corresponding to their simple eigenvalue λαn .

Now let us consider a Hessian domain (Ω, D, g = Ddϕ) in Rn of constant Hessian sectional curvature c as
indicated [1].

Proposition 4.1. The following Hessian domains are examples of spaces of constant Hessian sectional curvature 0.

(1) Euclidean space
(
Rn, D, g = Dd

(
1/2

n∑
i=1

(
xi
)2))

.

(2)

(
Rn, D, g = Dd

(
n∑
i=1

ex
i

))
.

Proposition 4.2. Let c be positive real number and let Ω be given by

Ω =

{(
x1, ..., xn

)
∈ Rn

∣∣∣∣∣xn > c

2

n−1∑
i=1

(
xi
)2}

,

and let ϕ be a smooth function on Ω defined by

ϕ = −1

c
log

{
xn − 1

2

n−1∑
i=1

(
xi
)2}

.

Then
(
Ω, D, g = D2ϕ

)
is a simply connected Hessian manifold of positive constant Hessian sectional curvature c.

Hence the following theorem can be proved as a consequence of the properties above.
It is really surprising that (Ω, g) is isometric to hyperbolic space form(

H
(
− c

4

)
, g
)

of constant sectional curvature −c/4;

H =
{(
ξ1, ..., ξn−1, ξn

)
∈ Rn |ξn > 0

}
,

g =
1

(ξn)
2

{
n∑
i=1

(
dξi
)2

+
4

c
(dξn)

2

}
.
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Proposition 4.3. Let ϕ be a smooth function on Rn defined by

ϕ = −1

c
log

(
n∑

A=1

e−cx
A

+ 1

)
,

where c is a negative constant. Then
(
Rn, D̃, g = D̃2ϕ

)
is a simply connected Hessian manifold of negative constant Hessian

sectional curvature c. The Riemannian manifold (Rn, g) is isometric a domain of the sphere
n+1∑
i=1

ξ2A = − 4
c defined by ξA > 0

for all A, [1].

Then we re-formulate the (4.1)-(4.4) as follows:

Corollary 4.1. Let the ambient space be one of the following space indicated below

(1) Euclidean space
(
Rn, D, g = Dd

(
1/2

n∑
i=1

(
xi
)2))

.

(2)

(
Rn, D, g = Dd

(
n∑
i=1

ex
i

))
then we get

Ric (X,X) ≤ n2H2

4
.

Corollary 4.2. If (Ω, g) is isometric to hyperbolic space form(
H
(
− c

4

)
, g
)

of constant sectional curvature −c/4;

H =
{(
ξ1, ..., ξn−1, ξn+p

)
∈ Rn+p

∣∣ξn+p > 0
}
,

g =
1

(ξn+p)
2

{
n+p∑
i=1

(
dξi
)2

+
4

c
(dξn)

2

}
.

.Let us take ambient space as Mn+p = (Ω, g) then

Ric (X,X) ≥ (1− n)
c

4
+
n− 1

n

[
2nH2 − S − (n− 2)

√
nH2 (S − nH2)

n− 1

]
and

Ric (X,X) = (n− 1)

[
2H2 − 1

n
S − (n− 2)

n

√
nH2 (S − nH2)

n− 1
− c

4

]
.

Corollary 4.3. Let ϕ be a smooth function on Rn+p defined by

ϕ = −1

c
log

(
n+p∑
A=1

e−cx
A

+ 1

)
,

where c is a negative constant. Then
(
Rn+p, D̃, g = D̃2ϕ

)
is isometric a domain of the sphere

n+1∑
i=1

ξ2A = − 4
c defined by ξA > 0

for all A. If the ambient space is
(
Rn+p, D̃, g = D̃2ϕ

)
we get

Ric (X,X) ≥ (n− 1)
c

4
+
n− 1

n

[
2nH2 − S − (n− 2)

√
nH2 (S − nH2)

n− 1

]

Ric (X,X) = (n− 1)

[
2H2 − 1

n
S − (n− 2)

n

√
nH2 (S − nH2)

n− 1
+
c

4

]
.



Curvature Inequalities between a Hessian Manifold with Constant Curvature... 33

References
[1] Shima, H. The Geometry of Hessian structures, World Scientific Publ., 2007.

[2] Shima, H., Homogeneous Hessian manifolds. Ann. Inst. Fourier, Grenoble,. 30, 3, (1980), 91-128.

[3] Shima, H., A differential geometric characterization of homogeneous sel-dual cones. Tsukuba J. Math Vol. 6, no.1,
(1982), 79-88.

[4] Bektas, M., Yildirim, M., Integral inequalities for submanifolds of Hessian manifolds with constant Hessian
sectional curvature. Iranian Journal of Sci. and Tech.Trans. A. Sci. vol.30, no.A2 (2006), 235-239.

[5] Yildirim Yilmaz,M., Bektas, M., A Survey on curvatures of Hessian manifolds. Chaos, Solitons and Fractals 38,
(2008), 620-630.

[6] Hineva, S., Submanifolds for which a lower bound of the Ricci curvature is achieved. J.Geom. 88, (2008), 53-69.

[7] Cao,X.-F., Pseudo-umbilical submanifolds of constant curvature Riemannian manifolds, Glasgow Mathematical
Journal vol.43,no. 1 (2001), 129-133.

[8] Yildirim Yilmaz, M. , Bektas, M. A Note on Pseudo-Umbilical Submanifolds of Hessian Manifolds with Constant
Hessian Sectional Curvature International Scholarly Research Network ISRN Geometry Vol.2011, (2011), 1-12.

Affiliations

MÜNEVVER YILDIRIM YILMAZ
ADDRESS: Fırat University, Dept. of Mathematics, 23119, Elazıg-Turkey.
E-MAIL: myildirim@firat.edu.tr

MEHMET BEKTAŞ
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