
MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES
5 (1) 46-56 (2017) c©MSAEN

Local T0 Approach Spaces
Mehmet Baran* and Muhammad Qasim

(Communicated by Ishak ALTUN)

Abstract
In this paper, we characterize local T0 distance-approach spaces and gauge-approach spaces and compare
them with usual T0 approach spaces.
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1. Introduction
In 1989, Robert Lowen [10] introduced theory of approach spaces which are generalization of metric spaces and

topological spaces, based upon point-to-set distances rather than point-to-point distances. The most fundamental
motivation was to solve the problem of infinite product of metric spaces. The another motivation for introducing
approach spaces is to unify metric, uniformity, topological concepts and theories of convergence.

There are various ways to generalize the usual T0 axiom of topology to set-based topological category and the
relationship between different forms of generalized T0 axiom in topological category have been studied in [9] and
[14] and [15]. In 1991, Baran [4] introduced local T0 axiom of topology to set-based topological category to define
the notion of closedness in set-based topological category that have been used in the notion of regular, completely
regular and normal objects ([6], [7]). Another use of the local T0 axiom is to define local Hausdorff objects in a
topological category [5].

In this paper, we characterize local T0 distance-approach spaces and gauge- approach spaces and examine how
these are related to each other. Finally, we investigate the relationship between these local T0 approach spaces and
usual T0 approach space defined in [13].

2. Preliminaries
Recall, [1], [2] or [3], that a functor U : E −→ Set is called topological , or that E is a topological category over

Set, (the category of set), if U is concrete, i.e., faithful and amnestic (i.e., if U(f) = id and f is an isomorphism, then
f = id), has small (i.e., set) fibers, and every U -source has an initial lift or, equivalently , each U -sink has a final lift.

Note that a topological functor U : E −→ Set has a left adjoint , is called discrete functor, and U has a right
adjoint is called indiscrete functor. Recall, in [1] or [2], that an object X ∈ E is indiscrete if and only if every map
U(Y )→ U(X) lifts to a map Y → X for each object Y ∈ E and an object X ∈ E is discrete if and only if every map
U(X)→ U(Y ) lifts to a map X → Y for each object Y ∈ E.

Let X be a set and p ∈ X . Let X ∨p X be the wedge at p [4], i.e., two disjoint copies of X identified at p, in
other words, the pushout of p : 1→ X along itself (where 1 is a terminal object in Set). More expressly, if i1 and
i2 : X → X ∨p X denote the inclusion of X as the first and second factor, respectively, then i1p = i2p is a pushout
diagram. A point x in X ∨p X will be denoted by x1(x2) if x is in the first (resp. the second) component of X ∨p X .
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The fold map at p, ∇p : X ∨p X → X is defined as ∇p(xi) = x for i = 1, 2. The principal p-axis map
Ap : X ∨p X → X2 is defined as Ap(x1) = (x, p) and Ap(x2) = (p, x) [4] or [8].
Note that the principal p-axis map (i.e.,Ap) and fold p-axis map (i.e., ∇p) are the unique maps appearing from the
above pushout diagram for which Api1 = (id, p) : X → X2, Api2 = (p, id) : X → X2, and ∇pij = id; j = 1, 2,
respectively.

Definition 2.1. Let (X, τ) be a topological space and p ∈ X .

1. For each point x distinct from p, there exists a neighborhood of p missing x or there exists a neighborhood of x
missing p, then (X, τ) is said to be T0 at p [8].

2. If a topological space (X, τ) is T0 at p for all points p, then (X, τ) is called T0 [8].

Theorem 2.1. A topological space (X, τ) is T0 at p if and only if the initial topology induced by {Ap : X ∨p X → (X2, τ∗)
and∇p : X ∨p X → (X,P (X))} is discrete where τ∗ is the product topology on X2.

Proof. It is given in [8].

In the view of Theorem 2.1, Baran [4] gave the following definition.

Definition 2.2. (cf. [4]) Let U : E → Set be topological, X an object in E with U(X) = B and p be a point in B.
X is T0 at p if and only if the initial lift of the U -source {Ap : B ∨p B → U(X2) = B2 and ∇p : B ∨p B →

UD(B) = B} is discrete, where D is the discrete functor which is a left adjoint to U .

3. Local T0 Approach Spaces

Definition 3.1. (cf. [10], [11] or [13]) Let X be a set and 2X be power set of X . A map δ : X × 2X → [0,∞] is called
distance on X if δ satisfies the followings:

(i) ∀A ⊆ X and ∀x ∈ A, δ(x,A) = 0

(ii) ∀x ∈ X and ∅, the empty set, δ(x, ∅) =∞

(iii) ∀x ∈ X,∀A,B ⊆ X , δ(x,A ∪B) = min(δ(x,A), δ(x,B))

(iv) ∀x ∈ X,∀A ⊆ X,∀ε ∈ [0,∞], δ(x,A) ≤ δ(x,A(ε)) + ε, where A(ε) = {x ∈ X|δ(x,A) ≤ ε}.

The pair (X, δ) is called distance-approach spaces.

Recall [16] that an extended pseudo-quasi metric on a set X is a map d : X ×X → [0,∞] providing for all x ∈ X ,
d(x, x) = 0 and for all x, y, z ∈ X , d(x, y) ≤ d(x, z) + d(z, y).

Definition 3.2. (cf. [10], [11]) Let X be a non-empty set and let pqMet∞(X) be the set of all extended pseudo- quasi
metrics on X , D ⊆ pqMet∞(X) and d ∈ pqMet∞(X), then
(i) D is called ideal if it is closed under the formation of finite suprema, i.e., if d, d′ ∈ D there exists d′′ ∈ D such that
d
∨
d′ ≤ d′′.

(ii) D dominates d if ∀x ∈ X, ε > 0 and ω <∞ there exists a dε,ωx ∈ D such that d(x, .) ∧ ω ≤ dε,ωx (x, .) + ε and if D
dominates d then D is called saturated.

If D is an ideal in pqMet∞(X) and saturated, then D is called gauge. The pair (X,D) is called gauge-approach
spaces.

The transition from gauge-approach space to distance-approach space is provided by

δ(x,A) = sup
d∈D

inf
a∈A

d(x, a)

and conversely, from distance-approach space to gauge-approach is given as [11]

D = {d|∀A ⊂ X : inf
a∈A

d(., a) ≤ δ(., a)}.



48 Mehmet Baran & Muhammad Qasim

Definition 3.3. Let (X, δ) and (X ′, δ′) be distance-approach spaces (resp. (X,D) and (X ′,D′) be gauge-approach
spaces ). For all x ∈ X and A ⊂ X , if δ′(f(x), f(A)) ≤ δ(x,A) (resp. for all d′ ∈ D, d′(f × f) ∈ D), then
f : (X, δ)→ (X ′, δ′) is called a contraction map [12] or [11].

The category App of approach spaces has as objects the pairs (X, δ) distance-approach spaces or (X,D) gauge-
approach spaces, and as morphisms contraction maps. Note that App is a topological category over Set [10] or
[11].
Remark 3.1. (i) A source {fi : (X, δ) → (Xi, δi)} is initial in distance-approach space if and only if for all

x ∈ X,A ⊆ X , δ(x,A) = supP∈R(A) minP∈P supi∈I δi(fi(x), fi(P )) where R(A) is the set of finite partitions
of A with subsets of A [10] or [11].

(ii) A source {fi : (X, δ)→ (Xi, δi)} is initial in gauge-approach space if and only if for any i ∈ I,Hi is a basis for
gauge in Xi, then initial gauge on X is defined by [11]

H = {sup
i∈K

di ◦ (fi × fi) : K ∈ 2(I),∀i ∈ K, di ∈ Hi}.

(iii) The discrete distance-approach structure δ on X is given as for all x ∈ X and A ⊆ X

δ(x,A) =

{
0, x ∈ A
∞, x /∈ A

[10] or [11].

(iv) The discrete gauge-approach structure D on X is D = pqMet∞(X) (all extended pseudo-quasi metric space)
[11].

Example 3.1. Every metric space is an approach space [11].

Let (X, d) be a metric space, A ⊆ X and δd : X × 2X −→ [0,∞] be a function defined as δd(x,A) = infa∈A d(x, a).
It is easy to show that δd is the distance-approach structure on X .

Example 3.2. Every topological space is an approach space [11].

Let (X, τ) be topological space and A ⊆ X . Define the function δτ : X × 2X −→ [0,∞] by

δτ (x,A) =

{
0, x ∈ A
∞, x /∈ A

where A is the closure of A. It can be easily seen that δτ is the distance-approach structure on X .

Theorem 3.1. A distance-approach space (X, δ) is T0 at p if and only if for all x ∈ X with x 6= p, δ(x, {p}) = ∞ or
δ(p, {x}) =∞.

Proof. Let x ∈ X , x 6= p, u = x1 ∈ X ∨p X and A = {p, x2} ⊂ X ∨p X . Let δ be an initial structure on the wedge
X ∨p X induced by Ap : X ∨p X → U(X2, δ2) = X2 and ∇p : X ∨p X → U(X, δdis) = X where δ2 is the product
structure on X2 induced by π1, π2 : X2 → X projection maps and δdis is the discrete structure on X . Let P1 = {A}
and P2 = {{p}, {x2}} be the partitions of A. Note that

min
B∈P1

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}

= sup{δdis(x, {x, p}), δ(x, {p}), δ(p, {p, x})}
= sup{0, δ(x, {p})}
= δ(x, {p}),

and

min
B∈P2

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}

= min{sup{δdis(x, {p}), δ(x, {p}), δ(p, {x})}, sup{δdis(x, {x}), δ(x, {p}), δ(p, {x})}}
= min

B∈P2

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}

= min{sup{δdis(x, {p}), δ(x, {p}), δ(p, {x})}, sup{δdis(x, {x}), δ(x, {p}), δ(p, {x})}}
= min{∞, sup{δ(x, {p}), δ(p, {x})}}
= sup{δ(x, {p}), δ(p, {x})}.
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since δdis(x, {p}) =∞ and x 6= p. Since u /∈ A and (X, δ) is T0 at p,

∞ = δ(u,A) = sup
P∈R(A)

min
B∈P

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)),

δ(π2Ap(u), π2Ap(B))} = sup{δ(x, {p}), sup{δ(x, {p}), δ(p, {x})}}

and consequently, we have either δ(x, {p}) =∞ or δ(p, {x}) =∞.
Conversely let u ∈ X∨pX ,A ⊂ X∨pX and for all x ∈ X with x 6= p, δ(x, {p}) =∞ or δ(p, {x}) =∞. Let δ be an

initial structure on the wedgeX∨pX induced byAp : X∨pX → U(X2, δ2) = X2 and∇p : X∨pX → U(X, δdis) = X
where δ2 is the product structure on X2 and δdis is the discrete structure on X , and π1, π2 : X2 → X are projection
maps.
If A = ∅, then δ(u,A) = δ(u, ∅) = ∞. Suppose A 6= ∅. Let P = {A1, A2, ..., An} be any finite partition of A. If
∇p(u) = p ∈ ∇p(Ak), then u = p1 = p2 ∈ Ak ⊂ A for some k ∈ {1, 2, ..., n}. Note that

δdis(∇p(u),∇p(Ak)) = δdis(p,∇p(Ak))
= 0,

δ(π1Ap(u), π1Ap(Ak)) = δ(p, π1Ap(Ak))

= 0

= δ(π2Ap(u), π2Ap(Ak)),

and

δdis(∇p(u),∇p(Ai)) = δdis(p,∇p(Ai))
= ∞

since p /∈ ∇p(Ai) for i 6= k, i = 1, 2, ..., n,

δ(π1Ap(u), π1Ap(Ai)) = δ(p, π1Ap(Ai))

and
δ(π2Ap(u), π2Ap(Ai)) = δ(p, π2Ap(Ai)).

By Remark 3.1 (i),

δ(u,A) = sup
P∈R(A)

min
B∈P

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}

= sup{min{0, sup{∞, δ(p, π1Ap(Ai)), δ(p, π2Ap(Ai))}}}
= sup{min{0,∞}}
= 0

and consequently, δ(u,A) = 0.
If∇p(u) = p /∈ ∇p(Ak), then u = p1 = p2 /∈ Ak ⊂ A for all k ∈ {1, 2, ..., n}.

δdis(∇p(u),∇p(Ak)) = δdis(p,∇p(Ak))
= ∞

since∇p(u) = p /∈ ∇p(Ak), and consequently δ(u,A) =∞.
Suppose that∇p(u) = x for some x ∈ X with x 6= p. It follows that u = x1 or u = x2. If u /∈ A, then u /∈ Ak for

all k ∈ {1, 2, ..., n} and ∇p(u) = x /∈ ∇p(Ak). It follows that

δdis(∇p(u),∇p(Ak)) = δdis(x,∇p(Ak))
= ∞

and consequently, δ(u,A) =∞.
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Suppose that u = x1, x2 ∈ A, then ∃k,m ∈ {1, 2, ..., n} such that x1 ∈ Ak and x2 ∈ Am. Note that

δdis(∇p(x1),∇p(Ak)) = δdis(x,∇p(Ak))
= 0

since x ∈ ∇p(Ak)),

δ(π1Ap(x1), π1Ap(Ak)) = δ(x, π1Ap(Ak))

= 0

since π1Ap(x1) = x ∈ π1Ap(Ak),

δ(π2Ap(x1), π2Ap(Ak)) = δ(p, π2Ap(Ak))

= 0

since π2Ap(x1) = p ∈ π2Ap(Ak), and

δdis(∇p(x2),∇p(Am)) = δdis(x,∇p(Am))

= 0

since x ∈ ∇p(Am)),

δ(π1Ap(x2), π1Ap(Am)) = δ(p, π1Ap(Am))

= 0

since π1Ap(x2) = p ∈ π1Ap(Am),

δ(π2Ap(x2), π2Ap(Ak)) = δ(x, π2Ap(Am))

= 0

since π2Ap(x2) = x ∈ π2Ap(Am), and

δdis(∇p(u),∇p(Aj)) = δdis(x,∇p(Aj))
= ∞

since x /∈ ∇p(Aj) for j 6= k and j 6= m, and

δ(π1Ap(u), π1Ap(Aj)) = δ(x, π1Ap(Aj)),

δ(π2Ap(u), π2Ap(Aj)) = δ(p, π2Ap(Aj)).

It follows that

δ(u,A) = sup
P∈R(A)

min
B∈P

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}

= sup{min{0, sup{∞, δ(p, δ(x, π1Ap(Aj)), δ(p, π2Ap(Aj))}}}
= sup{min{0,∞}} = 0.

Suppose that u = x1 /∈ A, and x2 ∈ A. Let P1 = {{x2}, A1, A2, ..., An} be any partition of A such that Ak ⊂ A,
k ∈ {1, 2, ..., n}.

δdis(∇p(u),∇p({x2})) = δdis(x, {x})
= 0,

δ(π1Ap(u), π1Ap({x2})) = δ(x, {p})

and
δ(π2Ap(u), π2Ap({x2})) = δ(p, {x}),



Local T0 Approach Spaces 51

and
δdis(∇p(u),∇p(Ak)) = δdis(x,∇p(Ak)) =∞

since x /∈ ∇p(Ak), k ∈ {1, 2, ..., n},

δ(π1Ap(u), π1Ap(Ak)) = δ(x, π1Ap(Ak))

and
δ(π2Ap(u), π2Ap(Ak)) = δ(p, π2Ap(Ak)).

Note that

min
B∈P1

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}

= min{sup{0, δ(x, {p}), δ(p, {x})},

sup{∞, δ(x, π1Ap(B)), δ(p, π2Ap(B))}} = min{sup{δ(x, {p}), δ(p, {x})},∞}
= sup{δ(x, {p}), δ(p, {x})}.

Let P2 = {A1, A2, ..., An} be the partition of A such that Ak ⊂ A, and x2 ∈ Ak for some k ∈ {1, 2, ..., n}.

δdis(∇p(u),∇p(Ak)) = δdis(x,∇p(Ak))
= 0

since x ∈ ∇p(Ak),
δ(π1Ap(u), π1Ap(Ak)) = δ(x, π1Ap(Ak))

and
δ(π2Ap(u), π2Ap(Ak)) = δ(p, π2Ap(Ak)).

For j 6= k, j = 1, 2, ..., n,

δdis(∇p(u),∇p(Aj)) = δdis(x,∇p(Aj))
= ∞

since x /∈ ∇p(Aj),
δ(π1Ap(u), π1Ap(Aj)) = δ(x, π1Ap(Aj))

and
δ(π2Ap(u), π2Ap(Aj)) = δ(p, π2Ap(Aj)).

Note that

min
B∈P2

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}

= min{sup{0, δ(x, π1Ap(Ak)), δ(p, π2Ap(Ak))}, sup{∞, δ(x, π1Ap(Aj)), δ(p, π2Ap(Aj))}}
= min{sup{δ(x, π1Ap(Ak)), δ(p, π2Ap(Ak))},∞}
= sup{δ(x, π1Ap(Ak)), δ(p, π2Ap(Ak))}.

By Remark 3.1 (i)

δ(u,A) = sup
P∈R(A)

min
B∈P

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}

= sup{min
B∈P1

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))},

min
B∈P2

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}}

= sup{sup{δ(x, {p}), δ(p, {x})}, sup{δ(x, π1Ap(Ak)), δ(p, π2Ap(Ak))}}
= ∞

since by assumption δ(x, {p}) =∞ or δ(p, {x}) =∞.
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Suppose u = x2 /∈ A, and x1 ∈ A. Let P1 = {{x1}, A1, A2, ..., An} be the partition of A such that Ak ⊂ A,
k ∈ {1, 2, ..., n}.

δdis(∇p(u),∇p({x1})) = δdis(x, {x})
= 0,

δ(π1Ap(u), π1Ap({x1})) = δ(p, {x})

and
δ(π2Ap(u), π2Ap({x1})) = δ(x, {p}),

and

δdis(∇p(u),∇p(Ak)) = δdis(x,∇p(Ak))
= ∞

since x /∈ ∇p(Ak), k ∈ {1, 2, ..., n},

δ(π1Ap(u), π1Ap(Ak)) = δ(p, π1Ap(Ak))

and
δ(π2Ap(u), π2Ap(Ak)) = δ(x, π2Ap(Ak)).

Note that

min
B∈P1

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}

= min{sup{0, δ(x, {p}), δ(p, {x})}, sup{∞, δ(p, π1Ap(B)), δ(x, π2Ap(B))}}
= min{sup{δ(x, {p}), δ(p, {x})},∞}
= sup{δ(x, {p}), δ(p, {x})}.

Let P2 = {A1, A2, ..., An} be any partition of A such that Ak ⊂ A, and x1 ∈ Ak for some k ∈ {1, 2, ..., n}.

δdis(∇p(u),∇p(Ak)) = δdis(x,∇p(Ak))
= 0

since x ∈ ∇p(Ak),
δ(π1Ap(u), π1Ap(Ak)) = δ(p, π1Ap(Ak))

and
δ(π2Ap(u), π2Ap(Ak)) = δ(x, π2Ap(Ak)).

For j 6= k, j = 1, 2, ..., n,
δdis(∇p(u),∇p(Aj)) = δdis(x,∇p(Aj)) =∞

since x /∈ ∇p(Aj),
δ(π1Ap(u), π1Ap(Aj)) = δ(p, π1Ap(Aj))

and
δ(π2Ap(u), π2Ap(Aj)) = δ(x, π2Ap(Aj)).

Note that

min
B∈P2

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}

= min{sup{0, δ(p, π1Ap(Ak)), δ(x, π2Ap(Ak))}, sup{∞, δ(p, π1Ap(Aj)), δ(x, π2Ap(Aj))}}
= min{sup{δ(p, π1Ap(Ak)), δ(x, π2Ap(Ak))},∞}
= sup{δ(p, π1Ap(Ak)), δ(x, π2Ap(Ak))}.
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By Remark 3.1 (i)

δ(u,A) = sup
P∈R(A)

min
B∈P

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}

= sup{min
B∈P1

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))},

min
B∈P2

sup{δdis(∇p(u),∇p(B)), δ(π1Ap(u), π1Ap(B)), δ(π2Ap(u), π2Ap(B))}}

= sup{sup{δ(x, {p}), δ(p, {x})}, sup{δ(p, π1Ap(Ak)), δ(x, π2Ap(Ak))}}
= ∞

since by assumption δ(x, {p}) =∞ or δ(p, {x}) =∞. Hence, for all u ∈ X ∨p X and A ⊂ X ∨p X , we have

δ(u,A) =

{
0, u ∈ A
∞, u /∈ A

i.e., by Remark 3.1 (iii) δ is the discrete structure and by Definition 2.2 (X, δ) is T0 at p.

Theorem 3.2. A gauge-approach space (X,D) is T0 at p if and only if for all x ∈ X with x 6= p, ∃d ∈ D such that
d(x, p) =∞ or d(p, x) =∞.

Proof. Let (X,D) be T0 at p, x ∈ X and x 6= p. Let D be the initial gauge structure on X ∨p X induced by
Ap : X ∨pX → U(X2,D2) = X2 and∇p : X ∨pX → U(X,Ddis) = X where D2 is product structure on X2 induced
by π1, π2 : X2 → X projection maps and Ddis is discrete structure on X . Assume thatHdis = {ddis} is a basis for
discrete gauge where ddis is the discrete extended pseudo-quasi metric on X . LetH be gauge basis of D and d ∈ H,
andH = {ddis} be initial gauge basis of D where ddis is the discrete extended pseudo-quasi metric on X ∨pX . Note
that

d(π1Ap(x1), π1Ap(x2)) = d(x, p),

d(π2Ap(x1), π2Ap(x2)) = d(p, x),

ddis(∇p(x1),∇p(x2)) = ddis(x, x) = 0.

Since x1 6= x2, ddis is the discrete extended pseudo-quasi metric on X ∨p X and (X,D) is T0 at p, by Remark 3.1 (ii)

∞ = ddis(x1, x2)

= sup{ddis(∇p(x1),∇p(x2)), d(π1Ap(x1), π1Ap(x2)), d(π2Ap(x1), π2Ap(x2))}
= sup{0, d(x, p), d(p, x)}

and consequently, d(x, p) =∞ or d(p, x) =∞.
Conversely, let H be initial gauge basis on X ∨p X induced by Ap : X ∨p X → U(X2,D2) = X2 and ∇p :

X ∨p X → U(X,Ddis) = X where Ddis = pqMet∞ discrete gauge on X and D2 be the product structure on X2

induced by π1, π2 : X2 → X projection maps. Suppose d ∈ H and u, v ∈ X ∨p X .

1. If u = v, then

d(u, v) = sup{ddis(∇p(u),∇p(u)), d(π1Ap(u), π1Ap(u)), d(π2Ap(u), π2Ap(u))}
= 0.

2. If u 6= v, if ∇p(u) 6= ∇p(v) implies ddis(∇p(u),∇p(v)) =∞. By Remark 3.1 (ii)

d(u, v) = sup{ddis(∇p(u),∇p(v)), d(π1Ap(u), π1Ap(v)), d(π2Ap(u), π2Ap(v))}
= sup{∞, d(π1Ap(u), π1Ap(v)), d(π2Ap(u), π2Ap(v))}
= ∞.
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3. Suppose u 6= v and ∇p(u) = ∇p(v). If ∇p(u) = p = ∇p(v) implies u = p1 = p2 = p = v, a contradiction since
u 6= v. If ∇p(u) = x = ∇p(v) for some x ∈ X with x 6= p, then u = x1 and v = x2 or u = x2 and v = x1 since
u 6= v. Let u = x1 and v = x2.

d(π1Ap(u), π1Ap(v)) = d(π1Ap(x1), π1Ap(x2))

= d(x, p), d(π2Ap(u), π2Ap(v))

= d(π2Ap(x1), π2Ap(x2))

= d(p, x)

and

ddis(∇p(x1),∇p(x2)) = ddis(x, x)

= 0,

it follows that

d(u, v) = d(x1, x2)

= sup{ddis(∇p(x1),∇p(x2)), d(π1Ap(x1), π1Ap(x2)), d(π2Ap(x1), π2Ap(x2))}
= sup{0, d(p, x), d(x, p)}.

By the assumption d(x, p) =∞ or d(p, x) =∞, we get d(u, v) =∞.

Let u = x2 and v = x1.

d(π1Ap(u), π1Ap(v)) = d(π1Ap(x2), π1Ap(x1))

= d(p, x),

d(π2Ap(u), π2Ap(v)) = d(π2Ap(x2), π2Ap(x1))

= d(x, p)

and
ddis(∇p(x2),∇p(x1)) = ddis(x, x) = 0.

It follows from Remark 3.1 (ii) that

d(u, v) = d(x2, x1)

= sup{ddis(∇p(x2),∇p(x1)), d(π1Ap(x2), π1Ap(x1)), d(π2Ap(x2), π2Ap(x1))}
= sup{0, d(p, x), d(x, p)}.

By the assumption d(x, p) =∞ or d(p, x) =∞, we get d(u, v) =∞.

Therefore, ∀u, v ∈ X ∨p X , we have

d(u, v) =

{
0, u = v

∞, u 6= v

and by the assumption d is discrete extended pseudo-quasi metric on X ∨p X , i.e., H = {d}, which means
Ddis = pqMet∞. By Definition 2.2 , (X,D) is T0 at p.

Theorem 3.3. Let (X, δ) (or (X,D)) be an approach space and p ∈ X . Then, the followings are equivalent.

1. (X, δ) is T0 at p.

2. For all x ∈ X with x 6= p, δ(x, {p}) =∞ or δ(p, {x}) =∞.

3. For all x ∈ X with x 6= p, ∃d ∈ D such that d(x, p) =∞ or d(p, x) =∞.

Proof. It follows from Theorem 3.1 and Theorem 3.2.
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Let (X, δ) be distance-approach spaces and (X,D) be gauge-approach spaces. Then, topological co-reflection of
a distance δ is given by

clτδ(A) = {x ∈ X : δ(x,A) = 0}

and topological co-reflection of gauge D is defined by (X, τd) where τd stands for topology induced by d extended
pseudo-quasi metric [12]. Recall, [13] that a distance-approach space (X, δ)(resp. gauge-approach space (X,D)) is
T0 (we call it as the usual one) if and only if topological space (X, τδ) (resp. (X, τd)) is T0.

Theorem 3.4. Let (X, δ) (or (X,D)) be an approach space. Then, the followings are equivalent.

1. (X, δ) is T0.

2. For all x, y ∈ X , x 6= y, δ(x, {y}) > 0 or δ(y, {x}) > 0.

3. For all x, y ∈ X , x 6= y, ∃d ∈ D such that d(x, y) > 0 or d(y, x) > 0.

Proof. It is given in [13].

Remark 3.2. By Definition 2.1 (2) and Theorem 3.1, (X, δ) is T0 if and only if for all x, y ∈ X with x 6= y, δ(x, {y}) =∞
or δ(y, {x}) = ∞. From this fact and Theorem 3.4, T0 (in our sense) implies T0 (in the usual sense) but converse
implication is not true. For instance, let X = {x, y} with x 6= y and define δ(x, {y}) = 1 = δ(y, {x}) and
δ(x, {x}) = 0 = δ(y, {y}). Clearly, (X, δ) is T0 (in the usual sense) but it is not T0.

Example 3.3. Let X = {p, x} be a set, A ⊂ X . Define

δ(p,A) =

{
0, A 6= ∅
∞, A = ∅

By Theorem 3.1, (X, δ) is not T0 at p.

4. Conclusions
In this paper, we gave characterization of local T0 distance-approach spaces and local T0 gauge-approach spaces.

Moreover, by Theorem 3.1 and 3.2 and Remark 3.2, T0 approach space implies the T0 approach space (in the usual
sense) but the converse implication is not true, in general.
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