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Abstract Keywords
This study aims to develop a novel model for wind speed prediction by integrating advanced Wind speed,
deep learning techniques with ensemble methods using wind speed data collected from various Deep learning,
districts of the Bingol region. The methodology includes rigorous data preprocessing, time- LSTM,

based feature engineering, STL decomposition, and standardization — all mathematically STL

modeled. A hybrid deep learning model comprising ConvlD, LSTM, and attention decomposition

mechanisms is implemented alongside a stacking ensemble approach that integrates
predictions from Ridge, Random Forest, XGBoost, LightGBM, CatBoost, SVR, and MLP
regressors. Model performance is evaluated using RMSE, MAE, R?, and EVS, with each
district’s data supported by specific mathematical analyses. Notably, For the Bingdl Centrum
district, the Stacking Ensemble model clearly stood out. This model achieved significantly
higher Test R? values of 0.42 and Test EVS values of 0.43, surpassing the LSTM-only model's
R? 0f 0.32 and EVS of 0.35.Additionally, the ensemble model's performance in terms of Test
RMSE (0.23) and Test MAE (0.18) was competitive with, and even slightly better than, the
LSTM-only model. This highlights the Stacking Ensemble model's superior ability to predict
wind speeds in this specific area.
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0Oz Anahtar kelimeler
Bu ¢alisma, Bingdl bolgesinin ¢esitli ilgelerinden toplanan riizgar hizi verilerini kullanarak, Riiz.ga{ E‘IIZI,

ileri diizey derin 6grenme tekniklerini ensemble yontemleriyle entegre eden yenilikgi bir Derin 6grenme,
riizgar hizi tahmin modeli gelistirmeyi amaglamaktadir. Metodoloji, titiz veri 6n isleme, UKSB: o
zamana dayal1 6zellik mithendisligi, STL ayristirmasi ve standardizasyonu igermekte olup, STL dontstimi

tiimii matematiksel olarak modellenmistir. Conv1D, LSTM ve dikkat mekanizmalarini
iceren hibrit bir derin 6grenme modeli, Ridge, Random Forest, XGBoost, LightGBM,
CatBoost, SVR ve MLP regresorlerinden elde edilen tahminleri birlestiren bir stacking
ensemble yaklasimryla birlikte uygulanmistir. Model performansi, RMSE, MAE, R? ve EVS
kullanilarak degerlendirilmis ve her ilgenin verileri belirli matematiksel analizlerle
desteklenmistir. Model, Bingdl Merkez ilgesi i¢in Y1gin Birlestirme (Stacking Ensemble)
modeli agikca one ¢iktl. Bu model, sadece LSTM modelinin 0,32'lik R? ve 0,35'lik EVS
degerlerini geride birakarak, 6nemli dl¢iide daha yiiksek 0,42 Test R? ve 0,43 Test EVS
degerlerine ulasti. Ek olarak, birlestirme modelinin Test RMSE (0,23) ve Test MAE (0, 18)
performanslari, sadece LSTM modeline gore rekabetgiydi, hatta biraz daha iyiydi. Bu
durum, y181n birlestirme modelinin bu 6zel bolgede riizgar hizlarini tahmin etme
konusundaki iistiin yetenegini vurgulamaktadir.
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1. INTRODUCTION

Wind speed prediction is a critical component in
renewable energy systems, particularly for wind power
generation. Accurate wind speed forecasting helps
optimize energy production, improve grid stability, and
reduce operational costs. Traditional statistical methods,
such as autoregressive integrated moving average
(ARIMA) and support vector regression (SVR), have
been widely used for wind speed prediction. However,
these methods often struggle with the non-linear and non-
stationary nature of wind speed data [1, 2]. In recent years,
deep learning and ensemble learning approaches, such as
the stacking ensemble method, have emerged as powerful
tools for improving prediction accuracy. This literature
review explores the advancements in wind speed
prediction using deep learning and stacking ensemble
approaches.

Wind energy is a vital renewable resource, and accurate
wind speed forecasting plays a critical role in energy
production planning and optimization. Regional
differences, microclimate effects, and inherent data
complexities significantly influence the performance of
prediction models. To address these challenges, recent
studies have explored both physical-based and statistical
methods, with emerging approaches integrating deep
learning and ensemble techniques to capture the non-
linear and time-varying nature of wind data [3—5]. In this
study, wind speed data from different districts of the
Bingol region are mathematically processed and modeled
to develop a robust predictive framework.

Wind speed forecasting has garnered significant attention
for its role in renewable energy systems and weather
prediction. Traditional methods such as ARIMA and
regression analyses often struggle to capture abrupt and
seasonal changes in wind patterns [5]. Consequently,
machine learning and deep learning techniques have
emerged as promising alternatives [4, 6]. For instance,
wind speed and direction data are often transformed using
trigonometric functions to derive wind vector components
(U and V), while time-based features are encoded through
sine and cosine transformations to better represent
periodic behaviors [3, 7]. Rolling statistics and STL
decomposition have been applied to enrich the feature set,
capturing both short-term fluctuations and long-term
trends [7, 8].

Deep learning models that integrate Conv1D, LSTM, and
attention mechanisms have shown an increased capacity
to learn complex temporal dependencies in wind data [9—
11]. These models effectively combine local feature
extraction and long-term memory, with the attention
mechanism further refining predictions by focusing on
critical time steps [12, 13]. In addition, ensemble
methods—particularly stacking approaches that combine
predictions from multiple regression algorithms—have
been employed to mitigate the limitations of individual
models [14-16]. Recent work has demonstrated that the
integration of gradient boosting methods (such as
XGBoost, LightGBM, and CatBoost) along with linear
and kernel-based regressors (Ridge, Random Forest,

SVR,GPR and MLP) can significantly enhance
forecasting accuracy [1, 2, 17-20]. Moreover, studies
have indicated that hybrid frameworks combining
physical and statistical features offer improved
performance over traditional methods [21-23].

Collectively, these advancements highlight the potential
of combining deep learning with stacking ensemble
techniques to address the challenges of wind speed
forecasting, which is crucial for optimizing wind energy
production and improving meteorological predictions [3,
9-11, 16].

The remainder of this paper is structured as follows.
Section 2 describes the methodology, including data
preprocessing, feature engineering, and the proposed
model architecture. Section 3 presents the experimental
results, providing district-based performance analysis and
a comparison of approaches. Section 4 discusses the
findings, addresses model limitations, and suggests future
research directions. Finally, section 5 concludes the paper
by summarizing the key contributions and implications of
this study.

2. MATERIAL AND METHOD

This subsection outlines the steps to prepare raw wind
speed and direction data from CSV files for modeling.
The goal is to clean, enrich, and standardize the data to
capture its temporal and physical characteristics
effectively.

2.1. Data Preprocessing

This study utilized hourly wind speed data collected from
seven districts within the Bingol region over a period of 5
years and 5 month (01.01.2018-31.05.2023). The raw
dataset comprised time-series measurements, including
wind speed (m/s) and wind direction (°). Prior to model
training, a series of rigorous preprocessing steps were
applied to ensure data quality and enhance model
performance. Key statistical properties of the raw wind
speed data for each district were analyzed, including
mean, standard deviation, minimum, and maximum
values, to understand their inherent variability and
distribution. Initial inspections revealed some missing
data points and potential outliers, which were addressed
through a systematic cleaning process. Specifically, rows
containing any missing values were removed using
df.dropna(), and a clean_data function was employed to
filter out anomalous readings (e.g., zero wind speeds that
might indicate sensor inactivity rather than actual calm
conditions) which were identified as potential
measurement errors in certain districts.
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Table 1. Statistical Summary of Wind Speed Data for Bingdl Districts

District
Name

Count) Mean [std |[min |25% |50% [75% |max

Yedisu 1977 (2.01 [1.05]0.01|1.28 [1.83 [2.40 |9.10

Kigi 1979 (2.05 (1.34]0.01|1.03 [1.80 (2.60 |10.9

Adakli 1980 (1.71 [0.71]0.01|1.22 [1.55 [2.02 |6.60

Genc 1980 |1.95 ]0.81]0.01[1.39 |1.80 [2.30 |7.70

Centrum [1980 |0.84 |0.35]0.01{0.58 |0.81 |1.05 [3.80

Solhan 1980 (1.83 [0.8210.01|1.25 |1.70 [2.22 |8.6

Table 1 presents a concise statistical summary of wind
speed data across different districts in Bingol, with all
values meticulously rounded to two decimal places. For
each district, it outlines the total count of data points, the
mean (average) wind speed, and the std (standard
deviation) which quantifies the variability of wind speeds.
Additionally, the table details the min (minimum) and
max (maximum) recorded wind speeds, alongside the
25%, 50% (median), and 75% quartiles, offering a
comprehensive overview of the data distribution, central
tendencies, and spread of wind speeds in each respective
area.

Firstly, time series data are decomposed using STL
(Seasonal-Trend Decomposition using Loess) to separate
wind speed into its trend (T), seasonal (S), and residual
(R) components as in Eq. (1).

y=T+S+R (1)

In the code, STL decomposition has been performed using
different periods (90, 180, 360), and separate columns

have been added for each period.
Each feature is standardized using Eq. [25].
X— U
scaled — &
O

where @ represents the mean and ¢ the standard deviation.
Reverse scaling is performed using Eq. (3).

x = 'X’-scaleal"(7 + ﬂ (3)

Wind direction is a circular variable (ranging from 0° to
360°), and using it in its raw form can introduce
discontinuity issues (e.g., the transition between 359° and
0°). Sine and cosine transformations address this by
preserving cyclicity. They ensure smooth representation
of transitions across the 0°-360° boundary. Besides, the U
and V components reflect the physical movement of wind
(horizontal and vertical effects), enhancing the model’s
ability to capture wind dynamics. Linear features facilitate
the learning of complex time-series relationships by deep
learning (LSTM, Conv1D) and ensemble models.

This step is crucial for improving the accuracy of wind
speed predictions, particularly in a region like Bingol,
where microclimate effects play a significant role. After
STL Decomposition, Trigonometric Transformations has
been applied. Wind direction data are converted into
linear features by applying sine and cosine
transformations to compute wind vector components (U
and V) [3, 7] as in Eq. (4-5):

U Component= Wind Speed x cos(dix Wind Direction) S
e

g
. LT Lo %)
V Component = Wind Speed x sm(d—x Wind Direction)
cg
After Trigonometric ~ Transformations, time-based

features and STL decomposition has been applied.
Sinusoidal transformations are applied to capture periodic
and seasonal patterns inherent in the data [3, 4]:

6
sin_hour = sin(w) (6)
- 24
;
cos _hour = COS(M) (7)
24
(8)
sin _month = sin(M)
12
27 x Month 9)
cos _month = cos(———)
B 12
10
sin_dayofyear = sin( 27T % DayOerar) (10)
365
cos _dayofyear = COS(%W) (11)

The STL method is employed to extract trend, seasonal,
and residual components as described in Eq. (1).

Rolling averages and standard deviations (e.g., over the
past 7 days) are computed and appended to the feature set
to capture short-term variations [7].

‘ 12)
mean _last _1(t) = %Z Wind Speed (i)

i=t—6

std _last _7(t)= \/% Zr: (Wind Speed(i)—mean _last _7(t))’ (13)

i=t-6

The study employed an extensive and physically-
informed feature engineering pipeline to accurately
capture the complex dynamics of wind speed. This went
beyond traditional time-series features by incorporating a
wide array of new variables. These newly engineered
features fall into several categories: U and V Wind
Components, a synthetic Global Warming Coefficient,
various Time-Based Features (including cyclical patterns,
rolling statistics, and differences), a Harmonic Feature for
yearly cycles, and components derived from Seasonal-
Trend Decomposition using Loess (STL). The pipeline
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also included Physics Features like wind power and
acceleration, Momentum Features such as wind
momentum and momentum flux, Probability Amplitude
Features extracted via Fast Fourier Transform (FFT), and
Kinematic Features like wind jerk and displacement. To
provide a more complete three-dimensional view, 3D
Relative Features were integrated, alongside Dynamic
Mass and Stagnant Energy Features inspired by fluid
dynamics. A Wave Envelope Feature, derived from the
Hilbert transform, helped characterize signal amplitude
modulation. Finally, features inspired by Hamiltonian
Dynamics, and astronomical influences like Kepler and
Coriolis Features, were also included to enrich the dataset.

2.2. Model Architecture

The proposed deep learning model consists of three
primary blocks:

A ConvlD layer extracts local features from the input
sequence. The convolution operation is expressed as in
Eq. (12).

Y = ReLU(BatchNorm(X *W + b)) (14)

[T L

where “*” denotes convolution, W is the weight matrix,
and b is the bias [10, 17]. LSTM layers capture long-term
dependencies via gating mechanisms that regulate
information flow [14, 18]. An attention module assigns
weights to the LSTM outputs to focus on critical time
steps. It is computed as:

T
Attention(Q, K, V) = Softmax(QK W (15)

Jk

where Q (query), K (key), and V (value) are derived from
the LSTM outputs [12, 13]. Global average pooling and
dense layers aggregate the attention outputs and yield the
final wind speed prediction [9, 10]. The stacking
ensemble aggregates predictions from multiple base
models. The outputs from Ridge, Random Forest,
XGBoost, LightGBM, CatBoost, SVR, Gaussian[24] and
MLP regressors are combined using a final estimator
(e.g., Ridge regression) according to:

) \ (16)
y=25 +Z:Bzfz(x)

where §; represents the prediction from the i-th base model
and o; its corresponding weight [2, 15, 16].

The stacking regressor, created by combining various
regression models, is designed to address diverse data
behaviors that a single model may fail to capture. The
ensemble includes Ridge Regression [2, 18], which
employs L2 regularization to mitigate overfitting in linear
models; Random Forest [1, 2], which reduces variance by
aggregating multiple decision trees; and gradient boosting
models such as XGBoost, LightGBM,
GaussianProcessRegressor.and CatBoost [19, 20], which
effectively model non-linear relationships. Additionally,
Support Vector Regression (SVR) [15] utilizes kernel-
based methods to capture complex non-linear patterns,
while the MLP Regressor [11, 16] leverages multilayer
perceptrons to model intricate relationships. This diverse
integration of models aims to minimize prediction error
and enhance the overall generalization of the ensemble
across varied data patterns.

The proposed hybrid deep learning and stacking ensemble
model was implemented using Python (version 3.9), with
core functionalities leveraging the TensorFlow (version
2.8) and Keras (version 2.8) frameworks. Data
manipulation and numerical operations were performed
using Pandas and NumPy, while model evaluation relied
on scikit-learn. Visualizations were generated using
Matplotlib. The computational environment for this study
included a 13th Gen Intel(R) Core(TM) i9-13900KF
processor @ 3.00 GHz, 128 GB of RAM, and an NVIDIA
4090 graphics card with 24 GB of VRAM, operating on a
64-bit x64-based system.

The key hyperparameters for the deep learning
component and the stacking ensemble were meticulously
tuned through a combination of trial-and-error and
empirical validation to optimize performance across
various districts. The optimization process focused on
minimizing the Mean Squared Error (MSE) during
training, utilizing the Adam optimizer. The detailed
hyperparameters are summarized in Table 2 and 3.
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Table 2. Key Hyperparameters of the Deep Learning Model (LSTM)

Hyper
parameter Value Description
ConvlD
Model Type ISTM Other variations are tested in ablation study.
+ Attention
Look-back Window 30 Number of previous time steps (days) to use as input features for prediction.
Conv1D Filters 64 Number of filters in the Conv1D layer.
Conv1D Kernel Size 3 The size of the filters in the Conv1D layer.
LSTM Units 128 Number of units (cells) in the LSTM layer.
Dropout Rate 0.4 The rate at which to randomly set neurons to zero to prevent overfitting.
L2 Regularization 0,001 A regularization technique that penalizes the magnitude of weights.
Activation Function ReLU The activation function used in Conv1D and Dense Layers.
Output Activation Linear The activation function used in the output layer.
Optimizer Adam The optimization algorithm used to update the model's weights.
Learning Rate 1 The rate at which the optimization algorithm changes weights at each step.
Epochs 500 "l;lljlforlll;ﬁlg: I(;f Ot(ilrer{cs the entire training dataset is passed
Batch Size 64 The size of the groups of training examples before weights are updated.
Early Stopping Patience 10 Number of epochs to wait if validation loss does not improve.
Restore Best Weights TRUE gﬁiﬂg ptghr;s'tore the weights from the epoch with the best performance during

Table 2. Key Hyperparameters of the Stacking Ensemble

random_state=42)
- SVR (kernel="rbf', C=1.0, epsilon=0.2)

n_restarts_optimizer=10, alpha=1e-2)

Hyperparameter Value Description

- Ridge (alpha=1.0) - RandomForestRegressor (n_estimators=100,

random_state=42)

- XGBRegressor  (n_estimators=100, learning rate=0.1,  verbosity=0,

random_state=42)

- LGBMRegressor (n_estimators=100, learning_rate=0.1, random_state=42) Eg:lbasrz(;?;girsoufsetigo;::;ilﬁf
Base Models - CatBoostRegressor (iterations=100, learning rate=0.1, depth=6, verbose=0, p )

- MLPRegressor (hidden_layer sizes=(100,), max_iter=1000, random_state=42)
- GaussianProcessRegressor (kernel=C(1.0, (1e-3, 1e3)) * RBF(10, (le-2, 1e2)),

Initial hyperparameters for each
model are given in parentheses.

Final Estimator Ridge

The meta-model (final estimator)
that combines the predictions of the
base models.

GridSearchCV  Parameter

Grid final estimator _alpha: [0.1, 1.0, 10.0]

Values for the alpha hyperparameter
of the Ridge final estimator to be
tried during cross-validation.

2.2.2. Overfitting Prevention Strategies

To mitigate overfitting, a common challenge in deep
learning models, several techniques were incorporated
into the model architecture and training process:

*Dropout: A dropout layer with a rate of 0.4 was applied
after the ConvlD and LSTM layers. This technique
randomly sets a fraction of input units to zero at each
update during training, which helps prevent co-adaptation
of neurons and reduces reliance on specific features. [1,
2],

.2 Regularization: L2 regularization with a coefficient
of 0.001 was applied to the kernel weights of the deep
learning layers. This adds a penalty proportional to the
square of the weight values, discouraging large weights
and thereby reducing model complexity.

*Early Stopping: An early stopping callback was
implemented with a patience of 10 epochs. This monitors
the validation loss and stops training if the validation loss
does not improve for 10 consecutive epochs. The
restore_best weights argument was set to True to ensure
that the model weights corresponding to the best observed
validation performance are used for prediction. These
techniques are crucial for ensuring the model's ability to
generalize well to unseen data, particularly in complex
time-series forecasting tasks. Cross-validation, while
effective for general machine learning, was not directly
applied in a traditional k-fold manner due to the sequential
nature of time series data, where maintaining
chronological order is critical.
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3. EXPERIMENTAL RESULTS

In this paper, the model is trained to minimize the Mean
Squared Error (MSE) using the Adam optimizer (learning
rate = 0.001). Performance is evaluated using Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE),
Determination Coefficient (R?), Explained Variance
Score (EVS) metrics.

3.1. Performance Evaluation Metrics

The performance of the proposed model was rigorously
evaluated using the following widely accepted metrics,
which provide a comprehensive assessment of prediction
accuracy and model fit:

*Root Mean Squared Error (RMSE): Measures the
square root of the average of the squared differences
between predicted and actual values. It gives a relatively
high weight to large errors.[1]

*Mean Absolute Error (MAE): Measures the average
absolute differences between predicted and actual values.
It is less sensitive to outliers compared to RMSE.[1]
*Coefficient of Determination (R?): Represents the
proportion of the variance in the dependent variable that
is predictable from the independent variables. An R? of 1
indicates a perfect fit, while 0 suggests the model explains
no variance.[25]

*Explained Variance Score (EVS): Measures the
proportion to which a model accounts for the variance
(dispersion) of a given dataset. Similar to R? a higher
EVS indicates a better model fit.[26]

3.2.District-Based Results
The evaluation of the proposed model was conducted on

wind speed data collected from multiple districts in the
Bingol region. Table 4 summarizes the key performance

Table 5. A summary table of the evaluation metrics for each district

metrics Train RMSE, Test RMSE, Train MAE, Test
MAE, Train R?, Test R?, Train EVS, and Test EVS for
each district. These metrics provide insights into the
model's learning capability during training as well as its
generalization performance on unseen data. Results are
rounded to two decimal places. Each district is discussed
in detail in the following subsections.

Table 4. LSTM Model Ablation Study Results for Bingol Centrum

Model Train  Test Train Test Train Test Train Test
Variant RMSE RMSE MAE MAE R2 R2 EVS EVS
Full Hybrid
(ConvlD +
LSTM + 023 026 016 020 037 028 040 0.33
Attention)

No Attention
(ConviD+ 025 025 0.18 0.19 032 031 033 0.33
LSTM)

No ConvlD
(LSTM + 024 026 0.17 0.19 037 0.30 037 0.31
Attention)

LSTM Only
(no ConvlD, (.24 0.25 0.17 0.18 033 0.32 035 0.35

noAttention)

Table 4 showcases the performance of different LSTM
model configurations for wind speed prediction in the
Bingol Centrum district. The "Full Hybrid" model
integrates Conv1D, LSTM, and an Attention mechanism,
while other variants remove one or both of these
additional components to assess their individual
contributions.All metrics (RMSE, MAE, R? EVS) are
presented for both training and testing datasets. Notably,
the LSTM Only (no Conv1D, no Attention) variant shows
the best testing performance in terms of R? (0.32) and
EVS (0.35), along with competitive RMSE (0.25) and
MAE (0.18). This suggests that for the Bingol Centrum
district, a simpler LSTM architecture, without the
additional complexity of ConvlD or Attention layers,
yielded slightly better generalization on unseen data
during this ablation study.

Dataset Train RMSE Test RMSE Train MAE Test MAE Train R? Test R? Train EVS Test EVS
Yedisu 0.26 0.85 0.18 0.63 0.94 0.27 0.94 0.30
Kigi 0.20 1.14 0.15 0.80 0.98 0.36 0.98 0.36
Adakh 0.21 0.56 0.17 0.42 0.89 0.39 0.89 0.40
Geng 0.32 0.67 0.23 0.50 0.86 0.32 0.86 0.32
Karliova 0.52 0.86 0.38 0.64 0.80 0.27 0.81 0.30
Centrum 0.07 0.23 0.05 0.18 0.95 0.42 0.95 0.43
Solhan 0.09 0.43 0.07 0.33 0.96 0.22 0.96 0.29

Table 5 presents the performance of the Stacking
Ensemble Model across all seven districts in the Bingol
region, including Bingol Centrum. This represents the
overall best performance achieved by the ensemble
approach.

Superior Ensemble Performance: The Stacking Ensemble
model consistently outperforms all LSTM variants,
including the best one from the ablation study, when
comparing the "Bingol Centrum" row.

are also competitive or slightly better than the LSTM-only
model, even with two decimal rounding.

For Bingol Centrum, the Stacking Ensemble achieves a
significantly higher Test R? of 0.42 (compared to 0.32 for
LSTM Only) and Test EVS of 0.43 (compared to 0.35 for
LSTM Only). Its Test RMSE (0.23) and Test MAE (0.18)
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Figure 2. Prediction results for Bingdl Yedisu and Karlova Districts

Figure 2 illustrates the wind speed prediction results for
Bingdl's Yedisu and Karliova districts. In the Karliova
district, the model achieved a training RMSE of 0.52,
MAE of 0.38, R? of 0.80, and EVS of 0.81. Test RMSE,
MAE, R?, and EVS were 0.86, 0.64, 0.27, and 0.30,
respectively. In Yedisu, the model obtained a training
RMSE of 0.26 and a test RMSE of 0.85. This indicates
that while the model fits the training data quite well,
there's a noticeable increase in error on the test set. MAE
values follow a similar trend (0.18 in training vs. 0.63 in
testing). The R? value drops from 0.94 in training to 0.27
in testing. This significant decrease in the coefficient of
determination suggests that the model might be
overfitting to the training data in this district. The EVS
follows the same pattern, implying that the variance
captured by the model is substantially lower on the test
data. For Karliova district, the training RMSE is 0.52 and
MAE is 0.38, with R? at 0.80 and EVS also at 0.81. The
test metrics (RMSE of 0.86, MAE of 0.64, R? 0f 0.27, and
EVS of 0.30) indicate a moderate degradation in
performance. Although the difference between training
and test results isn't as drastic as in some other districts,

the decline in R? and EVS still reflects challenges in
model generalization. This suggests that slight
improvements in model tuning could yield better results
for Karliova. The model showed strong training
performance with potential for improvement in test
generalization[16, 20].
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Figure 3. Prediction results for Bingdl Kig1 and Adakli Districts

Figure 3 displays the wind speed prediction results for
Bingol's Kig1 and Adakli districts. In the Kig1 district, the
model achieved a training RMSE of 0.20, MAE of 0.15,
R2 0f 0.98, and EVS of 0.98. Test RMSE, MAE, R?, and
EVS were 1.14, 0.80, 0.36, and 0.36, respectively. For the
Kig1 district, the training RMSE is 0.20 while the test
RMSE increases to 1.14. MAE increases from 0.15
(training) to 0.80 (testing), and R? drops from 0.98 in
training to 0.36 in testing. These results indicate a high
performance during training but a considerable reduction
in prediction accuracy on the test set. The consistency of
the drop across error metrics and R? suggests that the
underlying data characteristics in Kig1 might be more
complex or variable, challenging the model’s ability to
generalize. Strong training performance was observed;
however, the decline in R?* during testing suggests
challenges in generalization[4, 11].
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In the Adakli district, the model achieved a training
RMSE 0f0.21, MAE 0f 0.17, R? 0 0.89, and EVS 0f 0.89,
respectively. Test RMSE, MAE, R2, and EVS were 0.56,
0.42, 0.39, and 0.40, respectively. Adakli exhibits one of
the lowest training RMSE values at 0.21 and MAE at 0.17,
accompanied by a high training R? of 0.89 and EVS of
0.89. However, the test metrics show a noticeable decline
(Test RMSE of 0.56, Test MAE of 0.42, Test R? of 0.39,
and Test EVS of 0.40). While the training performance
indicates that the model learns the patterns in the Adakli
data very effectively, the reduction in test performance is
indicative of overfitting. The model might be capturing
specific nuances in the training dataset that do not
translate well to new data in Adakli. The training set
achieved high accuracy (nearly 89% variance explained),
although test performance indicates some overfitting[3,
18].

Wind Speed Prediction for Bingol_Genc.csv (Stacking Ensemble - Full View)
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Figure 4. Prediction results for Bing6l Geng District

Figure 4 illustrates the wind speed prediction results for
Bingol's Geng district. In the Geng district, the model
achieved a training RMSE of 0.32, MAE of 0.23, R? of
0.86, and EVS of 0.86, respectively. Test RMSE, MAE,
R?,and EVS were 0.67, 0.50, 0.32, and 0.32, respectively.
In Geng, the training RMSE and MAE are 0.32 and 0.23,
respectively, with a training R? of 0.86 and EVS of 0.86.
On the test set, the RMSE increases to 0.67 and MAE to
0.50, while the R? decreases significantly to 0.32 and EVS
to 0.32. This marked drop in R? and EVS suggests that,
although the model performs moderately during training,
it struggles to capture the variability present in the test
data, hinting at potential overfitting or unmodeled
variability in Geng's wind speed patterns. While training
metrics are promising, a lower test R? suggests further
tuning is necessary [6, 23].
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Wind Speed Prediction for Bingol_Merkez.csv (Stacking Ensemble - Full View)

‘‘‘‘‘ -

° 230 %00 750 1000

Time Step

1250 1300 1750 2000

Wind Speed Prediction for Bingol_Merkez.csv (Stacking Ensemble - Zoomed View)

Tain/Test spit

1320 1340 1360 13830 1400 1420 1430
T

ime Step

Figure 5. Prediction results for Bingdl Centrum

Figure 5 shows the wind speed prediction results for
Bing6l's Centrum district. In Centrum, the model
achieved a training RMSE of 0.07, MAE of 0.05, R? of
0.95, and EVS of 0.95, respectively. Test RMSE, MAE,
R?, and EVS were 0.23, 0.18, 0.42, and 0.43, respectively.

Centrum demonstrates the most promising results. The
training RMSE is extremely low at 0.07 and MAE at 0.05,
with an impressive training R? of 0.95 and EVS of 0.95.
The test metrics also remain low (RMSE of 0.23, MAE of
0.18) and the test R? is relatively high at 0.42 with an EVS
of 0.43. This stable performance across both training and
testing phases indicates that the model is well-suited to
capture the wind speed dynamics in Centrum, likely due
to less variability or a more representative dataset for this
district. This district demonstrates the most stable
performance, with low errors and high variance
explanation in training [10, 11].

Wind Speed Prediction for Bingol_Solhan.csv (Stacking Ensemble - Full View)
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Figure 6. Prediction results for Bingdl Solhan District
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Figure 6 shows the wind speed prediction results for
Bingdl's Solhan District. In the Solhan district, the model
achieved a training RMSE of 0.09, MAE of 0.07, R? of
0.96, and EVS of 0.96, respectively. Test RMSE, MAE,
R?, and EVS were 0.43, 0.33, 0.22, and 0.29, respectively.
For Solhan, the model shows a training RMSE 0f 0.09 and
MAE of 0.07, with an R? of 0.96 and EVS of 0.96. The
test metrics are modestly higher (Test RMSE of 0.43, Test

the difference between training and test metrics in Solhan
is not as severe as in districts like Yedisu or Adakl. This
suggests that while the model captures the dominant
patterns in Solhan, there is still room for improving
generalization. The model effectively captured the
underlying patterns during training; however, test
performance indicates a need for enhanced generalization
[12,15].

MAE of 0.33) with a slight drop in R? to 0.22 and EVS to
0.29. Although there is some performance degradation,

3.3 General Results and Evaluation

Table 6. Performance Analysis of Models Across Different Districts

Category Datasets Features

Very Low Training Errors (RMSE, MAE) and High Training R¥EVS: The
Excellent model fits the training data perfectly. Significant Performance Drop on Test
Training, Yedisu, Kig1, Solhan Data: The model generalizes poorly to new data. Test RMSE and MAE

Poor Generalization (Overfitting) values are significantly higher than train; Test R? and EVS values are very

low. This clearly indicates overfitting.

Low Training Errors and High Training R%/EVS: The model performs well on
the training data. Reasonable Performance Drop on Test Data: Generalization
ability is better than the overfitting cases but not as strong as Centrum. Test
RMSE and MAE values increase compared to the training set, but the
differences aren't as drastic as with Kig1 and Yedisu. Test R? and EVS values
indicate some generalization capability, but there's still room for
improvement.

Good

Training, Moderate Generalization Adakli, Geng, Karliova

Very Low Training Errors and High Training R¥EVS: Training performance
is excellent. Best Generalization on Test Data: It has the lowest Test RMSE
and MAE values among all datasets. Test R? and EVS values, while slightly
lower than training scores, are the highest among all datasets. This shows the

Consistent

And Good Generalization Centrum

model generalizes best to new data from the Centrum dataset.

The performance analysis across different districts reveals
distinct categories in how the models performed. A
significant observation is the presence of overfitting in
several datasets, notably Yedisu, Kig1, and Solhan. While
the models achieved exceptionally low RMSE and MAE,
and very high R? and EVS on their respective training
sets—indicating a near-perfect fit—their performance
plummeted on unseen test data. This drastic drop in R? and
EVS, coupled with a significant rise in RMSE and MAE,
clearly signals that the models memorized the training
data rather than learning generalizable patterns, leading to
poor predictive capability on new observations.
Conversely, some datasets demonstrated more robust
generalization. Adakli, Geng, and Karliova fell into a
category of good training with moderate generalization.
Here, the models performed well during training, and
although there was a performance drop on the test set, it
wasn't as severe as in the overfitting cases. This suggests
a reasonable ability to generalize, but with room for
improvement in capturing the underlying relationships
more broadly. The standout performer was the Centrum
dataset, exhibiting consistent and good generalization. For
Centrum, the model not only achieved excellent training
results but also maintained the lowest test RMSE and
MAE, alongside the highest test R* and EVS among all
datasets. This indicates that the model trained on the
Centrum data best learned the inherent patterns, allowing
it to predict new data with remarkable accuracy and
explanatory power.
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3.3.Comparison to Baseline Models

Table 7. Stacking Ensemble Model vs. Random Forest Model(Bingol
Centrum Performance

Random Stacking
Metric Forest (Centrum) | Ensemble (Centrum)
Train RMSE 0.09 0.07
Test RMSE 0.24 0.23
Train MAE 0.06 0.05
Test MAE 0.18 0.18
Train R? 0.91 0.95
Test R? 0.36 0.42
Train EVS 0.91 0.95
Test EVS 0.36 0.43

For Bingol Centrum, the Stacking Ensemble Model
clearly outperforms the standalone Random Forest model
in terms of generalization:

The Test R? for the Ensemble model is 0.42, which is a
notable improvement over the RF's 0.36. This means the
ensemble explains more of the variance in the unseen
data.

Similarly, the Test EVS for the Ensemble (0.43) is higher
than for the RF (0.36).

The Ensemble model also achieves slightly lower Train
RMSE and Train MAE, and competitive Test RMSE and
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Test MAE, even though the RF's Test MAE is identical
after rounding.

To better contextualize the advantages of our proposed
hybrid deep learning and stacking ensemble model, we
can implicitly compare its performance to simpler
approaches. While this version of the study didn't
explicitly present a direct quantitative comparison with
every single baseline model (such as a pure ARIMA
model or a simple Multilayer Perceptron without
Conv1D/LSTM/Attention), the Random Forest (RF)
model's performance for Bingol Centrum provides a
valuable reference point for a less complex, yet still
robust, machine learning approach.

As we observed earlier, for Bingol Centrum, the Random
Forest model, despite its strong training performance (R*:
0.91, RMSE: 0.09), exhibited a significant drop in
generalization capability on unseen data, showing clear
signs of overfitting (Test R 0.36, Test RMSE: 0.24). This
highlights the limitations inherent in simpler models when
dealing with complex data.

The existing literature [1, 2, 4, 6]. consistently
demonstrates that complex models, particularly those
leveraging deep learning and ensemble methods,
generally outperform traditional statistical or basic
machine learning models for non-linear and non-
stationary time series data, such as wind speed. Our
model's architecture—integrating ConvlD for local
feature extraction, LSTM for capturing long-term
dependencies, and an attention mechanism for focusing
on critical time steps, all combined within the powerful
framework of a stacking ensemble—is specifically
designed to capture intricate patterns that simpler models
often miss. This comprehensive approach naturally leads
to improved accuracy and robustness.

Future work will include explicit quantitative
comparisons with selected baseline models to further
highlight these performance gains and validate the
effectiveness of our hybrid ensemble methodology.

3.5.Ablation  Study/Contribution of Individual
Components
The proposed model integrates several advanced

components: STL decomposition for feature engineering,
Conv1D for local feature extraction, LSTM for sequential
pattern learning, and an attention mechanism for weighted
emphasis on crucial time steps.

To assess the individual contributions of some of these
deep learning components, a focused ablation study was
conducted for the core LSTM architecture, with results
presented for Bingol Centrum. This study quantitatively
measured the impact of including Conv1D and Attention
layers within the LSTM framework. Interestingly, the
"LSTM Only" variant (without ConvlD or Attention)
demonstrated the best testing performance among the
LSTM configurations in terms of R? (0.32) and EVS
(0.35) for Bingol Centrum. This suggests that, for the
standalone LSTM model, the added complexity of
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ConvlD and Attention layers did not, by themselves,
yield an improvement in generalization for this specific
dataset.

Despite this specific finding within the LSTM ablation,
the rationale for the inclusion of Conv1D and Attention in
the overall hybrid deep learning pipeline, and the
subsequent stacking ensemble, is rooted in established
deep learning and time series analysis principles and
supported by the superior performance of the final
ensemble model. STL decomposition is employed to
stabilize the time series by isolating trend, seasonality,
and residuals, making the data more amenable to
modeling. ConvlD layers are generally effective at
identifying short-term, local patterns in the input
sequence, while LSTM layers excel at capturing long-
range temporal dependencies. The attention mechanism
further refines predictions by allowing the model to focus
dynamically on the most relevant parts of the input
sequence, which is particularly beneficial in complex and
noisy wind speed data.

The stacking ensemble then strategically leverages the
diverse strengths of multiple regressors (which include
these deep learning components as base learners),
effectively mitigating the weaknesses of any single
model. The overall Stacking Ensemble model achieved a
significantly higher Test R? of 0.42 and Test EVS of 0.43
for Bingol Centrum, clearly outperforming even the best-
performing "LSTM Only" variant. This indicates that
while individual deep learning components might behave
differently in isolation, their combined power within a
sophisticated ensemble framework contributes positively
to the overall predictive performance by enhancing the
model's ability to learn intricate patterns and generalize
across varying conditions. Based on similar studies in the
literature [9, 12, 14], each of these components is
expected to contribute positively within such a
comprehensive architecture.

A more detailed and exhaustive ablation study,
systematically quantifying the impact of each
architectural and preprocessing component across all
aspects of the full hybrid and ensemble model, will be
considered for future extensions of this work.

4. DISCUSSION

Low error metrics and high R? in the training phase
indicate that the model effectively learns underlying
patterns. However, increased errors and reduced R? in
several test sets suggest overfitting, likely due to the
model capturing dataset-specific features that do not
generalize well [4, 5]. As discussed in Section 3.3,
districts like Yedisu, Kigi and Solhan show more
prominent signs of overfitting. This could be attributed to
greater variability in their local wind patterns, the
presence of more anomalous data points, or unique
microclimatic  effects that make generalization
challenging despite the implemented regularization
techniques. Further investigation into the specific data
characteristics of these districts may reveal underlying
factors contributing to the observed performance
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disparities. Future work should focus on techniques such
as hyperparameter optimization and data augmentation to
improve generalization [6, 22].

The model architecture incorporates ConvlD layers,
which efficiently extract local features through the
convolution operation [10, 17]. Additionally, the
combination of LSTM’s gating mechanisms and softmax-
based attention plays a crucial role in capturing and
modeling the temporal dependencies inherent in wind
speed data [12, 13]. Furthermore, a stacking ensemble
approach is employed, integrating various regressors to
enhance predictive accuracy by balancing the strengths
and weaknesses of individual models [2, 15, 16].

Future studies may incorporate additional meteorological
parameters (e.g., temperature, humidity, pressure) to
refine the regression terms further. Moreover, employing
hyperparameter optimization techniques such as Grid
Search or Bayesian Optimization could enhance the
model’s generalization capability [6, 22]. Expanding the
dataset and exploring alternative feature engineering
strategies are also recommended [19, 23].

5. CONCLUSION

In this study, we developed a hybrid model that integrates
advanced deep learning techniques with a stacking
ensemble approach for wind speed forecasting in the
Bingol region. By mathematically modeling data
preprocessing, STL  decomposition, trigonometric
transformations, and rolling statistics, the model achieved
low error rates and high R? values in training. Although
test performance varied across districts—with some
indications of overfitting, the results provide a solid
foundation for future improvements. The integration of
physical and statistical features within a deep learning
framework demonstrates considerable potential for
practical applications in wind energy production and
meteorological forecasting. The findings highlight the
importance of careful data preprocessing and the selection
of robust model components, while also underscoring the
challenges of generalization across diverse geographical
regions. Future research will focus on mitigating
overfitting in challenging districts and conducting more
detailed comparative analyses with baseline models and
ablation studies.
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