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Abstract
In this study, certain matrices are obtained using the elements of a finite chain ring. Then using these
matrices as generator matrices; certain codes and their duals are obtained. Moreover relations between
these codes, binary codes and Hadamard codes are explained.
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1. Introduction
Various type of linear codes such as cyclic, constacyclic codes over the ring F2 + vF2 where v2 = 1 and v2 = v are

studied. Different type of Gray maps from these rings to Galois fields are defined and certain relations that fixed the
distance between the codes on these rings and fields are established. We note that Lee distance and homogeneous
distance are used over the rings F2 + vF2 and Fpk + uFpk + ...+ umFpk respectively. Hadamard codes were studied
before in [5]. Especially, A relation between Hadamard codes and some special codes over F2 + uF2 was studied by
M. Özkan and F. Öke in [1]. In this paper a relation between Hadamard codes and some special codes over the
rings F2[v]/〈v2 − 1〉 and F2[v]/〈v2 − v〉 are studied.

In this study, certain specifical matrices are created with lexicographically order relation on the ring F2 + vF2

where v2 = 1 and v2 = v and then codes with (n, 4n, n)-parameters are defined by using these matrices.
It is seen that the images of these codes under the suitable Gray maps are the codes with (2n, 4n, n)-parameters

over the field F2. Moreover these codes are Hadamard codes. In this study the relations between cyclic, constacyclic
and Hadamard codes written in the special cases are investigated.

2. Preliminaries

The ring F2[v]/〈v2 − 1〉 is isomorphic to the ring F2 + vF2 where v2 = 1 and the ring F2[v]/〈v2 − v〉 is isomorphic
to the ring F2 + vF2 where v2 = v.

Let C be a (n,M, d)_code. It means that C has the length n, it has M elements and it’s minimum distance is d.
In the case v2 = 1 ; The ideals of the ring R = F2 + vF2 are 〈0〉 = { 0 }, 〈1 + v〉 = { 0 , 1 + v } and 〈v〉 = 〈 1 〉 = R.
The property 〈0〉 ⊆ 〈1 + v〉 ⊆ 〈v〉 ⊆ 〈 1 〉 = R is satisfied for these idaeals and then R is a local ring.

The Lee weight wLR
(x) of x ∈ R is given by
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wLR
(x) =


0 ; x = 0

1 ; x = 1 , v

2 ; x = 1 + v

This extends to a weight function in Rn. If r = (r1, r2, ..., rn) ∈ Rn then wLR
(r) =

n∑
i=1

wLR
(ri) . The distance

dLR
(a, b) between any distinct vectors a , b ∈ Rn is defined to be dLR

(a, b)= wLR
(a− b) . The minimum distance

dLR
of C is defined as dLR

(C) = min{dLR
(a, b)} for any a, b ∈ C , a 6= b. In the case v2 = v ; The ideals of the ring

S = F2 +vF2 are 〈0〉 = { 0 } , 〈v〉 = { 0 , v } , 〈1 +v〉 = { 0 , 1 + v } , 〈 1 〉 = S the properties 〈0〉 ⊆ 〈1 +v〉 ⊆ 〈 1 〉 = S
and 〈0〉 ⊆ 〈v〉 ⊆ 〈 1 〉 = S are satisfied and then S is not a local ring.

The Lee weight wLR
(x) of x ∈ S is given by

wLS
(x) =


0 ; x = 0

1 ; x = v , 1 + v

2 ; x = 1

This extends to a weight function in Sn. If s = (s1, s2, ..., sn) ∈ Sn then wLS
(s) =

n∑
i=1

wLR
(si). The distance

dLS
(a, b) between any distinct vectors a , b ∈ Sn is defined to be dLS

(a, b)= wLS
(a− b) . The minimum distance

dLS
of C is defined as dLS

(C) = min{dLS
(a, b)} for any a , b ∈ C , a 6= b. Let C be a code over F2 of length n and

let c = ( c1, c2, ..., cn) be a codeword of C .
The Hamming weight of C is defined as

wH(c) =
n∑
i=1

wH(ci)

where wH(ci) = 1 if ci = 1 and wH(ci) = 0 if ci = 0. The minimum Hamming distance of C is defined as
dH = min {dH(c, c′)} for any c , c′ ∈ C , c 6= c′ .

A n × n matrix such that all components are −1 or 1 and M.M t = n.I is called Hadamard matrix. A n × n
matrix is called binary normalized Hadamard matrix if it is obtained from Mn n× n normalized Hadamard matrix
writing 0 instead of 1 and writing 1 instead of −1. Let An be binary normalization of a binary Hadamard matrix Mn.
If each two rows of An are orthogonal then n

2 elements are different for these rows of An. Think that each row of An
is a vector. Then it is seen that the distance of between two rows is n

2 . Write each row of matrix as a vector which
has length n. Adding themselves and their complements to back of these vectors respectively, new vectors which
has 2n length are obtained. Write these new vectors as a code words. If completions of these code words join to this
set, it is obtained that a Hadamard code including 4n elements. Thus the minimum distance of this code is n .

Define the Gray maps as :

Φ1 : Rn −→ F2n
2

(r1, r2, ..., rn) 7→ Φ (r1, r2, ..., rn) = (a1, a2, ..., an, b1, b2, ..., bn)

where ri = ai + vbi ∈ R for 1 6 i 6 n.

Φ2 : Sn −→ F2n
2

(s1, s2, ..., sn) 7→ Φ (s1, s2, ..., sn) = (c1, c2, ..., cn, c1 + d1, c2 + d2, ..., cn + dn)

where si = ci + vdi ∈ S for 1 6 i 6 n.
Using the Gray maps Φ1 and Φ2 , the codes which have the length n over the rings F2 + vF2 where v2 = 1

and v2 = v respectively may be corresponded to binary codes which have the length 2n. There is a relation
dLR

(a, b) = dH(Φ1(a),Φ1(b)) for a , b ∈ Rn between Lee distance dLR
over Rn and Hamming distance dH over F2n

2 .
There is a relation dLS

(a′, b′) = dH(Φ2(a′),Φ2(b′)) for a′, b′ ∈ Sn between Lee distance dLS
over Sn and Hamming

distance dH over F2n
2 .

This means that the Gray maps Φ1 and Φ2 are isometric.
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3. Construction
Over the ring R ; Choose that all elements of first row of the matrix NRα1,α2 from the set { 1 }, choose that all

elements of the other row from the set { 0 , 1 , v, 1 + v } if α2 = 0 and from the set { 0 , 1 + v } if α1 = 0. Assume that
colums of this matrix are lexicographically ordered. This matrix constructed above is a special matrix which has
α1 + α2 + 1 rows. Certain examples for the matrix NRα1,α2 constructed above are given below :

NR
0,0 = [ 1 ] , NR0,1 =

[
1 1
0 1 + v

]
, NR0,2 =

 1 1 1 1
0 0 1 + v 1 + v
0 1 + v 0 1 + v

,

NR
0,3 =


1 1 1 1 1 1 1 1
0 0 0 0 1 + v 1 + v 1 + v 1 + v
0 0 1 + v 1 + v 0 0 1 + v 1 + v
0 1 + v 0 1 + v 0 1 + v 0 1 + v

, NR1,0 =

[
1 1 1 1
0 1 v 1 + v

]
,

NR
2,0 =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 v v v v 1 + v 1 + v 1 + v 1 + v
0 1 v 1 + v 0 1 v 1 + v 0 1 v 1 + v 0 1 v 1 + v

,

NR
1,1 =

 1 1 1 1 1 1 1 1
0 0 1 1 v v 1 + v 1 + v
0 1 + v 0 1 + v 0 1 + v 0 1 + v

.

Define the code CRα1,α2 = { (c1, c2).NR
α1,α2

∣∣ c1 ∈ Rα1+1 , c2 ∈ Fα2
2 } which has a generator matrix NRα1,α2

where α1, α2 are integers such that α1, α2 > 0. The lenght of this code is n = 22α1+α2 . Moreover ; in the case v2 = 1,
the parameter of the code CRα1,α2 over F2 + vF2 is (n, 4n, n) .

Over the ring S ; Choose that all elements of first row of the matrix NSα1,α2 from the set { 1 }, choose that all
elements of the other row from the set { 0 , 1 , v, 1 + v } if α2 = 0 and from the set { 0 , 1 } if α1 = 0. Assume that
colums of this matrix are lexicographically ordered. This matrix constructed above is a special matrix which has
α1 + α2 + 1 rows. Certain examples for the matrix NSα1,α2 constructed above are given below :

NS
0,0 = [ 1 ], NS0,1 =

[
1 1
0 1

]
, NS0,2 =

 1 1 1 1
0 0 1 1
0 1 0 1

, NS0,3 =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

,

NS
1,0 =

[
1 1 1 1
0 1 v 1 + v

]
,

NS
2,0 =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 v v v v 1 + v 1 + v 1 + v 1 + v
0 1 v 1 + v 0 1 v 1 + v 0 1 v 1 + v 0 1 v 1 + v

,

NS
1,1 =

 1 1 1 1 1 1 1 1
0 0 1 1 v v 1 + v 1 + v
0 1 0 1 0 1 0 1

.

Define the code CSα1,α2 = { (c1, c2).NS
α1,α2

∣∣ c1 ∈ Rα1+1 , c2 ∈ Fα2
2 }which has a generator matrix NSα1,α2

where α1, α2 are integers such that α1, α2 > 0. The lenght of this code is n = 22α1+α2 . Moreover ; in the case
v2 = v, the parameter of the code CSα1,α2 over F2 + vF2 is (n, 4n, n).

Theorem 3.1. Let Φ1 : Rn −→ F2n
2 be the Gray map. If CRα1,α2 is a code generated by the matrix NRα1,α2 over R, it’s

image Φ1(CR
α1,α2) under the Gray map is the (2n, 4n, n)_Hadamard code over the field F2.

Proof. The code CRα1,α2 generated by the matrix NRα1,α2 which has dimension(α1 + α2 + 1) × n is of the form
CR

α1,α2 = { (c1, c2).NR
α1,α2

∣∣ c1 ∈ Rα1+1 , c2 ∈ Fα2
2 } . The length of CRα1,α2 is n = 22α1+α2 . It is clear that

the code CRα1,α2 ⊆ Rn is a repetition code and it has 4n elements, i.e. CR
α1,α2 is a (n, 4n, n)_ code. Hence

Φ1(CR
α1,α2) ⊆ F2n

2 and Φ1(CR
α1,α2) is a binary Hadamard code with (2n, 4n, n) parameter.

Lemma 3.1. The dual code (CR
α1,α2)⊥ is a (n, 4

n

4n , 4)_code and it’s image Φ1((CR
α1,α2)⊥) under the Gray map is a

(2n, 4
n

4n , 4)_code, in except the case α1 = α2 = 0 .

Proof. The generator matrix NRα1,α2 of the code CRα1,α2 is the parity-check matrix of the dual code (CR
α1,α2)⊥ .

The dual code of (CR
α1,α2)⊥ contains elements c of Rn satisfied NRα1,α2 .cT = 0 . It is easily seen that the number of

words satisfied this condition is 4n

4n and the minimum weight of these words is 4. Thus (CR
α1,α2)⊥ is (n, 4

n

4n , 4)_code.
Also it is seen that Φ1((CR

α1,α2)⊥) has the parameter (2n, 4
n

4n , 4).
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Theorem 3.2. Let Φ2 : Sn −→ F2n
2 be the Gray map. If CSα1,α2 is a code generated by the matrix NSα1,α2 over S , it’s

image Φ2(CS
α1,α2) under the Gray map is the (2n, 4n, n)_Hadamard code over the field F2.

Proof. The proof is clear when the ring is taken instead of in the proof of Theorem 3.1.

Lemma 3.2. The dual code (Cs
α1,α2)⊥ is a (n, 4

n

4n , 4)_code and it’s image Φ2((Cs
α1,α2)⊥) under the Gray map is a

(2n, 4
n

4n , 4)_code, in except the case α1 = α2 = 0 .

Proof. The proof is clear when the ring is taken S instead of R in the proof of Lemma 3.1.

4. Cyclic codes and quasi-cyclic codes of index 2

Let c = (c1, c2, ..., cn) be an element ofRn (or Sn ). c = (c1, c2, ..., cn) is mapped one to one with c(x) =
n∑
i=1

ci x
i ∈

R [x] ( or S[x] ) .

Definition 4.1. Let CRα1,α2 ⊆ Rn be a linear code n = 22α1+α2 , and define the map

τ1 : Rn −→ Rn

(c1, c2, ..., cn) 7→ τ1 (c1, c2, ..., cn) = (cn, c1, ..., cn−1)

If τ1(CR
α1,α2) = CR

α1,α2 then CRα1,α2 is cyclic code over R .

Definition 4.2. Let CSα1,α2 ⊆ Sn be a linear code, n = 22α1+α2 and define the map

τ2 : Sn −→ Sn

(c1, c2, ..., cn) 7→ τ2 (c1, c2, ..., cn) = (cn, c1, ..., cn−1)

If τ2(CS
α1,α2) = CS

α1,α2 then CSα1,α2 is cyclic code over S .

Definition 4.3. Let Dα1,α2 ⊆ F2
2n be a linear code , n = 22α1+α2 and define the map

σ⊗ 2 : F2
2n −→ F2

2n

(d1, d2, ..., d2n) 7→ σ⊗ 2(d1, d2, ..., d2n) = (dn, d1, ..., dn−1, d2n, dn+1, ...d2n−1)

If σ⊗ 2(Dα1,α2) = Dα1,α2 then Dα1,α2 is quasi-cyclic code of index 2 over F2 .

Lemma 4.1. σ⊗ 2 Φ1 = Φ1 τ1 is satisfied.

Proof. Let c = (c1, c2, ..., cn) ∈ Rn where ci = ai + vbi ∈ R for 1 6 i 6 n. If Φ1(c) = Φ1(c1, c2, ..., cn) =Φ1(a1 +
vb1, a2 + vb2, ..., an + vbn) = (a1, a2, ..., an, b1, b2, ..., bn) then σ⊗ 2 (Φ1(c)) =(an, a1, ..., an−1, bn, b1, ..., bn−1). On
the other hand, τ1 (c1, c2, ..., cn) = (cn, c1, ..., cn−1) . Then Φ1 τ1(c) =Φ1(τ1(c1, c2, ..., cn)) = Φ1(cn, c1, ..., cn−1)=
(an, a1, ..., an−1, bn, b1, ..., bn−1) .

Lemma 4.2. σ⊗ 2 Φ2 = Φ2 τ2 is satisfied.

Proof. Let c = (c1, c2, ..., cn) ∈ Sn where ci = ai + vbi ∈ S for 1 6 i 6 n . If Φ2(c) = Φ2(c1, c2, ..., cn) =Φ2(a1 +
vb1, a2 + vb2, ..., an + vbn) = (a1, a2, ..., an, a1 + b1, a2 + b2, ..., an + bn) then σ⊗ 2 (Φ2(c)) =(an, a1, ..., an−1, an +
bn, b1, ..., an−1+bn−1) . On the other hand, τ2 (c1, c2, ..., cn) = (cn, c1, ..., cn−1). Then Φ2 τ2(c) =Φ2(τ2(c1, c2, ..., cn)) =
Φ2(cn, c1, ..., cn−1)= (an, a1, ..., an−1, an + bn, b1, ..., an−1 + bn−1) .

Theorem 4.1. Hadamard codes which are obtained with NRα1,α2 (or Nsα1,α2 ) are quasi-cyclic code of index 2, in except the
case α2 = 0 .

Proof. It is seen that the length of the codesCRα1,α2 (orCSα1,α2 ) which are defined in third section by using different
matrices NRα1,α2 (or NSα1,α2) is n = 22α1+α2 . Therefore the length of the all codes Φ1(CR

α1,α2) (or Φ2(CS
α1,α2))

over F2 is 22α1+α2+1 and they are equal to the Hadamard codes that are obtained by using Hadamard matrices.
Thus from the Lemma 4.1. (or Lemma 4.2.) the equalitions σ⊗ 2 (Φ1(CR

α1,α2))= Φ1(τ1(CR
α1,α2))= Φ1(CR

α1,α2) (or
σ⊗ 2 (Φ2(CS

α1,α2))= Φ2(τ2(CS
α1,α2))= Φ2(CS

α1,α2) ) are satisfied.
Since Φ1 (or Φ2) is injective, it follow that σ⊗ 2 (Φ1(CR

α1,α2))= Φ1(CR
α1,α2) (or σ⊗ 2 (Φ2(CS

α1,α2))= Φ2(CS
α1,α2)

). Consequently Hadamard codes Φ1(CR
α1,α2) (or Φ2(CS

α1,α2)) are quasi-cyclic code of index 2 .
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Example 4.1. Write the matrix NR0,1 =

[
1 1
0 1 + v

]
to define the code CR0,1. Then elements of CR0,1 are of the

form c = (c1, c2).NR
0 , 1 , where c1 ∈ R , c2 ∈ F2. CR0,1 = { 0 0 , 0 1 + v , 1 1 , 1 v , v v , v 1 , 1 + v 1 + v , 1 +

v 0 } ⊆ R2. It is seen that dLR
(CR

0,1 ) = 2 and
∣∣CR0,1

∣∣ = 8 and then this is a (2, 8, 2)_ code. Therefore Φ1(CR
0,1) =

{ 0000 , 0011 , 1111 , 1100 , 0101 , 0110 , 1010 , 1001 } ⊆ F4
2 is a (4, 8, 2)_Hadamard code. Let A2 =

[
1 1
−1 1

]
be a

normalized Hadamard matrix. Writing 0 instead of 1 and 1 instead of −1 , the vectors 00 and 10 are obtained.
(Adding the complements of these vectors the new vectors 00 , 10 , 11 , 01 are obtained). Then using the method
given above, the new codewords 0000 , 0011 , 1111 , 1100 , 0101 , 0110 , 1010 , 1001 are obtained. The code formed
by these codewords is Φ1(CR

0,1) code which is a (4, 8, 2)_Hadamard code.Moreover (CR
0,1)⊥ = { 0 0 , 1+v 1+v },

Φ((CR
0,1)⊥) = { 0000 , 1111} . CR0,1 is a cyclic code such that the equation τ1(CR

0,1) = CR
0,1 is provided. Similarly

Φ1(CR
0,1) is quasi-cyclic code of index 2 such that the equation σ⊗ 2(Φ1(CR

0,1)) = Φ1(CR
0,1) is provided.

Example 4.2. Write the matrix NS0,2 =

 1 1 1 1
0 0 1 1
0 1 0 1

 to define the code CS0,2. Then elements of CS0,2 are of the

form c = (c1, c2).NS
0 , 2 , where c1 ∈ R , c2 ∈ F2

2 .
CS

0,2 = { 0 0 0 0 , 0 1 0 1 , 0 0 1 1 , 0 1 1 0 , 1 1 1 1 , 1 0 1 0 , 1100 , 1 0 0 1 , v v v v , v 1 + v v 1 + v , v v 1 + v 1 + v ,

v 1 + v 1 + v v , 1 + v 1 + v 1 + v 1 + v , 1 + v v 1 + v v , 1 + v 1 + v v v , 1 + v v v 1 + v } ⊆ S4.

It is seen that dLS
(CS

0,2 ) = 4 and
∣∣CS0,2

∣∣ = 16 and then this is a (4, 16, 4)_code.Therefore
Φ2(CS

0,2) = { 00000000 , 01010101 , 00110011 , 01100110 11111111 , 10101010 , 11001100 , 10011001 ,

00001111 , 01011010 , 00111100 , 01101001 , 11110000 , 10100101 , 11000011 , 10010110 } ⊆ F8
2

is a (8, 16, 4)_ Hadamard code. Let A4 =


1 1 1 1
−1 1 −1 1
−1 −1 1 1
−1 −1 −1 1

 be a normalized Hadamard matrix. Writing 0

instead of 1 and 1 instead of −1 , the vectors 0000,1010 ,1100 and 0110 are obtained. (Adding the complements of
these vectors the new vectors 0000,1010 ,1100, 0110 ,1111 , 0101 , 0011 and 1001 are obtained). Then using the method
given above, the new codewords 00000000 , 01010101 , 00110011 , 01100110, 11111111 , 10101010 , 11001100,

10011001, 00001111 , 01011010 , 00111100 , 01101001,11110000 , 10100101 , 11000011 , 10010110 are obtained. The
code formed by these codewords is Φ2(CS

0,2) code which is a (8, 16, 4)_Hadamard code. Moreover (CS
0,2)⊥ =

CS
0,2. CS0,2 is a cyclic code such that the equation τ2(CS

0,2) = CS
0,2 is provided. Similarly Φ2(CS

0,2) is quasi-cyclic
code of index 2 such that the equation σ⊗ 2(Φ2(CS

0,2)) = Φ2(CS
0,2) is provided.
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