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Abstract
In this paper we introduce two kinds of Chlodowsky-type q-Bernstein-Schurer-Stancu- Kantorovich
operators on the onbounded domain. The Korovkin type statistical approximation property of these
operators are investigated. We investigated the rate of convergence for this approximation by means of
the first and the second modulus of continuity. The rate of convergence is investigated by using Lipschitz
classes of functions and the modulus of continuity of the derivative of the function. Then, we obtain
point-wise estimate the Lipchitz type maximal function.
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1. Introduction
The approximation theory is gaining importance, specifically the q-calculus due to its applications in various

areas like Mathematics, Physics and Mechanics. Lupas [15] initiated the application of q-calculus in area of the
approximation theory, and introduced the q-Bernstein polynomials. In 1997, it was Philips [18] who proposed and
studied other q-Bernstein polynomials. Due to slow convergence of Bernstein polynomials some results on the
expansion of q-Bernstein polynomials in orthogonal bases have been obtained in [4]. Proceeding further, several
studies [5, 10, 16, 17], continued to obtain different properties of q-Bernstein polynomials and Durrmeyer variants.
Approximations of vector values using q-Durrmeyer operators applied to random and fuzzy approximation are
discussed in [9]. Agrawal et al. [2] introduced the Stancu type generalization of the Bernstein- Schurer operators.
Other important operators are q-Bernstein types Integral Operators discussed in [5, 14].

Several studies investigated the q-analogue polynomials properties using statistical approximation. For instance
in [19] q-Bernstein-Schurer; in [14] q-Bernstein-Schurer-Stancu-Kantorovich; [11] q-Baskakov-Kantorovich; in [1]
q-Szász-King type operators are discussed and statistical approximation properties are demonstrated.

To motivate our paper, we take into consideration Karsli and Gupta [13] findings and their introduction of
new operators to obtain local approximation properties and the rate of convergence. In theory of approximation,
convergence is significant. This paper motive is to obtain a local approximation theorem and rate of convergence of
Chlodowsky type q-Bernstein-Schurer-Stancu-Kantorovich operators and the weighted approximation properties.
The results, turns out to have an order of approximation slightly better compared to the classical Chlodowsky-
Bernstein-Stancu type operators in a certain subspace of continuous functions.

First, let us give some basic definitions and notations from q-calculus. Let q > 0, for each nonnegative integer k,
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the q-integer [k]q and the q-factorial [k]q! are defined by

[k]q =

{
(1− qk)/(1− q), q 6= 1
k, q = 1,

and

[k]q! =

{
[k]q[k − 1]q . . . [1]q, k ≥ 1
1, k = 1,

respectively. Then for q > 0 and integers n, k; n ≥ k ≥ 0, we have:

[k + 1]q = 1 + q[k]q, and [k]q + qk[n− k] = [n]q.

For integers n, k; n ≥ k ≥ 0, the q-binomial coeficients is defined by[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
.

For an arbitrary function f(x), q-differential is given by:

dqf(x) = f(qx)− f(x).

The q-Jackson integral in the interval [0, b] is defined as:

b∫
0

f(t)dqt = (1− q)b
∞∑
j=0

f(qjb)qj , 0 < q < 1.

provided that sums converge absolutely. Suppose 0 < a < b. The q-Jackson integral in a generic interval [a, b] is
defined as

b∫
a

f(t)dqt =

b∫
0

f(t)dqt−
a∫

0

f(t)dqt, 0 < q < 1.

More details regarding q-calculus can be found in [12].
Qiu Lin in [14] introduced the q-Bernstein-Schurer-Stancu-Kontorovich operatorsKα,β

n,p (f ; q;x) : C[0, 1+p]→ C[0, 1],
as follows

K(α,β)
n,p (f ; q;x) =

n+p∑
k=0

[
n+ p

k

]
xk ·

n+p−k−1∏
s=0

(1− qsx)
1∫

0

f

(
t

[n+ 1 + β]q
+

q[k + α]q
[n+ 1 + β]q

)
dqt,

0 ≤ x ≤ 1, for any n ∈ N and p ∈ N0 and 0 ≤ α ≤ β. H. Karsli and V. Gupta [13] introduced the q-Bernstein
Chlodowsky polynomials as follow:

Cn(f ; q;x) =

n+p∑
k=0

f

(
[k]q
[n]q

bn

)[
n+ p

k

](
x

bn

)k n+p−k−1∏
s=0

(
1− qs x

bn

)
, 0 ≤ x ≤ bn,

where bn is a positive increasing sequences with the property lim
n→∞

bn =∞, lim
n→∞

bn
[n]q

= 0.
Recently, the Chlodowsky type q-Bernstein-Stancu-Kantorovich operators introduced by authors in [20] as

K(α,β)
n,p (f ; q;x) =

n+p∑
k=0

[
n+ p

k

](
x

bn

)k n+p−k−1∏
s=0

(
1− qs x

bn

)
·

1∫
0

f

(
(1 + (q − 1)[k]q)t+ [k]q + α

[n+ 1]q + β
bn

)
dqt,

where n ∈ N and p ∈ N0 and α, β ∈ N with 0 ≤ α ≤ β, 0 ≤ x ≤ bn, 0 < q < 1.
This paper is organized as follows. In Section 2, we introduce the Chlodowsky type q-Bernstein-Schurer-

Stancu-Kantorovich operators and evaluate the moments of these operators. In section 3 we obtain the statistical
approximation properties of Korovkin type. In Section 4 we obtain the rate of convergence of the approximation,
given in the previous section, by means of modulus of continuity of the function, elements of Lipschitz classes and
the modulus of continuity of the derivative of the function. In Section 5 we obtain results of Local Approximation
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2. Construction of the operators

Let bn be increasing sequence of positive real number and let them satisfy the properties: lim
n→∞

bn =∞ that the

sequence bn
[n]qn

decrease to zero as n→∞, where {qn} is a sequence of real numbers such that 0 < qn ≤ 1 for all n
and lim

n→∞
qn = 1. We can introduce the Chlodowski-type q-Bernstein-Schures-Stancu-Kantorovich operators for a

function f as follows:

T (α,β)
n,p (f ; q, x) =

n+p∑
k=0

pn+p,k(q;x)

1∫
0

f

(
t · bn

[n+ 1 + β]q
+
q · [k + α]q · bn
[n+ 1 + β]q

)
dqt, (2.1)

where pn+p,k(q;x) =
[
n+p
k

]
·
(
x
bn

)k
·
n+p−k−1∏

s=0
(1− qs xbn ), 0 ≤ x ≤ bn, n ∈ N , and p ∈ N0 and α, β a real parameters

satisfying the conditions 0 ≤ α ≤ β . Clearly, T (α,β)
n,p (f ; q, x) are positive linear operators.

To evaluate the main results, first let’s formulate and proof some lemma’s as follows:

Lemma 2.1. The moments of operators T (α,β)
n,p (f ; q, x) are obtained for f(t) = ti, i = 0,1,2 we have:

i) T
(α,β)
n,p (1; q;x) = 1,

ii) T
(α,β)
n,p (t; q, x) =

[n+p]qq
α+1

[n+1+β]q
x+ bn

[n+1+β]q
·
(

1
[2]q

+ q · [α]q
)
,

iii) T
(α,β)
n,p (t2; q, x) =

q2α+3[n+p]q·[n+p−1]q
[n+1+β]2q

· x2 + [n+p]q
[n+1+β]2q

bn·

·
[

2
[2]q

qα+1 + qα+2 · (2 · [α]q + qα))

]
x+

b2n
[n+1+β]2q

(
1

[3]q
+ 2

q·[α]q
[2]q

+ q2 · [α]2q
)
.

Proof . It is obvious that:
1∫
0

1 · dqt = 1,
1∫
0

t · dqt = 1
[2]q

,
1∫
0

t2 · dqt = 1
[3]q

.

i) Let’s take into consideration the Binomial identity (1− x)n+p−k =
n+p−k−1∏

s=0
(1− qsx) , then we have:

T
(α,β)
n,p (1; q, x) =

n+p∑
k=0

pn+p,k(q;x) ·
1∫
0

dqt = 1.

ii) T (α,β)
n,p (t; q, x) =

n+p∑
k=0

pn+p,k(q;x) ·
1∫

0

(
tbn

[n+ 1 + β]q
+
q · [k + α]q · bn
[n+ 1 + β]q

)
dqt =

=

n+p∑
k=0

pn+p,k(q;x) ·
1

[n+ 1 + β]q
· 1

[2]q
· bn +

n+p∑
k=0

pn+p,k(q;x) ·
q[k + α]qbn
[n+ 1 + β]q

=

=
qα+1[n+ p]q
[n+ 1 + β]q

x+
bn

[n+ 1 + β]q
·
(

1

[2]q
+ q · [α]q

)
.

using the equality which completes the proof of ii)
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iii) After the calculation we obtain:

T (α,β)
n,p (t2; q, x) =

n+p∑
k=0

pn+p,k(q;x)

1∫
0

(
tbn

[n+ 1 + β]q
+
q · [k + α]qbn
[n+ 1 + β]q

)2

dqt =

=
b2n

[n+ 1 + β]2q

n+p∑
k=0

pn+p,k(q;x) ·
(

1

[3]q
+ 2q · [k + α]q

[2]q
+ q2 · [k + α]2q

)
=

=
b2n

[n+ 1 + β]2q
· 1

[3]q
+

2b2nq

[2]q · [n+ 1 + β]2q
· [α]q +

2b2nq

[2]q · [n+ 1 + β]2q
· qα · x

bn
·

[n+ p]q +
b2nq

2

[n+ 1 + β]2q

[
[α]2q + 2[α]q · qα[n+ p]q ·

x

bn
+ q2α[n+ p]q ·

x

bn
+ q2α+1 · x

b2n

[n+ p]q · [n+ p− 1]q

]
= q2α+3 · [n+ p]q · [n+ p− 1]q

[n+ 1 + β]q
x2 +

[n+ p]q
[n+ 1 + β]2q

bn·[
2

[2]q
qα+1 + qα+2 ·

(
2 · [α]q + qα

)]
x+

b2n
[n+ 1 + β]2q

(
1

[3]q
+

2q · [α]q
[2]q

+ q2[α]2q

)
. �

Lemma 2.2. For the operators T (α,β)
n,p defined by (2.1), we have

sup
0≤x≤bn

T
(α,β)
n,p

(
(t− x)2; q;x

)
≤ b2n

{(
[n+p]q

[n+1+β]q q
qα+1 − 1

)
+

2·(1+α)[n+p]q
[n+1+β]q

+ (1+α)2

[n+1+β]2q

}
.

Proof. Using Lemma 2.1 and the linearity of the operators, we have:

T (α,β)
n,p ((t− x)2) = T (α,β)

n,p (t2; q, x)− 2xT (α,β)
n,p (t; q;x) + x2T (α,β)

n,p (1; q;x) =

=

(
q2α+3 · [n+ p]q · [n+ p− 1]q

[n+ 1 + β]2q
− 2 · q

α+1 · [n+ p]q
[n+ 1 + β]q

+ 1

)
x2+

+

[
[n+ p]q

[n+ 1 + β]2q
bn ·

(
2

[2]q
qα+1 + qα+2 ·

(
2[α]q + qα

))
−

− 2 · bn
[n+ 1 + β]q

( 1

[2]q
+ q · [α]q

)]
x+

b2n
[n+ 1 + β]2q

(
1

[3]q
+

2q · [α]q
[2]q

+ q2 · [α]2q
)

if we take the supremum on [0, bn], and considering [n+ p]q · [n+ p− 1]q · q ≤ [n+ p]2q, we have:

T
(α,β)
n,p ((t− x)2); q;x) ≤ b2n

{(
[n+p]q

[n+1+β]q
· qα+1 − 1

)2
+

2·(1+α)[n+p]q
[n+1+β]2q

+ (1+α)2

[n+1+β]2q

}
. �

We now redefine T (α,β)
n,p (f ; q;x) as follows:

T̃
(α,β)
n,p (f ; q, x) =

∑n+p
k=0 pn+p,k(q;x)

1∫
0

f
(

tbn
[n+1]q+β

+
q[k]q+α
[n+1]q+β

bn

)
dqt.

For the redefined operators, let us give the following Lemma.

Lemma 2.3. For T̃ (α,β)
n,p (ti; q, x), i = 0, 1, 2, one has

i) T̃
(α,β)
n,p (1; q, x) = 1,

ii) T̃ (α,β)
n,p (t; q, x) =

[n+p]q
[n+1]q+β

· qx+ bn
[n+1]q+β

(
1

[2]q
+ qα

)
,

iii) T̃ (α,β)
n,p (t2; q, x) =

[n+p]q [n+p−1]q
([n+1]q+β)2

· q3x2 + [n+p]qbn
([n+1]q+β)2

[
2q
[2]q

+ q2(2α+ 1)
]
x+

+
b2n

([n+1]q+β)2

[
1

[3]q
+ 2qα

[2]q
+ α2q2

]
.

Proof.
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i) It is obvious that T̃ (α,β)
n,p (1; q, x) = 1

ii) T̃ (α,β)
n,p (t; q;x) =

n+p∑
k=0

pn+p,k(q;x)·
1∫
0

(
tbn

[n+1]q+β
+

q([k]q+α)bn
[n+1]q+β

)
dqt =

=
1

[2]q

bn
[n+ 1]q + β

+
qbn

[n+ 1]q + β

n+p∑
k=0

[n+ p]q[n+ p− 1]q![k]q + α

[k]q![n+ p− k]q!
pn+p,k(q;x) =

=
1

[2]q

bn
[n+ 1]q + β

+
q[n+ p]q

[n+ 1]q + β

xbn
bn

+
qαbn

[n+ 1]q + β
=

[n+ p]q
[n+ 1]q + β

qx+
bn

[n+ 1]q + β

(
1

[2]q
+ qα

)

iii) T̃ (α,β)
n,p (t2; q;x) =

n+p∑
k=0

pn+p,k(q;x) ·
1∫

0

(
tbn

[n+ 1]q + β
+
q([k]q + α)bn
[n+ 1]q + β

)2

dqt =

=
b2n

[n+ 1]q + β

[
1

[3]q
+

2qα

[2]q
+ α2q2

]
+

2b2n[n+ p]qq
x
bn

([n+ 1]q + β)2

(
1

[2]q
+ αq

)
+
q3b2n[n+ p]q[n+ p+ 1]q

([n+ 1]q + s)2
x2

b2n
=

=
[n+ p]q[n+ p− 1]q
([n+ 1]q + β)2

q3x2+
[n+ p]qbn

([n+ 1]q + β)2

[
2q

[2]q
+ q2(2α+ 1)

]
x+

b2n
([n+ 1]q + β)2

[
1

[3]q
+

2qα

[2]q
+ α2q2

]
.�

Lemma 2.4. For the operators T̃ (α,β)
n,p we have:

sup
0≤x≤bn

T̃ (α,β)
n,p ((t− x)2; q;x) ≤

(
[n+ p]q

[n+ 1]q + β
− 1

)2

b2n +
2(1 + α)[n+ p]qb

2
n

([n+ 1]q + β)
+

(1 + α)2b2n
([n+ 1]q + β)

Proof. Based on linearity and positivity of operators and the Lemma 2.3, we have:

T̃ (α,β)
n,p ((t− x)2; q;x) = T̃ (α,β)

n,p (t2; q;x)− 2xT̃ (α,β)
n,p (t;x) + x2T̃ (α,β)

n,p (1; q;x) =

= x2
(
[n+ p]q[n+ p− 1]q
([n+ 1]q + β)2

q3 − 2
[n+ p]q

([n+ 1]q + β)
q + 1

)
+ x

(
[n+ p]bn

([n+ 1]q + β)2(
2q

[2]q
+ q2(2α)− 2bn

[n+ 1]q + β

(
1

[2]q
+ qα

)))
+

b2n
([n+ 1]q + β)2

[
1

[3]q
+

2qα

[2]q
+ α2q2

]
.

Then:

sup
0≤x≤bn

T̃ (α,β)
n,p ((t− x)2; q;x) ≤

(
[n+ p]q

[n+ 1]q + β
− 1

)2

b2n +
2(1 + α)[n+ p]qb

2
n

([n+ 1]q + β)
+

(1 + α)2b2n
([n+ 1]q + β)

.

3. Statistical approximation of Korovkin type

First, we introduce some notation and the basic definitions used in this paper. Let A = (ajn) be a non-negative
infinite summability matrix. For a given sequence x := (xn) the A-transform of x, denoted by Ax := ((Ax)j), is
given by (Ax)j =

∑∞
n=1 ajnxn, provided the series converges for each j. A is said to be regular if limj(Ax)j = L

whenever limj(x)j = L. Then x = (x)j is said to be A-statistically convergent to L i.e. stA− limj(x)j = L if for every
ε > 0, limj

∑
k:|xk−L|≥ε ajk = 0 [7, 8]. Replacing A by C1 then A is a Cesaro matrix of order one and A-statistical

convergence is reduced to the statistical convergence. For A = I , the identity matrix then A-statistical convergence
is called ordinary convergence.

Let R denote the set of real numbers. A real function ρ is called a weight function if it is continuous on R and
lim
|x|→∞

ρ(x) =∞, ρ(x) ≥ 1 for all x ∈ R.

Let us denote by Bρ(R) the weighted space of real-valued functions f defined on R with the property |f(x)| ≤
Mfρ(x) for all x ∈ R, where Mf is a constant depending on the function f . We also consider the weighted subspace
Cρ(ρ) of Bρ(R) given by

Cρ(R) = {f ∈ Bρ(R) : f continuous onR}

endowed with the norm ‖ · ‖ρ where ‖ f ‖ρ= sup
x∈R

|f(x)|
ρ(x) , Bρ(R) andCρ(R) are Banach space.
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The concept of statistical convergence in approximation theory by linear positive operators was used by Gadijev
and Orhan [8]. They proved the Bohman-Korovkin-type approximation theorem for statistical convergence.

Theorem 3.1. (see [8]). If the sequence of linear positive operators An : C[a, b]→ C[a, b] satisfies the conditions:
stA − lim

n
‖ An(ei; ·)− ei ‖C[a,b]= 0,

for ei(t) = ti, i = 0, 1, 2, then for any f ∈ C[a, b],
stA − lim

n
‖ An(f ; ·)− f ‖C[a,b]= 0.

Using A− statistical convergence Duman and Orhan proved the following Bohman-Korovkin-type theorem
([6], theorem 3.1).

Theorem 3.2. Let A = (ajn)j,n be a non negative regular summability matrix and let (Ln)n be sequences of positive linear
operators from Cρ1(R) into Bρ2R, where ρ1 and ρ2 satisfy:

lim
|x|→∞

ρ1
ρ2

= 0, (3.1)

Then stA− lim
n
‖ LnFv −Fv ‖ρ1= 0, v = 0, 1, 2. where Fv(x) =

xvρ1(x)
1+x2 , v = 0, 1, 2. Moreover, taking A the Cesáro matrix

of the first order, Theorem 3.2 implies

Corollary 3.1. ([6]) For any sequences (Tn)n≥1 of linear positive operators acting from Cρ0(R
+) into Cρλ(R+), λ > 0 one

has

stA − lim
n
‖ Tnf − f ‖ρλ= 0, f ∈ Cρ0(R+). (3.2)

if and only if
stA − lim

n
‖ Tnei − ei ‖ρ0= 0, i = 0, 1, 2, (3.3)

where ρ0 = 1 + x2.
Let q = qn, 0 < qn < 1, be sequences satisfying the following conditions:

stA − lim
n
qn = 1, stA − lim

n
qnn = a (a < 1), stA − lim

n

bn
[n]q

= 0. (3.4)

Theorem 3.3. If q = (qn) satisfy condition (3.4), for each function f ∈ Cρ0(R+), one has:
stA − lim

n
‖ T (α,β)

n,p (f ; q;x)− f ‖ρ0= 0.

Proof. For all f ∈ Cρ0(R+), the operator T (α,β)
n,p (f ; q, x) is defined on [0, bn]. We extend it on R+ in the classical

manner. Let T̃ (α,β)
n,p be defined as follows

T̃ (α,β)
n,p (f, q, x) =

{
T

(α,β)
n,p (f ; q;x) for x ∈ Ibn
f(x), x ∈ R+\Ian .

For each n ∈ N the norm ‖ T̃ (α,β)
n,p (f ; q;x)− f ‖ρ0 coincides with the norms of the element (T (α,β)

n,p (f ; q;x)− f) in
the space Bρλ [0, bn] where ρλ = 1 + x2+λ, for λ ≥ 0. Applying Corollary 3.1 to operators Tn ≡ T̃α,βn,p , the proof of
Theorem will be finished. In this respect, it is sufficient to prove that under one hypothesis, the operators verify the
conditions given in (3.3). From Theorem 3.1, it is enough to prove that stA − limn ‖ T̃ (α,β)

n,p (ei; q, x)− ei ‖ρ0= 0 for
ei = ti for i = 0, 1, 2. It is clear that

stA − limn ‖ T̃ (α,β)
n,p (1; q, x)− 1 ‖ρ0= 0.

From Lemma 2.1 case ii) we have

‖ T̃ (α,β)
n,p (t; q, x)− x ‖ρ0= sup

x∈[0,∞)

|T̃ (α,β)
n (t; qn, x)− x)

1 + x2
≤ sup

0≤x≤bn

|T (α,β)
n (t; qn, x)− x|

1 + x2
=

= sup
0≤x≤bn

1

1 + x2

{∣∣∣∣qα+1[n+ p]q
[n+ 1 + β]q

− 1

∣∣∣∣x}+
bn

[n+ 1 + β]q
(

1

[2]q
+ q[α]q) ≤

≤
∣∣∣∣qα+1[n+ p]q
[n+ 1 + β]q

− 1

∣∣∣∣ bn +
bn

[n+ 1 + β]q

(
1

[2]q
+ q[α]q

)
≤

≤
∣∣∣∣qα+1[n+ p]q
[n+ 1 + β]q

− 1

∣∣∣∣ bn +
bn
[n]q

(1 + α). (3.5)
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We denote θn =

(
qα+1[n+p]q
[n+1+β]q

− 1

)
· bn, and γn = bn

[n]q
(1+α). From (5), we get stA− limn θn = stA− limn γn = 0.

Now, for a given ε > 0, let’s define the following sets:
T1 =

{
n :‖ T (α,β)

n,p (t; q;x)− x ‖ρ0≥ ε
}
,

T2 =
{
n :
(
qα+1[n+p]q
[n+1+β]q

− 1
)
bn ≥ ε/2

}
,

T3 =
{
n : (α+1)bn

[n]q
≥ ε/2

}
.

Then, from (3.5), we obtain T1 ⊆ T2 ∪ T3, so which implies that
∑
k∈T1

ank ≤
∑
k∈T1

ank +
∑
k∈T2

ank and hence

stA − lim
n
‖ K(α,β)

n,p (t; qn, · − x ‖ρ0= 0.

From Lemma Lemma 2.1 case iii) we have

‖ T̃n,p(α, β)(t2; q;x)− x2 ‖ρ0= sup
x∈[0,∞)

|T̃ (α,β)
n (t2; q, x)− x2|

1 + x2
≤ sup

0≤x≤bn

|T (α,β)
n (t2; q, x)− x2|

1 + x2

≤ sup
0≤x≤bn

1

1 + x2

{ ∣∣∣∣q2α+3[n+ p]q[n+ p− 1]q
[n+ 1 + β]2q

− 1

∣∣∣∣x2 + [n+ p]q
[n+ 1 + β]q

bn·(
2

[2]q
qα+1 + qα+2(2[α]q + qα)

)
x+

b2n
[n+ 1 + β]2q

(
1

[3]q
+

2q[α]q
[2]q

+ q2[α]2q

)}
≤

∣∣∣∣∣q2α+2[n+ p]2q
[n+ 1 + β]2q

− 1

∣∣∣∣∣+ [n+ p]qnq
2α+2
n bn

[n+ 1 + β]2q
+

(2 + 2α)[n+ p]qnbn
[n+ 1 + β]2qn

+
(1 + α)2b2n

[n+ 1 + β]2qn

≤

∣∣∣∣∣ [n+ p]2qnq
2α+2

[n+ 1 + β]2qn
− 1

∣∣∣∣∣+ (3 + 2α)bn
[n]qn

(
1 +

[p]qn
[n]qn

)
+

(1 + α)2

[n]2qn
b2n = αn + βn + γn,

from (3.4) and [n+ p]qn = [n]qn + qnn [p]qn , [n+1+ β]qn = [n]qn + qnn [β+1], then we have st− lim
n
αn = st− limβn =

st− lim
n
γn = 0.

Let ε > 0. Then, we define the following sets:
U =

{
k :‖ T̃ (α,β)

n,p (t2; q;x)− x2 ‖ρ0≥ ε
}
,

U1 = {k : αk ≥ ε/3} ,
U2 = {k : βk ≥ ε/3} ,
U3 = {k : γk ≥ ε/3} .

Clearly, U ⊆ U1 ∪ U2 ∪ U3, which implies that
∑
k∈U

ank ≤
∑
k∈U1

ank +
∑
k∈U2

ank +
∑
k∈U3

ank. Thus,

stA − lim
n→∞

‖ T̃ (α,β)
n,p (t2; q, x)− x2 ‖ρ0= 0. �

Theorem 3.4. If q = (qn), satisfy (3.4), then ∀f ∈ Cρ0(R+),
stA − lim

n
‖ T (α,β)

n,p (f ; q;x)− f ‖ρ0= 0

Proof. Let T̃ (α,β)
n,p be defined as:

T̃ ∗(α,β)n,p (f, q, x) =

{
(T̃

(α,β)
n,p f)(x) for 0 ≤ x ≤ bn
f(x), x > bn.

For each n ∈ N , the norm ‖ T̃ ∗(α,β)n,p (f ; q;x)− f ‖ρλ coincides with the norm of the element (T̃ ∗n,pf − f) in the space
Bρλ [0, bn], for any λ ≥ 0.
Applying Corollary 3.1 to the operators Tn ≡ T̃

∗(α,β)
n,p , the proof of Theorem will be finished. In this respect, it is

sufficient to prove that, under our hypotheses, the operators verify the conditions given at (3.3). From Theorem 3.1,
it is enough to prove that stA − limn ‖ T̃ (α,β)

n,p (ei; q, x)− ei ‖ρ0= 0 for ei = ti, i=0,1,2. From Lemma 2.3 case (i), we
can easily get

stA − limn ‖ T̃ (α,β)
n,p (1; q, x)− 1 ‖ρ0= 0.
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From Lemma 2.3 case (ii) we have

‖ T̃ (α,β)
n,p (t; q, x)− x ‖ρ0= sup

x∈[0,∞)

|T̃ ∗(α,β)n,p (t; q, x)− x|
1 + x2

= sup
0≤x≤bn

|T̃ ∗(α,β)n,p (t; q, x)− x|
1 + x2

≤ sup
0≤x≤bn

∣∣∣ [n+p]qq
[n+1]q+β

− 1
∣∣∣x+ bn

[n+1]q+β

(
1

[2]q
+ q[α]qα

)
1 + x2

≤
∣∣∣∣ [n+ p]qq

[n+ 1]q + β
− 1

∣∣∣∣ bn
+

bn
[n+ 1]q + β

(
1

[2]q
+ q[α]q

)
≤
∣∣∣∣ [n+ p]qqn
[n+ 1]q + β

− 1

∣∣∣∣ bn +
bn

[n]qn
(1 + α).

(3.6)

We denote θn =

(
[n+p]qq
[n+1]q+β

− 1

)
· bn and ωn = bn

[n]qn
(1 + α).

From (3.4), we obtain stA − limn θn = limn ωn = 0, Now for a given ε > 0, let us define the following sets;
Ũ =

{
k :‖ T̃ ∗(α,β)n,p (t; q;x)− x ‖≥ ε

}
,

Ũ1 =
{
k :
(
qk[k+p]qk
[k+1]qk+β

− 1
)
bk ≥ ε/2

}
,

Ũ2 =
{
k : (α+1)bk

[k]qk
≥ ε/2

}
.

From (3.6), one can see that Ũ ⊆ Ũ1 ∪ Ũ2, which implies that
∑
k∈Ũ

ank ≤
∑
k∈Ũ1

ank +
∑
k∈Ũ2

ank and hence

stA − lim
n
‖ T̃ ∗(α,β)n,p (t; q;x)− x ‖ρ0= 0.

Similarly,

‖ T̃ ∗(α,β)n,p (t2; q;x)− x2 ‖ρ0= sup
0≤x<+∞

∣∣∣T̃ ∗(α,β)n,p (t2; q;x)− x2
∣∣∣

1 + x2
= sup

0≤x≤bn

∣∣∣T (α,β)
n,p (t2; q;x)− x2

∣∣∣
1 + x2

≤

sup
0≤x≤bn

1

1 + x2

{ ∣∣∣∣q3 [n+ p]q[n+ p− 1]q
([n+ 1]q + β)2

− 1

∣∣∣∣x2 + [n+ p]qbn
([n+ 1]q + β)2

[
2q

[2]q
+ q2(2α+ 1)

]
x+

b2n
([n+ 1]q + β)2

[
1

[3]q
+

2qα

[2]q
+ α2q2

]}
≤

∣∣∣∣∣
(

[n+ p]qq

[n+ 1]q + β

)2

− 1

∣∣∣∣∣+ [n+ p]qbn(3 + 2α)

([n+ 1]q + β)2
+

(1 + α)2b2n
[n]2qn

= α̃n + β̃n + γ̃n.

From (3.4) we obtain st− lim
n
α̃n = st− lim

n
β̃n = st− lim

n
γ̃n = 0.

Here for a given ε > 0, let us define the following sets:
K =

{
k :‖ T̃ ∗(α,β)n,p (t2; q;x)− x2 ‖ρ0≥ 0

}
,

K1 = {k : αk ≥ ε/3} ,
K2 = {k : βk ≥ ε/3} ,
K3 = {k : γk ≥ ε/3} .

Then we obtain K ⊆ K1 ∪K2 ∪K3, which implies that
∑
k∈K

an,k ≤
∑
k∈K1

an,k +
∑
k∈K2

an,k +
∑
k∈K3

an,k, and hence

stA − lim
n
‖ T̃ ∗(α,β)n,p (t2; q;x)− x2 ‖ρ0= 0.

4. Order of convergence

Let f ∈ CB [0,+∞) such that f is uniformly continuous for any δ > 0. The usual modulus of continuity for f is
defined as

ω(f ; δ) = sup
|t− x| ≤ δ

t, x ∈ [0,+∞)

|f(t)− f(x)|.

For f ∈ CB [0,+∞) and any t, x ∈ [0,+∞), we have:
|f(t)− f(x)| ≤ ω(f ; |t− x|),

so for any δ > 0 we get:
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ω(f, |t− x|) ≤
{

ω(f, δ), |t− x| < δ

ω(f, (t−x)
2

δ ), |t− x| ≥ δ.

In the light of ω(f ;λδ) ≤ (1 + λ) · ω(f ; δ) for λ > 0, it is clear that we have:
|f(t)− f(x)| ≤ (1 + δ−2(t− x)2)ω(f, δ),

for any t, x ∈ [0,+∞) and δ > 0.

Theorem 4.1. If f ∈ CB [0,+∞), and q = qn be sequences such that 0 < qn < 1, we have:

|T (α,β)
n,p (f ; q;x)− f(x)| ≤ 2ω(f ;

√
δn,p(x)),

where, δn,q(x) = T
(α,β)
n,p ((t− x)2, q, x).

Proof. The fact that T (α,β)
n,p (f ; q;x) is positive linear operator, and applying the property of modulus continuity:

|f(t)− f(x)| ≤ ω(f, δ)( |t− x|
δ

+ 1), for any δ > 0,

we have

|T (α,β)
n,p (f ; q;x) − f(x)| ≤ |T (α,β)

n,p (|f(t) − f(x)|; q, x) ≤ ω(f ; δ)(T (α,β)
n,p (1, q, x) +

1

δ
T (α,β)
n,p (|t − x|; q, x)).

From Hölder inequality, we know that: 1
p +

1
q = 1; q = 2, and p = 2, we get:

|T (α,β)
n,p (f ; q;x)− f(x)| ≤ ω(f ; δ)(T (α,β)

n,p (1) +
1

δ
{T (α,β)

n,p ((t− x)2; q, x))}1/2.

Let’s choose δ = δn,q = {T (α,β)
n,p ((t− x)2; q, x))}1/2, then we have:

|T (α,β)
n,p (f ; q;x)− f(x)| ≤ 2ω(f ; δn,p(x)). �

Theorem 4.2. Let (qn) be sequence of real numbers such that 0 < qn < 1 and lim
n→∞

qn = 1. If f ′ ∈ CB [0,∞) and ω(f ′; δ)
are modulus of continuity of f ′(x) in [0, C]. Then,

|T (α,β)
n,p (f ; q;x)−f(x)| ≤M (C |un − 1|+ vn)+2

{
C2 (un − 1)

2
+ C

(α+ 1)[n+ p]q
[n+ 1 + β]q

+
b2n(1 + α)2

[n+ 1 + β]2q

}1/2

·ω(f ′, δ),

where M is a positive constant and un =
qα+1[n+p]q
[n+1+β]q

, vn = bn
[n+1+β]q

(
1

[2]q
+ q[α]q

)
.

Proof. Using Langrange’s theorem we have:

f

(
tbn

[n+ 1 + β]q
+

q[k + α]q
[n+ 1 + β]

bn

)
− f(x) =

(
tbn

[n+ 1 + β]q
+
q[k + α]qbn
[n+ 1 + β]q

− x
)
f ′(θ) =

=

(
tbn

[n+ 1 + β]q
+
q[k + α]qbn
[n+ 1 + β]q

− x
)
f ′(x) +

(
tbn

[n+ 1 + β]q
+
q[k + α]qbn
[n+ 1 + β]q

− x
)
(f ′(θ)− f(x))

where x < θ < tbn
[n+1+β]q

+
q[k+α]q
[n+1+β]q

. Using the last equality, we can write the following inequality:

T (α,β)
n,p (f ; q;x)− f(x) = f ′(x)T (α,β)

n,p ((t− x), q, x) + T (α,β)
n,p ((t− x) · (f ′(θ)− f ′(x)); q, x).

Hence,
|T (α,β)
n,p (f ; q;x)− f(x)| ≤ |f ′(x)||T (α,β)

n,p ((t− x), q, x)|+ T (α,β)
n,p (|t− x| · |f ′(θ)− f ′(x)|; q, x)

≤M
(
C |un − 1|+ vn

)
+ T (α,β)

n,p (|t− x| · |f ′(θ)− f ′(x)|; q, x).

Applying the following well known property of modulus of continuity
|f(t)− f(x)| ≤ ω(f, δ)(1 + |t−x|δ ), for any δ > 0,

we have

|T (α,β)
n,p (f ; q;x)−f(x)| ≤M

(
C |un − 1|+vn

)
+ω(f ′; δ)

[
T (α,β)
n,p (|t− x|; q, x) + 1

δ
T (α,β)
n,p ((t− x)2; q, x)

]
.

Note: |θ − x| ≤
∣∣∣ tbn
[n+1+β]q

+
q[k+α]q
[n+1+β]q

bn − x
∣∣∣ .

Using the Cauchy-Schwarz inequality for the second term, then we have:

|T (α,β)
n,p (f ; q;x)−f(x)| ≤M

(
C |un − 1|+vn

)
+ω(f ′; δ)

{
T (α,β)
n,p ((t− x)2; q, x

}1/2

+
ω(f ′; δ)

δ
T (α,β)
n,p ((t−x)2; q, x).
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Now, if we get:

sup
0≤x≤C

T (α,β)
n,p ((t− x)2; q, x) ≤ sup

x∈[0,C]

{
x2 (un − 1)

2
+ x

(1 + α)[n+ p]q
[n+ 1 + β]

bn +
b2n(1 + α)2

[n+ 1 + β]2

}
≤ C2 (un − 1)

2
+ C

(1 + α)[n+ p]q
[n+ 1 + β]q

bn +
b2n(1 + α)2

[n+ 1 + β]2q
.

Thus,

|T (α,β)
n,p (f ; q, x)−f(x)| ≤M

[
C |un − 1|+vn

]
+ω(f ′, δ)

[
C2 (un − 1)

2
+C

(1 + α)[n+ p]q
[n+ 1 + β]2q

bn+
b2n

[n+ 1 + β]2q
(1+α)2

]1/2
+
ω(f ′, δ)

δ

{
C2 (un − 1)

2
+ C

(1 + α)[n+ p]q
[n+ 1 + β]2q

bn +
b2n(1 + α)2

[n+ 1 + β]2q

}
.

Let’s write: δ =
{
C2 (un − 1)

2
+ C

(1+α)[n+p]q
[n+1+β]2q

bn +
b2n(1+α)

2

[n+1+β]2q

}1/2

, then we have:

|T (α,β)
n,p (f, q, x)−f(x)| ≤M

(
C |un − 1|+vn

)
+2

{
C2 (un − 1)

2
+C

(1 + α)[n+ p]q
[n+ 1 + β]q

+
b2n(1 + α)2

[n+ 1 + β]2q

}1/2

·ω(f ′, δ). �

Lemma 4.1. Let (qn) be sequences of real numbers such that 0 < qn < 1, lim
n→∞

qn = 1, if f ∈ LipK(γ) and x ∈ [0, C], C >

0. Then we have,

‖ T (α,β)
n,p (f, q, x)− f) ‖C[0,bn]≤ K

{
CT (α,β)

n,p ((t− x)2; q, x)
}α/2

.

Proof. By the linearity and monotonicity of the operators T (α,β)
n,p (f, q, x), we have,

|T (α,β)
n,p (f, q, x)− f(x)| ≤ T (α,β)

n,p |f(t)− f(x)|; q, x) ≤ K · T (α,β)
n,p (|t− x|γ ; q, x).

Using Holder inequality with p1 = 2
γ , and p2 = 2

2−γ , then 1
p1

+ 1
p2

= 1. We can write:

|T (α,β)
n,p (f, q, x)− f(x)| ≤ K · (CT (α,β)

n,p (t− x)2; q, x)γ/2 · T (α,β)
n,p (1, q, x)

2−γ
2 .

This implicates

‖ T (α,β)
n,p (f, q, x)− f) ‖C[0,bn]≤ K

{
CT (α,β)

n,p ((t− x)2; q, x)
}α/2

.

Theorem 4.3. Let 0 < a ≤ 1 and E by any subset of the interval [0,+∞). Then, if f ∈ CB [0,+∞) is locally Lip(a), i.e the
condition

|f(t)− f(x)| ≤ L|t− x|a, t ∈ E and x ∈ [0,+∞),
(4.1)

holds, then, for each x ∈ [0,+∞), we have:∣∣Tα,βn,p (f, q, x)− f(x)
∣∣ ≤ L{Tα,βn,p ((t− x)2, q, x) + 2da(X,E)

}
,

where L is a constant depending on a and f and d(X,E) is the distance between X and E defined as:

d(X,E) = inf {|t− x| : t ∈ E} .
Proof. Let E denote the closure of E in [0,+∞). Then, there exist a point x0 ∈ E such that d(x0, E) = |x − x0|.
Using the triangle inequality

|f(t)− f(x)| ≤ |f(t)− f(x0)|+ |f(x)− f(x0)|,
by monotonicity of operators Tα,βn,p and (4.1) we get:∣∣∣T (α,β)

n,p (f, q, x)− f(x)
∣∣∣ ≤ T (α,β)

n,p (|f(t)− f(x0)|, q, x) + T (α,β)
n,p (|f(x)− f(x0)|, q, x) ≤

≤ L
{
T (α,β)
n,p (|t− x0|a, q, x) + |x− x0|a

}
≤ L

{
T (α,β)
n,p (|t− x|a + |x− x0|a, x) + |x− x0|a

}
=

= L
{
T (α,β)
n,p (|t− x|a, q, x) + 2|x− x0|a

}
.

Using Hölder’s inequality with 1
p1

= a
2 ,

1
q1

= 1− 1
p1

, we get,∣∣∣T (α,β)
n,p (f, q, x)− f(x)

∣∣∣ ≤ L{[T (α,β)
n,p (|t− x|ap1 , q, x)

] 1
p1
[
T (α,β)
n,p (1q1 , q, x)

] 1
q1

+ 2d(X,E)a
}

= L

{[
T (α,β)
n,p (|t− x|2, q, x)

] a
2

+ 2(d(X,E))a
}
,
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the desired result mediately. �

5. Local approximation

Let CB [0,+∞) be the space of all real-valued continuous and bounded functions f on [0,+∞), endowed with
the norm ‖ f ‖= sup

x∈[0,+∞)

|f(x)|.

The Petree’s K − functional is defined by:
K2(f ; δ) = inf

g∈C2
[0,+∞)

{‖ f − g ‖ +δ ‖ g′′ ‖},

where C2
B [0,+∞) = {g ∈ CB [0,+∞) : g′, g′′ ∈ CB [0,+∞)} .

By [3] there exists an absolute constant M > 0 such that
K2(f, δ) ≤Mω2(f ;

√
δ),

where δ > 0 and the second-order modulus of smoothness is defined as:
ω2(f ;

√
δ) = sup

0<h≤δ
sup

x∈[0,+∞)

|f(x+ 2h)− 2f(x+ h) + f(x)|,

where f ∈ CB [0,+∞) and δ > 0. Also, we let
ω2(f ; δ) = sup

0<h≤δ
sup

x∈[0,+∞)

|f(x+ h)− f(x)|.

Lemma 5.1. For f ∈ CB [0,+∞), we have
‖ T (α,β)

n,p f ‖≤‖ f ‖ .

Proof. Since pn+p,k(q;x) ≥ 0 for all 0 < q < 1 and x ∈ [0, bn], then from (1) and Lemma 2.1 we get the following:∣∣∣T (α,β)
n,p (f ; q, x)

∣∣∣ ≤ n+p∑
k=0

pn+p,k(q;x)

1∫
0

∣∣∣∣f( tbn
[n+ 1 + β]q

+
q[k + α]qbn
[n+ 1 + β]q

∣∣∣∣ dqt ≤‖ f ‖ T (α,β)
n,p (1, q, x) =‖ f ‖ . �

Theorem 5.1. For all f ∈ CB [0,+∞), x ∈ (0, bn], q ∈ (0, 1) and p ∈ N fixed, there exist c > 0 such that

|T (α,β)
n,p (f ; q, x)− f(x)| ≤ c ω2

(
f,
√
λn,q(x)

)
+ ω(f, µn,q(x))

where λn,q = 2
(
qα+1[n+p]q
[n+1+β]q

− 1
)2
x2 + 4

[n+p]qbn(1+α)
[n+1+β]q+q2

qα+1 +
2b2n

[n+1+β]q
(1 + α)2, and µn,q =

(
qα+1[n+p]q
[n+1+β]q

− 1
)
x +

bn
[n+1+β]q

(α+ 1).

Proof. For f ∈ CB [0,+∞) we define operator T ∗(α,β)n,p (f ; q, x) : CB [0,+∞)→ CB [0,+∞) by
T
∗(α,β)
n,p (f ; q, x) = T

(α,β)
n,p (f ; q, x) + f(x)− f(unx+ vn)

where un =
qα+1[n+p]q
[n+1+β]q

x and vn = bn
[n+1+β]q

(
1

[2]q
+ [α]qq

)
.

Then, by Lemma 2.1, we have T ∗(α,β)n,p ((t− x); q, x) = 0.

For given g ∈ C2
B [0,+∞), using Taylor’s formula

g(y)− g(x) = (y − x)g′(x) +
y∫
x

(y − u)g′′(u)du

we obtain:

T ∗(α,β)n,p (g; q, x) = g(x) + T ∗(α,β)n,p

 y∫
x

(y − u)g′′(u)du

 ; q, x

 =

= g(x) + T (α,β)
n,p

 y∫
x

(y − u)g′′(u)du; q, x

− unx+vn∫
x

(unx+ vn − u) g′′(u)du.

Since, ∣∣∣∣∣∣
y∫
x

(y − u)g′′(u)du

∣∣∣∣∣∣ ≤
y∫
x

|(y − u)| · |g′′(u)|du ≤‖ g′′ ‖
y∫
x

|y − u|du ≤‖ g′′ ‖ (y − x)2,
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and
unx+vn∫
x

(unx+ vn − u) g′′(u)du ≤‖ g′′ ‖
{
(un − 1)x+ vn

}2

,

we get∣∣∣T ∗(α,β)n,p (g; q, x)− g(x)
∣∣∣ = ∣∣∣∣T (α,β)

n,p

 y∫
x

(y − u)g′′(u)du; q, x

− unx+vn∫
x

(unx+ vn − u) g′′(u)du
∣∣∣∣ ≤

≤‖ g′′ ‖
{
T (α,β)
n,p

(
(y − x)2; q;x

)
+

{
(un − 1)x+ vn

}2}
.

Hence Lemma 2.1 implies that

|T (α,β)
n,p (g; q, x)− g(x)| ≤‖ g′′ ‖

{(
q2α+3[n+ p]q[n+ p− 1]q

[n+ 1 + β]2q
− 2

qα+1[n+ p]q
[n+ 1 + β]q

+ 1

)
x2+

+

[
[n+ p]q

[n+ 1 + β]2q
bn

(
2

[2]q
qα+1 + qα+2(2[α]q + qα)

)
− 2

bn
[n+ 1 + β]q

(
1

[2]q
+ q[α]q

)]
x+

b2n
[n+ 1 + β]2q

(
1

[3]q
+

2q[α]q
[2]q

+ q2[α]2q

)
+

[
(un − 1)x+ vn

]
.

Thus, ‖ T ∗(α,β)n,p (f, q, x) ‖≤ 3 ‖ f ‖ for all f ∈ CB [0,∞).

Now, for f ∈ CB [0,+∞) and g ∈ C2
B [0,∞), we obtain:

|T ∗(α,β)n,p (f, q, x)− f(x)| =
∣∣∣T ∗(α,β)n,p (f, q, x)− f(x) + f (unx+ vn)

∣∣∣
≤
∣∣∣T ∗(α,β)n,p (f − g, q, x)− g(x)

∣∣∣+ ∣∣∣T ∗(α,β)n,p (g, q, x)− g(x)
∣∣∣+ |g(x)− f(x)|

+ |f (unx+ vn)− f(x)| ≤ 4 ‖ f − g ‖ +λn,q(x) ‖ g′′ ‖ +ω (f, µn,q(x)) .
Now, taking infimum on the right side over all g ∈ C2

B [0,+∞), we get the following result :∣∣∣T (α,β)
n,p (f, q, x)− f(x)

∣∣∣ ≤ 4K(f ;λn,q(x)) + ω(f, µn,q(x)) ≤ cω(f ;
√
λn,q(x)) + ω(f ;µn,q(x)),

where:

λn,q(x) = 2

(
qα+1[n+ p]q
[n+ 1 + β]q

− 1

)2

x2 + 4
[n+ p]qbn(1 + α)

[n+ 1 + β]q + q2
qα+1 +

2b2n
[n+ 1 + β]q

(1 + α)2,

µn,q(x) =

(
qα+1[n+ p]q
[n+ 1 + β]q

− 1

)
x+

bn
[n+ 1 + β]q

(α+ 1).

Example 1. For n = 100, and 500, α = 0, β = 5, p = 5, q = n
n+1 and bn = lnn, the convergence of T (α,β)

n,p to f(x) =

x2 is illustrated in Figure (a) respectively Figure (b).

(a) (b)
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