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Abstract: This study proposes a greedy auction-based distributed task allocation algorithm (GCAA) for swarm unmanned
aerial vehicles (UAVs) with long range (LoRa) communication capabilities. Air-to-air (A2A) communication channels are
established using LoRa technology to enable inter-agent communication, while air-to-ground (A2G) communication is
facilitated through narrowband Internet of Things (NB-IoT) technology. The negotiation phase is conducted over these
communication channels. Using LoRa and NB-IoT parameters, a link budget analysis is performed to determine the A2A
reference distance, and a k-means clustering algorithm is developed. The proposed algorithm places base stations at
cluster centers and prepares a simulation environment. The decentralized algorithm is compared with a greedy optimiza-
tion algorithm under uninterrupted and interrupted communication scenarios, and the simulation results are presented in
MATLAB. The developed distributed task allocation algorithm demonstrates lower system costs and shorter task comple-
tion times compared to the conventional greedy optimization algorithm. Additionally, the performance parameters exhibit
more excellent stability in cumulative distribution functions.
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Uzak Mesafe Haberleşmesine Sahip İHA Sürüleri için Açgözlü Açık
Artırma Temelli Dağıtılmış Görev Tahsis Algoritmasının Geliştirilmesi

Özet: Bu çalışmada uzak mesafe (long range, LoRa) iletişimine sahip sürü insansız hava araçlarında (İHA) açgözlü
açık artırma temelli dağıtık görev tahsis algoritması (greedy auction-based distributed task allocation algorithm, GCAA)
önerilmiştir. Ajanlar arası haberleşmesinin sağlanabilmesi için LoRa teknolojisi kullanılarak havadan havaya (air-to-air,
A2A), dar bant nesnelerin interneti (narrowband Internet of Things, NB-IoT) teknolojisi kullanılarak da havadan yere (air-
to-ground, A2G) haberleşme kanalları oluşturulmuş ve müzakere aşaması bu haberleşme kanallarından sağlanmıştır.
LoRa ve NB-IoT parametreleri kullanılarak hat bütçe analizi ile A2A referans mesafesi ve k-ortalamalı kümeleme al-
goritması geliştirilmiştir. Geliştirilen algoritma ile küme merkezlerine baz istasyonları yerleştirerek, simülasyon ortamı
hazırlanmıştır. Önerilen merkezi olmayan algoritma ile haberleşmenin kesintisiz ve kesintili olduğu ortamda açgözlü op-
timizasyon algoritması ile karşılaştırılarak, MATLAB ortamında benzetim sonuçları aktarılmıştır. Geliştirilen dağıtık görev
tahsis algoritması, geleneksel açgözlü optimizasyon algoritmasına göre sistem maliyetinin ve görev bitirme süresinin
daha kısa olduğu gözlenmiştir. Aynı zamanda performans parametrelerinin, birikimsel dağılım fonksiyonlarında daha
kararlı olduğu gözlenmiştir.

Anahtar Kelimeler: Açgözlü açık artırma temelli dağıtık görev tahsis algoritması, A2A/A2G haberleşme, LoRa, NB-IoT.
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1 INTRODUCTION
Algorithms used to solve task assignment problems are di-
vided into centralized and distributed decision-making al-
gorithms. In centralized task assignment algorithms, the
coordinator manages all task assignments, and thus, con-
flicts are prevented, and optimum solutions are obtained.
In distributed algorithms, there is no coordinator agent, and
task sharing is carried out in a distributed manner due to
negotiations between agents [1], [2].

Greedy algorithms do not require specific knowledge of
the problem they are interested in. They do not require too
many control parameters and are suitable for working har-
moniously with the operator [3]. In multi-agent systems, the
greedy algorithm focuses on the individual benefits of the
agents. It aims to maximize the individual return without
negotiation between the agents. In [4], the authors have
improved the task completion and road coverage in un-
manned aerial vehicles (UAVs) using the greedy method.
However, since this method is not a negotiation-based al-
gorithm, the UAVs do not share the tasks, and the system
performs their optimization. In [5], they developed a dis-
tributed task-sharing algorithm by combining the optimiza-
tion and greedy algorithms. However, the processing load
is heavy due to the complex algorithm layout. A decen-
tralized greedy auction-based distributed task allocation al-
gorithm (GCAA) has been proposed in [6]. This study ob-
serves an increase in the system cost because more than
one agent executes a task. However, communication pa-
rameters are not used during task sharing.

In this study, the GCAA algorithm is developed for UAV
swarms that communicate long-distance. In order for
agents to communicate with each other in the air, air-to-
air (A2A) and when A2A communication distance is not
sufficient, air-to-ground (A2G) communication channels are
established via the base station (BS). The proposed al-
gorithm aims to provide long-distance communication be-
tween agents, minimum agent cost, and average signal-
to-noise ratio (SNR) values. In the second section of the
study, the performance criteria of A2A and A2G communi-
cation channels include the maximum communication dis-
tances of agents using long range (LoRa) and narrowband
Internet of Things (NB-IoT) communication technologies.
In the third section of this study, the developed GCAA al-
gorithm is presented. The proposed algorithm consists of
four functions. The first function determines the BS loca-
tions depending on the tasks using the k-means clustering
method. The second function controls the best task selec-
tions of the agents. The third function realizes the commu-
nication channels for the agents’ communication and the
primary task sharing. Finally, the last function completes
the algorithm by performing the secondary task sharing of
the agents. The advantages and disadvantages of the pro-
posed distributed decision-making algorithm and the simu-
lation results with the traditional greedy optimization algo-

rithm are given in section 4. In the last section, the obtained
results are evaluated.

2 DISTANCE ANALYSIS in A2A and A2G for
UAVs

This section investigates distance analysis in A2A and A2G
communication systems, focusing on signal power calcula-
tions, path loss models, and key performance metrics used
in UAV networks, including determining the maximum com-
munication range.

2.1 A2A Communication
A2A communication refers to the communication between
two or more vehicles in the air. In A2A communication, per-
formance metrics are determined using the two-ray path
loss model. In the communication system, the signal
power reaching the receiver from the transmitter is shown
in (1). Here are wavelength (λ ), communication distance
(d), transmitter power (Pt ), transmitter antenna gain (Gt ),
receiver antenna gain (Gr), transmitter antenna height (ht ),
and receiver antenna height (hr) [7]–[13],

Pr(w) =
λ 2

(4πd)2 4sin2
(

2πhrht

λd

)
GrGtPt . (1)

If the condition of dλ≫ 4hrht and sin(x)≈ x approximation
is applied, (1) can be re-written as (2)

Pr(w) = PtGtGr
h2

r h2
t

d4 . (2)

2.2 A2G Communication
A2G communication is used in cases where air vehicles can
communicate with targets on the ground or with systems
controlled from the ground station [14]–[17]. In A2G com-
munication, performance measurements were determined
using the Okumura-Hata model. The Okumura-Hata model
is a modified version of the Okumura model that operates in
the frequency range of 150 MHz to 1.5 GHz and a distance
of 1-100 km. The BS height (hb) is 30 m to 100 m, while
the mobile station height (hm) is 1 m to 10 m. The path loss
for urban areas is given in (3). The operating frequency ( fc)
unit is defined in MHz, while (d) is in km, (hb) and (hm) are
in meters [18]–[20],

LP(urban) = 69.55+26.16log( fc)−13.82log(hb)

−a(hm)+ [44.9−6.55log(hb)] log(d).
(3)

For smaller cities, a(hm) can be expressed as in (4)

a(hm) = (1.1log( fc)−0.7)hm− (1.56log( fc)−0.8). (4)
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In rural or open areas, (3) can be expressed as in (5),

LP(rural) = LP(urban)−4.78[log( fc)]
2 +18log( fc)−40.94.

(5)
The received signal power can be concluded as follows

Pr(dBm) = Pt(dBm)+Gt +Gr−LP(rural). (6)

SNR is a widely used metric for measuring signal quality
in a communication system, as shown by (7). Pr(w) repre-
sents the power received by the receiver, and σ2 represents
the thermal noise power,

SNR(w) =
Pr(w)
σ2(w)

. (7)

2.3 Communication Range
Receiver sensitivity is the minimum power level at which the
receiver can demodulate and extract the transmitted infor-
mation from the received weak signal. Due to the innova-
tive modulation scheme, LoRa and NB-IoT systems have
low receiver sensitivity. Receiver sensitivity depends on the
bandwidth (BW), SNR, and receiver noise factor (NF). At
room temperature, it is shown as (8) [17], [19]–[22],

Rsens(dBm) =−174+10log(BW)+NF+SNR. (8)

The link margin between the received power and receiver
sensitivity is given in (9) to ensure secure communication,

LinkMargin(dB) = Pr−Rsens. (9)

The noise factor as NF(dB) = 10log(Ftotal), is the total
amount of power added by the radio frequency (RF) front
end at the receiver to the thermal noise power at the input
where

Ftotal = F1 +
F2−1

G1
+

F3−1
G1G2

+ · · ·+ FN−1
G1G2 . . .GN−1

. (10)

Here, F1,...,N represents the linear noise factor of the RF
stages, and G1,...,N−1 represents the linear gain of these
stages.

Table 1 LoRa and NB-IoT parameters

Parameters LoRa NB-IoT
Frequency (MHz) 868 800
Bandwidth (kHz) 125 180
Rx sensitivity (dBm) -139.5 -129
Transmitted power, Pt (dBm) 14 23
Thermal noise power, σ2 5.01×10−23 3.98×10−21

Receiver antenna gain, Gr 1 1
Transmitter antenna gain, Gt 1 1
Link margin (dB) 10 10
Agent speed (m/s) 1 1
Agent height (ht ,hm,hr) (m) 10 10
Base station height, hb (m) 30 30

In this study, LoRa is used by UAVs, and BSs use NB-
IoT. SX1301 parameters are taken as LoRa gateway, and
Quectel BC95-G parameters are taken as NB-IoT refer-
ences. The spreading factor (SF) is assumed to be 12 for
long-distance communication. LoRa, NB-IoT, and UAV pa-
rameters are presented in Table 1 [22], [23].

3 GREEDY AUCTION-BASED DISTRIBUTED
TASK ALLOCATION ALGORITHM

The k-means algorithm is centralized. This method starts
with random ‘k’ cluster centers. Starting points affect the
clustering process and results. Euclidean and similar dis-
tance functions measure object similarity [24], [25].

The clusters and centers of the tasks are determined with
the proposed k-means algorithm (Algorithm 1). The dmin
and dmax explained in Algorithm 1 represent the minimum
and maximum communication distance. The minimum ref-
erence distance is the maximum communication range be-
tween agents, as shown in (11). The maximum reference
distance is the maximum range agents communicate with
the BS and is given in (12).

log(dmin) =
LP +10log(GtGr)+20log(hthr)

40
, (11)

log(dmax) =
A+B

44.9−6.55log(hb)
(12)

where A = LP(rural) − 27.81 − 46.05log( fc) + 13.82log(hb)
and B = (1.1log( fc)−0.7)hm +4.78(log( fc))

2.

Algorithm 1 k-means Clustering Algorithm

1 function CLUSTERING(T,k = 10,dmin,dmax)
2 T = {t1, t2, . . . , tn}, ti = (xi,yi) ▷ Randomly initialize task points
3 C = {c1,c2, . . . ,ck}, ci = (xi,yi) ▷ Randomly initialize cluster centers
4 idxc(i)← argmind(ti,c j), ∀ti ∈ T ▷ Find the nearest cluster center for each

task
5 while true do
6 for i ∈ [1,k] do
7 if cluster_element is not empty then
8 C j =

1
|S j |

∑
ti∈S j

ti, S j = {ti | idxC(i) = j} ▷ Update cluster centers

9 else
10 Select a random cluster center
11 end if
12 end for
13 for i ∈ [1,T ] do ▷ Check the distance between tasks and cluster centers
14 if d(ti,cidxc (i))< dmin then
15 Search for another cluster center
16 else if dmin ≤ d(ti,c j)≤ dmax then
17 Assign the task to this cluster
18 else
19 k = k+1, C =C∪{cnew} ▷ Add a new cluster
20 end if
21 end for
22 if dmin ≤ d(ci,c j)≤ dmax then ▷ Check the distance between cluster

centers
23 break
24 else
25 k = k−1 ▷ Remove unnecessary clusters
26 end if
27 end while
28 end function
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Bu yazı beyaz.Algorithm 2 Greedy Auction-Based Task Allocation Algorithm

1 function TASKALLOCATION(Clustering(), BestTask(), CommunicationChannel(),
SecondaryTask())

2 τ = 1 ▷ Iteration counter
3 Clustering(T = 30,50)
4 BestTask(0) = 0
5 CommunicationChannel(0) = 0
6 SecondaryTask(0) = 0
7 while not empty(T ) or not empty(uxy) do
8 BestTask(τ)
9 CommunicationChannel(τ)

10 SecondaryTask(τ)
11 τ ← τ +1
12 end while
13 end function

Bu yazı beyaz.
Algorithm 3 Selecting the Best Task

1 function BESTTASK(T )
2 for i ∈ [1,un] do
3 t = dt

v

4 dt =
√
(ux(t)−Tx(t))2 +(uy(t)−Ty(t))2

5 Ei =
1
2 CDρv3St ▷ Drag energy

6 Ht = (PD0−Ei)
7 bi(t)←max(Ht )
8 idxA(t)← argmax(Ht )
9 end for

10 end function

The greedy auction-based distributed task allocation al-
gorithm (Algorithm 2) is a negotiation algorithm that tries to
make the best short-term decision that maximizes the in-
dividual benefits of the agents. The auction process is the
first stage of the algorithm. Each agent calculates its costs
for all tasks with the published task coordinates. The cal-
culated cost values are subtracted from the agent’s utility
value PD0 to determine individual benefits (remaining en-
ergy). The bi set of the relevant agent is updated by taking
the maximum value of the determined benefits. This set
also represents the agent’s utility for the task it requests.
The idxA value defines the task number the agent requests.
The auction stage of the agents and the best task selection
are presented in Algorithm 3.

Agents calculate the distance between the starting point
and the desired task and create a return Eb cost matrix. If
the remaining energy value of the agents is less than the re-
turn energy, the agent is disabled and returns to the start-
ing position. If the remaining energy value of the agents
is more than the return energy, the agent broadcasts a YA
message. When the agents broadcast the same task and,
therefore, the same YA value, the negotiation process be-
gins. During the negotiation process, agents first broad-
cast their locations. Agents calculate the distance between
them according to the broadcasted location values. Agents
within the dmin reference distance perform A2A communi-
cation among themselves and share tasks due to the ne-
gotiation process. The negotiation process with A2G com-
munication through the defined BS to prevent interruption
of communication and increase in system cost is presented
in Algorithm 4.

Algorithm 4 Communication Channels and Primary Task Sharing

1 function COMMUNICATIONCHANNEL(idxA(τ),bi(τ))
2 dB =

√
(xBi − idxAxi )

2 +(yB j − idxAy j )
2

3 tb = RB/v
4 Eb =

1
2 CDρv3Stb

5 if bi > Eb then
6 YA(t) = idxAi
7 else
8 Broadcast the number of the disabled agent
9 end if

10 if YAi (t) == YA j (t) then

11 dk =
√
(uxi (t)−ux j (t))

2 +(uyi (t)−uy j (t))
2

12 if dk < dmin then
13 comA2A(τ) = [ui,u j ]
14 Broadcast numbers of agents communicating via A2A
15 else
16 comA2G(τ) = [ui,u j ]
17 Broadcast numbers of agents communicating via A2G
18 end if
19 if agents communicate only via A2A then
20 for i ∈ [1,comA2An] do
21 if dkλ ≫ 4ht hr then
22 Equation (1), Equation (7)
23 else
24 Equation (2), Equation (7)
25 end if
26 Broadcast bi values of agents participating in bilateral negotiations
27 Broadcast the numbers of winning and losing agents
28 if comA2AW ∪comA2AL then
29 The agent cannot receive a task
30 else
31 The agent whose task assignment is finalized in bilateral nego-

tiations broadcasts its number
32 PD0 i = bi(comA2AW ),uxy(t) = T (idxA)
33 Broadcast the number of the agent who lost the bilateral nego-

tiation (PD0 i = 0)
34 end if
35 end for
36 else if agents communicate via both A2A and A2G then
37 for i ∈ [1,comA2An and comA2Gn] do
38 if comA2An then
39 if dkλ ≫ 4ht hr then
40 Equation (1), Equation (7)
41 else
42 Equation (1), Equation (7)
43 end if
44 else
45 if comA2Gn then
46 Pr(w) = 10(Pr (dBm)/10)−3

47 Equation (7)
48 end if
49 end if
50 end for
51 Broadcast the number of the agent who won the task in A2A comm.
52 Broadcast the number of the agent who won the task in A2G comm.
53 The common winner in A2A and A2G communication wins the task

and broadcasts its number
54 PD0 i = bi(comA2AW ∩comA2GW ),uxy(t) = T (idxA)
55 PD0 i = 0
56 else if agents communicate only via A2G then
57 for i ∈ [1,comA2Gn] do
58 if comA2Gn then
59 Pr(w) = 10(Pr (dBm)/10)−3

60 Equation (7)
61 end if
62 Broadcast bi values of agents participating in bilateral negotiations
63 Broadcast the numbers of winning and losing agents
64 if comA2GW ∪comA2GL then
65 The agent cannot receive a task
66 else
67 The agent whose task assignment is finalized in bilateral nego-

tiations broadcasts its number
68 PD0 i = bi(comA2GW ),uxy(t) = T (idxA)
69 Broadcast the number of the agent who lost the bilateral nego-

tiation (PD0 i = 0)
70 end if
71 end for
72 end if
73 end if
74 end function
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(a)

(b)

Fig. 1 BS and task positions a) 30 tasks, b) 50 tasks.

In the first stage of task sharing, the agents that lost due
to the negotiation publish their numbers. In the first negoti-
ation stage, the losing agents are subjected to the second
negotiation process to not fall behind the other agents in the
swarm and maximize individual benefit. In this stage, only
the losing agents share the remaining tasks while the oth-
ers wait to execute the tasks they won. The second stage
of negotiation is presented in Algorithm 5. The BS and task
sets determined in Algorithm 1 are presented in Fig. 1.

4 NUMERICAL RESULTS
The simulation results of the designed algorithm in MAT-
LAB environment are presented on a Windows 11 oper-
ating system computer with an Intel Core i7-12700H pro-
cessor, NVIDIA GeForce RTX 3050 graphics card, and 16
GB RAM hardware. The system cost, SNR values of com-
munication channels, and agent task completion times are
taken as reference for the developed algorithm. The perfor-
mance metrics taken as reference for the developed algo-
rithm are compared with the greedy optimization algorithm
in the uninterrupted communication environment and the
environment without A2G communication.

For agents to be able to communicate A2A and A2G,
the maximum reference distances were calculated as dmin =
38.681 km and dmax = 145.02 km using (11) and (12). How-
ever, since the Okumura-Hata model works 0-100 km, the
simulation was run at a reference distance of dmax 100 km.

Bu yazı beyaz.Algorithm 5 Secondary Task Assignment

1 function SECONDARYTASK(PD0 i = 0,CommunicationChannel())
2 PD0 i = [], uxy = [], T = []
3 while any(PD0 i == 0) do
4 BestTask(PD0 i = 0)
5 CommunicationChannel(PD0 i = 0)
6 end while
7 end function

Bu yazı beyaz.

(a)

(b)

Fig. 2 Cumulative distribution function (CDF) of the communi-
cation channel during bilateral negotiation a) A2A-A2G environ-
ment b) Only A2A environment.

The cumulative distribution function of the communica-
tion channel during bilateral negotiation is shown in Fig.
2. In all simulation environments, the distributed decision-
making algorithm, including A2G and A2A communication,
observed an average SNR value of 22.427 dB in A2A com-
munication and an average SNR value of 18.083 dB in A2G
communication. The distributed decision-making algorithm,
including only A2A communication, observed an average
SNR value of 28.481 dB.

The number of bilateral negotiations varies according to
the communication environments where the agents are lo-
cated. In the 5-agent 30-task system, it was observed that
the number of bilateral negotiations was equal in the en-
vironment containing A2A and A2G communication and in
the environment containing only A2A communication, and
the negotiations contained only A2A communication. It was
observed that the algorithm containing only an A2A com-
munication medium showed lower density at lower costs
compared to the greedy optimization algorithm. It was ob-
served that the algorithm containing an A2A-A2G commu-
nication medium could reach the same density level at a
lower cost than the greedy optimization algorithm. When
we look at the general cost, the distributed task alloca-
tion algorithm containing the uninterrupted communication
medium reached the saturation level with a lower cost than
the other two algorithms, as presented in Fig. 3. Bu yazı

E. Can, M. Namdar, and A. Basgumus 41



ITU Journal of Wireless Communications and Cybersecurity

Table 2 Algorithms’ performances for different scenarios

5 Agents 30 Tasks 10 Agents 30 Tasks 10 Agents 50 Tasks 20 Agents 50 Tasks

Greedy GCAA GCAA Greedy GCAA GCAA Greedy GCAA GCAA Greedy GCAA GCAA
Algorithm (A2A-A2G) (A2A) Algorithm (A2A-A2G) (A2A) Algorithm (A2A-A2G) (A2A) Algorithm (A2A-A2G) (A2A)

Iterations 8 9 9 4 3 4 6 6 6 3 3 3
Tasks 28 30 30 30 30 30 50 50 50 50 50 50
Messages 78 151 151 146 428 425 201 486 470 320 1989 1918
Cost (J) 4.535×104 3.878×104 3.878×104 6.232×104 5.898×104 6.628×104 8.175×104 7.105×104 7.223×104 8.175×104 7.105×104 7.223×104

Time (s) 7.242×105 6.26×105 6.26×105 3.712×105 3.238×105 4.184×105 5.483×105 4.548×105 5.389×105 2.019×105 2.283×105 2.34×105

Active Agents 0 1 1 4 3 4 5 5 5 20 20 20
Same Task Preference 0 0 0 0 0 3 0 0 3 0 0 6
Pairwise Negotiations - 13 13 - 27 22 - 37 29 - 84 60
A2A Average SNR (dB) - 26.481 26.481 - 23.456 29.568 - 20.104 27.652 - 19.667 30.224
A2G Average SNR (dB) - - - - 18.116 - - 19.154 - - 16.980 -

beyaz.

Fig. 3 Cumulative distribution function for task cost.

Bu yazı beyaz.

Fig. 4 Cumulative distribution function for task completion time.

It is observed that the greedy optimization algorithm
shows changes in time performance with the increase in
the number of tasks. The algorithm that only includes A2A
communication is observed to have the longest completion
time in the 50-task system. It is observed that the A2G-A2A
algorithm offers a more stable completion time compared
to the other two algorithms. The curves show a more con-
trolled and steep increase, and the task completion speed
increases after a certain period, whereas the curve shifts
to the right more as the number of tasks increases (50
tasks), as observed in Fig. 4. The performance values of
the greedy optimization and auction-based distributed task
allocation algorithms are presented in Table 2.

5 CONCLUSION
This study proposes a distributed task allocation algorithm
solution for swarm UAVs with long-distance communication.
Simulation results for the proposed algorithm are evaluated
through the parameters of the number of agents, number
of tasks, task location, BS locations, A2A reference dis-
tance, and initial energy of the agents. When the distributed
decision-making algorithm tested in MATLAB environment
is compared with the optimization algorithm, it is seen that
the system cost, the number of disabled agents, and the

task duration are less depending on the system parame-
ters. At the same time, while the greedy optimization algo-
rithm is a faster and more effective method for small and
medium-sized tasks, it is observed that the developed dis-
tributed decision-making algorithm provides more balanced
performance in variable task sets. It is observed that the op-
timization algorithm performs better in the number of mes-
sages broadcasted. In the distributed decision-making al-
gorithm where communication is limited, it is concluded that
some agents choose the same task, and the performance
values are lower than the A2G-A2A distributed algorithm.
It is observed from the simulation results that the active
agents complete the tasks that the disabled agents cannot
complete.
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