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Abstract Objective: This study aimed to use a new approach, namely persistent homology, to analyse electroen-
cephalogram (EEG) coherence and identify the alterations in brain connectivity in patients with
Alzheimer's disease (AD).

Materials and Methods: We applied persistent homology to the distance maps that we created using the
EEG coherence values from five different frequency bands in order to determine if there are disruptions
specific to these bands in patients diagnosed with AD.

Results: Our findings revealed that the features extracted using persistent homology were significantly
different in two bands (delta and theta) between AD patients and subjects in the healthy control (HC)
group. Furthermore, the machine learning algorithms using these topological features achieved accurate
classification results. This suggests that persistent homology may be a useful adjunct in the diagnosis
of AD.

Conclusion: We have demonstrated the potential of persistent homology in identifying AD-related
changes in brain connectivity, which are the most clearly present in the theta and delta bands. Larger
datasets should be used in future research to determine the clinical relevancy of this method.
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INTRODUCTION

Dementia has become one of the leading causes of death
in recent years, and with a rapidly ageing global population,
its prevalence is expected to rise (1). Alzheimer's disease
(AD) accounts for the majority of dementia cases and it is
characterised by progressive memory loss (2).

Memory impairment is usually the first symptom of AD and it
typically begins after the age of 65 years. Disease progression
is accompanied by executive dysfunction, impairment in
judgement, loss of insight, visuospatial problems, language
deficits and other neurological and psychiatric symptoms (3).
Currently, no cure is available for AD, but there are treatment
options intended to mitigate certain symptoms of the disease.

Histopathological examination is required to establish a
definitive diagnosis of AD, but it is usually not used in clinical
practice (4). Clinicians generally use neuropsychological
tests, neuroimaging techniques, and molecular biomarkers
when diagnosing patients with AD. Although it is not
used in the routine evaluation, several studies suggest
that electroencephalogram (EEG) might add confidence to
the diagnosis and, as a non-invasive and relatively cheap
technique, it could prove to be a valuable tool in discovering
potential biomarkers for the disease (5, 6).

Because the visual assessment of EEG signals is somewhat
subjective, various quantitative analyzing techniques have
been used to evaluate the EEG data to help with the diagnosis
of neurological disorders including AD (7-10). The analysis
of quantitative EEG in Alzheimer’s disease typically involves
the extraction of features such as absolute power, relative
power, coherence, sample entropy, and Lempel-Ziv complexity
using signal processing techniques including the fast fourier
transform (FFT), Welch’'s method, coherence analysis, and
wavelet transform. These features are subsequently used in
classification tasks employing traditional machine learning
algorithms, such as support vector machine (SVM), random
forest (RF), and k-nearest neighbours (kNN)- as well as
advanced deep learning approaches, including convolutional
neural networks (CNN), recurrent neural networks (RNN),
and autoencoders (11). A consistent finding in numerous
quantitative EEG studies is an increase in the slow frequency
band (delta and theta) power, a decrease in the fast frequency
band (alpha and beta) power and a reduction in the alpha
band coherence in AD. (10, 12, 13). These findings were shown
to be correlated with the disease severity (14), Mini-Mental
State Examination (MMSE) scores (15), and different cognitive
functions (16).

Functional connectivity analysis is one of the most commonly
used quantitative EEG analysis methods. It measures
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Table 1. A comparison of the traditional coherence analysis and topological
data analysis

Traditional Coherence Analysis Topological Data Analysis

Based on the algebraic topology and
computational geometry

Based on Fourier transforms,
spectral analysis, and correlation

Limited to pairwise, linear
interactions

Captures non-linear, higher-order
structures and multiscale patterns in
the data

Requires a fixed or manually
chosen threshold

No need for an arbitrarily chosen
threshold

Gives coherence values ranging Provides persistence diagrams
from 0 to 1 between the channel  showing the birth and death of
pairs topological features

Easy to interpret Interpretation requires training

coherence, which indicates the level of correlation between
two signals in the frequency domain, providing insights
into their functional connectivity (17). While traditional
coherence analysis examines the pairwise relationships
between electrodes, topological data analysis (TDA) enables
the investigation of relationships beyond simple pairwise
interactions, extending to structures such as triangles,
tetrahedra, and higher-dimensional formations (18). A
comparison of the two methods is shown in Table 1. One
of the principal methods of TDA is persistent homology. It
examines the evolution of the topological features across
multiple scales (18). It extends classical homology by not
only identifying the presence of features such as connected
components, loops, and voids but also quantifying their
persistence across different levels of detail. This makes
persistent homology particularly effective for understanding
the structure of data embedded in high-dimensional spaces.

TDA has been used to extract topological features from EEG
signals for various clinical applications such as detection of
delirium (19), attention deficit hyperactivity disorder (ADHD)
classification (20), identification of EEG characteristics in
children with sleep apnoea (21), and discrimination of
epileptic from the non-epileptic EEG signals (22). In recent
years, it has been suggested that TDA, especially persistent
homology, may prove to be useful in the diagnosis of AD
(23). In our study, we used persistent homology with a
coherence-derived distance metric to compute H, persistence
to differentiate between the AD and HC groups. Given that
AD is often associated with reduced coherence in certain
frequency bands and brain regions, using a tool from
TDA, we were able to evaluate the functional connectivity
without being limited to pairwise interactions and arbitrarily
determined thresholds, as is often the case with the
traditional coherence-based methods. Choosing persistent
homology over traditional coherence in our analysis allowed
us to represent high-dimensional EEG data with compact
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yet informative topological features that we then used for
classification. The features extracted via persistent homology,
which exhibited notable differences in the slower brain waves,
were subsequently employed as input to various machine
learning algorithms. These algorithms achieved accurate
classification results, demonstrating the effectiveness of the
topological features in distinguishing between the AD and HC
groups.

MATERIALS AND METHODS
Dataset

We used the dataset provided by Miltiadous et al. (24).
There were eyes-closed resting-state EEG recordings of 65
participants in this dataset. The demographic and clinical
features of the participants are presented in Table 2.

The duration of each recording was approximately 13.5 min for
the AD group (min=51, max=21.3) and 13.8 min for the HC group
(min=12.5, max=16.5) and the total duration of the recordings
was 485.5 min for the AD group and 402 min for the HC group.

The EEG signals recorded from the 19 channels were pre-
processed following the steps described in Miltiadous et al.
(24). The first step of the pre-processing was re-referencing the
signals to the average of A1-A2. Subsequently, a Butterworth
band-pass filter (0.5-45 Hz) was applied to achieve noise
reduction. The ASR routine was then used for automatic
artefact rejection. Independent component analysis (ICA)
decomposed the signals into 19 components, with the eye and
jaw artefacts automatically removed. The baseline correction
was applied to reduce the high-frequency artefacts as the last
step. We used these pre-processed EEG data in our analysis.

Coherence Analysis

As the first step in the coherence analysis, FFT was used
to transform the signals into the frequency domain, and
subsequently these signals were divided into five widely
studied frequency bands: Delta (1-4 Hz), Theta (4-8 Hz), Alpha
(8-12 Hz), Beta (12-25 Hz), and Gamma (25-45 Hz) bands.
Coherence, more specifically, magnitude-squared coherence,

Table 2. Demographic and clinical features of the participants

AD Group HC Group
Number of individuals 36 29
Age, year, mean * SD 66.4 +79 679 + 54
Gender (Male/Female) 12/24 18/11
MMSE score, mean + SD 17.75 + 4.5 30.0 + 0.0

AD: Alzheimer's disease, HC: Healthy control, MMSE: Mini Mental State
Examination, SD: Standard deviation.
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was computed for each frequency band according to the
following formula:

2
|P., (f)]
P () B, (f)

where Cy(f) is the coherence value between the x and y
signals at an f frequency, P, (f) is the cross-spectrum, which
represents the shared power between x and y at an f
frequency, P«(f) is the power spectrum density for the x signal,
and P,(f) is the power spectrum density for the y signal.

Coy(f) = (1)

The coherence values range between 0 and 1. The closer a
value is to 1, stronger the synchronisation is, which means
that the two signals are associated with the same functional
activity. In contrast, values near 0 imply the absence of
functional connectivity between the corresponding brain
regions. For this analysis, coherence was evaluated in the
sensor space, reflecting functional connectivity patterns
based on the spatial arrangement of the EEG electrodes.

The EEG signals were first epoched into 2-s windows with
50% (1-s) overlap, following a standard segmentation strategy
for the time-frequency analysis. Within each epoch, the
magnitude-squared coherence between the electrode pairs
was estimated using the Welch method with a Hann window of
2 s. All recordings exceeded 5 min in length, ensuring sufficient
overlapping segments for stable coherence estimation across
participants.

The computed coherence values were then used to construct
distance maps, where the distance between two electrodes
was defined as follows:

Distance = 1 — Coherence (2)

These distance maps are used as inputs for persistent
homology, which will be explained in the following subsection,
to characterise EEG channel interactions across each
frequency band at varying scales.

Persistent Homology

Persistent homology was applied to the distance maps
obtained from the coherence analysis, capturing higher-
order connectivity patterns beyond the pairwise relationships
between the EEG channels. These maps represent the
functional connectivity, where each value indicates the
relationship between the electrode pairs.

To analyse the topology of the distance maps, a mathematical
structure called a simplicial complex was constructed.
Simplicial complexes are composed of basic building blocks
known as simplices (e.g, vertices, edges, triangles, and higher-
dimensional analogs). The most widely used method for
constructing simplicial complexes from point clouds is the
Vietoris-Rips filtration, which operates as follows:

=
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Persistence Barcode
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Figure 1. Persistent homology on a 2D point cloud

- Points are connected by edges if their pairwise distance is
within a threshold a (the scale parameter).

- Higher-dimensional simplices, such as triangles and
tetrahedra, are added based on the connections of the
lower-dimensional simplices.

Increases in the scale parameter a are accompanied by the
addition of new simplices to the complex, resulting in a
nested sequence of simplicial complexes (Su C Sg, for a, < a,).
Persistent homology captures the appearance of topological
features (e.g, connected components, loops) at specific
scales, referred to as their "birth," and their disappearance at
another scale, termed "death." The persistence of a feature is
defined as the difference between its death and birth scales,
representing its lifespan across varying resolutions.

These topological features are categorised based on their
dimension: H, (zero-dimensional homology) represents
connected components, H, (one-dimensional homology)
stands for loops or holes, and H, (two-dimensional homology)
captures enclosed voids. This pattern extends to higher
dimensions, where H, describes the n-dimensional cavities
within the data.

Features with high persistence are interpreted as robust
and meaningful structures in the data, whereas those with
low persistence are often attributed to noise or sampling
artefacts. This process is illustrated in Figure 1, which shows
a sequence of the Vietoris—Rips complexes constructed at
increasing scale values. As the scale increases, topological
features such as connected components and loops emerge,
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Persistence Diagram

merge, or vanish. These changes are visualised using barcode
diagrams, where red bars represent H, features and blue bars
represent H, features. The corresponding persistence diagram
summarises all features by plotting their birth and death
scales. Features that persist over a wide range of scales appear
farther from the diagonal and are considered topologically
significant.

Wasserstein Distance

The Wasserstein distance is a metric that quantifies the cost
of transforming one distribution into another. If the two
distributions are similar, the cost will be lower. Therefore, it is
a widely used metric for comparing persistence diagrams.

Given the two distributions P and Q, the Wasserstein distance
is defined as

W(P.Q) = it > lp—dl, (3)

Yer(P.Q (p,9)€Y

where:

- (P Q): The set of all possible matchings between points
in the persistence diagrams P and Q, including points
matched to the diagonal.

p: The p-norm distance between points p € P and q € Q.

In this study, we chose p=2, where the distance metric
simplifies to the Euclidean distance. If p is set to oo,
the distance corresponds to the bottleneck distance, which
captures the maximum difference between the matched
points. The flexibility in choosing p allows for different
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interpretations of the similarity between the persistence
diagrams.

Figure 2 shows the difference in the persistence diagrams
between the AD and HC groups based on the Wasserstein
distance (p=2).

Statistical Analysis

To compare the persistence values extracted from the
persistence diagrams between the AD and HC groups, we
used Welch's t-test for five EEG frequency bands. The test was
conducted on three persistence features: the mean of the
birth scales, the mean of the death scales, and the mean of the
persistence values (death - birth scales). Welch's t-test was
chosen as it does not assume equal variances between the
two groups. For each comparison, we reported the t-statistic
(t), indicating the magnitude and direction of the difference,
and the p-value, determining whether the difference had
statistical significance (p<0.0001).

Classification

In this study, machine learning algorithms were employed
for classification using the persistence features extracted via
persistent homology. These were multilayer perceptron (MLP),
SVM, kNN (k=7) and logistic regression. The performance of
these algorithms was evaluated on the basis of accuracy
(overall correctness), sensitivity (true positive rate), specificity
(true negative rate), and F1 score (balance between precision
and recall) using K-fold cross-validation.

Similarity Matrix - theta Band
-0.7

- 0.6

Subjects

Subjects

Figure 2. Wasserstein distance matrix of H, persistence features from theta
band coherence
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Table 3. Mean Wasserstein distances of H, persistence within and between the
AD and HC groups across frequency bands

Band Mean within the AD  Mean within the HC  Mean between

Group Group Groups
Delta 0.0712 0.0201 0.0479
Theta 0.2632 0.1423 0.2182
Alpha 0.3322 0.3853 0.3742
Beta 0.2225 0.3187 0.2902
Gamma 01446 0.1842 017N

AD: Alzheimer's disease, HC: Healthy control.

RESULTS

The heatmap in Figure 2 shows that the persistence diagrams
of the HC group (lower right section) are highly similar
based on the Wasserstein distance, indicating consistent H,
persistence within the group. This suggests that persistence
diagrams capture the key differences between groups.
Moreover, we found that in the delta and theta bands,
the mean H, birth, death, and persistence features differed
significantly between the HC and AD groups, as shown in Table
3.

The AD group exhibited higher birth, death, and persistence
values in the delta and theta bands compared with the
HC group (p<0.0001). In contrast, the alpha and beta bands
showed reduced birth and death values in the AD group. The
persistence features in these bands are less affected. There
were no significant differences detected in the gamma band.
These findings reveal that the most significant changes in
brain activity in AD occur in the slower brain waves.

Table 4 shows the statistical analysis of the persistence
features across the EEG frequency bands for the AD and
HC groups. In the delta and theta bands, birth, death, and
persistence values were significantly higher in the AD group
(p<0.0001). In the alpha and beta bands, birth and death
values were lower in AD patients. In the gamma band, no
significant differences were observed. This implies that high-
frequency brain activity is less affected.

The results of the machine learning algorithms using
topological features extracted via persistent homology as
input, along with a comparison of their performance to that
of algorithms using features derived from relative band power
for distinguishing AD from HC, are presented in Table 5.
The best performing relative band power-based model, i.e.,
LightGBM achieved an accuracy of 76.43% and an F1 score
of 7612% (24), and several classifiers trained on topological
features exceeded these results. Notably, both the k-Nearest
Neighbours (kNN) and Support Vector Machine (SVM with
linear kernel) classifiers trained on topological features
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Table 4. Statistical analysis of the persistence features across the frequency
bands

Frequency  Feature Mean Values T-test Results
Band AD Group  HC T- p value
Group statistic
Birth 0.0668 0.0343 6.0027 <0.0001
Delta Death 0.0819 0.0399 6.2044 <0.0001
Persistence 0.0151 0.0056 51096 <0.0001
Birth 0.2022 01339 8.7890 <0.0001
Theta Death 0.2497 021495 91735 <0.0001
Persistence 0.0475 0.0256 5.6515 <0.0001
Birth 0.3157 0.3730 -3.9829 0.0001
Alpha Death 0.3804 0.4491 -4.0787 0.0001
Persistence 0.0647 0.0761 -1.8391 0.0666
Birth 0.3877 0.4182 -1.7555 0.0801
Beta Death 0.4453 0.4919 -2.3635 0.0187
Persistence 0.0576 0.0737 -2.3972 0.0171
Birth 0.4378 0.4514 -0.5464 0.5853
Gamma Death 0.4870 0.4957 -0.3268 0.7441
Persistence 0.0492 0.0443 0.9613 0.3373

AD: Alzheimer's disease, HC: Healthy control.

reached an accuracy of 81.50%, with the SVM also yielding the
highest F1 score of 79.50%.

DISCUSSION

Our results show that the delta and theta waves exhibit
increased persistence, which may be indicative of pathological
overactivity (25). Higher persistence values indicate altered
slow wave activity, which is associated with cognitive
decline. This increased persistence may be interpreted as
a sign of abnormal neural synchronization or potential
compensatory mechanisms. Alpha and beta waves show
reduced persistence, indicating decreased neural complexity
and desynchronization, which may reflect an impairment
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in cognitive performance (26). Thus, by capturing these
differences, persistence homology may present a new way to
understand the effects of AD on brain dynamics. These results
show that the altered slow-wave activity and disrupted neural
synchronization seen in AD patients can be identified using
the persistence features in the theta and delta bands.

While previous literature has primarily identified a decrease
in pairwise coherence in the alpha band (5), our study
highlighted the theta band when examining beyond pairwise
relations, such as H, persistence, revealing distinct features
that differentiate AD patients. The extracted topological
features from the theta band showed significant alterations in
functional connectivity among patients with AD.

EEG connectivity measures demonstrate higher diagnostic
accuracy compared with traditional EEG power analysis
and conventional AD biomarkers (27). While traditional
coherence analysis has been extensively used in EEG
research, it primarily captures pairwise relationships and
does not account for higher-dimensional structures. In
contrast, TDA, particularly persistent homology, provides
a more comprehensive understanding of EEG connectivity
by identifying complex topological patterns that coherence
analysis alone cannot detect.

The use of persistent homology has enabled the identification
of distinctive features in EEG data. TDA-based methods
have shown potential for enhancing EEG-based diagnostic
techniques, particularly in differentiating AD from normal
brain activity. It is effective in the early detection of
the disease and characterisation of disease severity (28,
29). Our results show that machine learning algorithms
utilising topological features as input demonstrated superior
performance in distinguishing between the AD and HC groups
compared to those employing features derived from relative
band power.

Table 5. Classification performance using different feature extraction and classification methods for distinguishing AD patients from HC subjects.

Accuracy Sensitivity Specificity F1Score
Feature Type Classification Method % % % %
Relative Band Power LightGBM 76.43 76.01 76.16 7612
SVM 7314 71.89 75.98 73.74
kNN (k=7) 71.23 69.67 7419 72.81
MLP 7312 73.00 74.63 74.82
Topological MLP 79.40 7140 89.30 78.80
Logistic Regression 80.00 74.30 86.00 78.90
kNN (k=7) 81.50 68.90 96.00 78.20
SVM (linear kernel) 81.50 7140 92.70 79.50
SVM: Support vector machine, kNN: k-Nearest neighbours, MLP: Multilayer perceptron.
.

Experimed, 15 (2): 127-134 H'Hﬁ]'




However, while topological analysis successfully uncovers
high-dimensional relationships, it still lacks the capability to
precisely localise the specific brain regions where these loops
form. Further advancements in methodological frameworks
may help address this limitation, thereby refining the
interpretability of topological features in clinical applications.

CONCLUSION

In this study, coherence analysis and persistent homology
methods were used to differentiate between patients
diagnosed with AD and healthy individuals based on EEG
data. By examining the topology of coherence in the electrode
space, we demonstrated that meaningful features could be
extracted. Unlike traditional metrics, our approach analyses
the overall topological structure rather than individual
pairwise relationships, revealing significant associations with
the disease.

Our findings suggest that the TDA methods provide a
promising approach for EEG-based Alzheimer's diagnosis.
Future research can further explore the applicability of this
methodology by evaluating it on different EEG frequency
bands and larger datasets, potentially enhancing its clinical
relevance.
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