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Abstract
In this article, the author extends the application of exponential operators to solve certain non-linear
fractional differential equation, space fractional partial differential equation and two dimensional Lamb–
Bateman singular integral equation. Numerous constructive examples and exercises presented through-
out the paper. The main purpose of this work is to present mathematical results that are useful to
researchers in a variety of fields.

Keywords: Laplace transforms; Caputo fractional derivative; Parabolic Cylinder function; Riemann-Liouville fractional deriva-
tive; Lamb- Bateman singular integral equation.

AMS Subject Classification (2010): Primary: 26A33; Secondary: 44L05, 43A50

1. Introduction
In this study, the author present a general method of operational nature to obtain solutions for several types of

singular integral equation, fractional differential equation, and partial differential equations with non - constant
coefficients. Until now, two methods, have been more extensively used for solving PDEs, Laplace and Fourier
transforms on the one hand and separation of variables on the other hand. Let us mention also solution in the
form of a series of functions.

Definition 1.1. The Laplace transform of function f(t) is defined as in [3]

L{f(t)} =

∫ ∞

0

e−stf(t)dt =: F (s).

If L{f(t)} = F (s), then L−1{F (s)}, is given by

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds,

where F (s) is analytic in the region Re(s) > c.

Let us recall some important properties of the Laplace transform and useful Lemmas, that will be considered
in the next part of this article.

Lemma 1.1. Let L{f(t)} = F (s) then, the following identities hold true.
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1. L−1(e−k
√
s) = k

(2
√
π)

∫∞
0
e−tξ−

k2

4ξ dξ,

2. e−ωs
β

= 1
π

∫∞
0
e−r

β(ω cos βπ) sin(ωrβ sinβπ)(
∫∞
0
e−sτ−rτdτ)dr,

3. L−1(F (sα)) = 1
π

∫∞
0
f(u)

∫∞
0
e−tr−ur

α cosαπ sin(urα sinαπ)drdu,

4. L−1(F (
√
s) = 1

2t
√
πt

∫∞
0
ue−

u2

4t f(u)du.

Proof. See [1, 2].

Definition 1.2. The left Riemann-Liouville fractional derivative of order 0 < α < 1 is defined as following [2]

DRL,α
a ϕ(x) =

1

Γ(1− α)

d

dx

∫ t

a

Φ(ξ)

(t− ξ)α
dξ,

it follows that DRL,α
a ϕ(x) exists for all Φ(t) belongs to C[a, b] and a < t < b.

Note: A very useful fact about the R- L operators is that, they satisfy semi-group properties of fractional integrals.
The special case of fractional derivative when α = 0.5 is called semi-derivative.

Definition 1.3. Let 0 < α < 1, the left Caputo fractional derivative of order α of ϕ(t) is defined as

Dc,α
a ϕ(t) =

1

Γ(1− α)

∫ t

a

1

(t− ξ)α
ϕ′(ξ)dξ.

Example 1.1. By using an appropriate integral representation for the modified Bessel function of the second kind
of order ν, Kν(s), we show that

L−1{K0(a
√
s+ λ)K0(b

√
s+ ψ)} =

e−λt−
a2

4t

2t
⋆
e−ψt−

b2

4t

2t
,

where ⋆ denotes the convolution operation, and

L−1{K2
0 (β
√
s+ ψ)} =

∫ t

0

eψt−2ψη− β2t
4η(t−η)

4η(t− η)
dη.

Solution. It is well known (see [3]) that Kν(a
√
s) has the following integral representation

Kν(a
√
s) =

(a
√
s)ν

2ν+1

∫ ∞

0

e−ξ−
a2s
4ξ

dξ

ξν+1
.

At this point, using complex inversion formula for the Laplace transforms and the above integral representation
we have

L−1{K0(a
√
s+ λ)} =

1

2iπ

∫ c+i∞

c−i∞

ets

2

∫ ∞

0

e−ξ−
a2(s+λ)

4ξ
dξ

ξη+1
ds.

Changing the order of integration and simplifying to get

L−1{K0(a
√
s)} =

∫ ∞

0

e−ξ−
a2λ
4ξ

ξ

(
1

2iπ

∫ c+i∞

c−i∞

e(t−
a2

4ξ )s

2
ds

)
dξ.

The value of the inner integral is δ
(
t− a2

4ξ

)
, we arrive at

L−1{K0(a
√
s+ λ)} =

∫ ∞

0

e−ξ−
a2λ
4ξ

ξ
δ

(
t− a2

4ξ

)
dξ.
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making the change of variable t − a2

4ξ = u, and using elementary properties of Dirac delta function, we get the
following result

L−1{K0(a
√
s+ λ)} =

e−λt−
a2

4t

2t
.

Finally, we obtain

L−1{K0(a
√
s+ λ)K0(b

√
s+ ψ)} =

e−λt−
a2

4t

2t
⋆
e−ψt−

b2

4t

2t

=

∫ t

0

eλ(t−η)−
a2

4(t−η)

2(t− η)

e−ψη−
b2

4η

2η
dη,

after simplifying , we arrive at

L−1{K0(a
√
s+ λ)K0(b

√
s+ ψ)} =

∫ t

0

eλt−η(λ+ψ)−
a2

4(t−η)
− b2

4η

4η(t− η)
dη.

Note: Let us consider the special case a = b = β and λ = ψ, we get the following relation

L−1{K2
0 (β
√
s+ ψ)} =

∫ t

0

eψt−2ψη− β2t
4η(t−η)

4η(t− η)
dη.

Lemma 1.2. Let us assume that L{f(t)} = F (s), then we have the following relations

1. L{f(t2)} =
∫∞
0

√
1

4πξ e
− s2

4ξ F (ξ)dξ,

2. L{f( 1t )} =
∫∞
0

√
ξ
sJ1(2

√
sξ)F (ξ)dξ,

3. L{f(t3)} =
∫∞
0

√
s
ξK 1

3
(( s

3 3
√
ξ
)

2
3 )F (ξ)dξ.

Proof. See [3].

The above Lemma has immediate interesting applications as follows

Lemma 1.3. The following integral relations hold true.

1.
∫∞
0
K 1

3
(( 1

3 3
√
ξ
)

2
3 )(

Γ( 1
3 )

3ξ
√
ξ 3
√
ξ
)dξ = 1,

2.
∫∞
0

√
ξJ1(2

√
ξ)K0(2

√
aξ)dξ = 1

2(1+a)2 ,

3.
∫∞
0

√
1

4πξ e
− 1

4ξ γ+ln ξ
ξ dξ = 2γ.

Proof. (1) Let us take f(t) = 3
√
t, then we get F (s) = 3s−

4
3Γ( 13 ), on the other hand we have

L{f(t3)} = L{t} =
1

s2
.

By setting all of the information of (3) from the Lemma 1.2, we infer

L{f(t3)} =
1

3π

∫ ∞

0

√
s

ξ
K 1

3

((
s

3 3
√
ξ

) 2
3

)
Γ( 13 )

3ξ 3
√
ξ
dξ =

1

s2
.
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Now, by choosing s = 1 and after some simple manipulations we arrive at∫ ∞

0

K 1
3

((
1

3 3
√
ξ

) 2
3

)
Γ( 13 )

3ξ
√
ξ 3
√
ξ
dξ = 1.

(2) Let us take f(t) = e−
a
t

2t , then we have F (s) = K0(2
√
as) . On the other hand Lf( 1t ) = L( 12 te

−at) = 1
2(s+a)2 ,

using (2) from Lemma 1.2, we obtain

L{f(1
t
)} =

∫ ∞

0

√
ξ

s
J1(2

√
sξ)K0(2

√
aξ)dξ =

1

2(s+ a)2
.

Now, by choosing s = 1 and after simplifying, we arrive at∫ ∞

0

√
ξJ1(2

√
ξ)K0(2

√
aξ)dξ =

1

2(1 + a)2
.

(3) Let us take f(t) = ln t, then we have F (s) = −γ+ln s
s , using (2) from the Lemma 1.2, we obtain

L{f(t2)} =

∫ ∞

0

√
1

4πξ
e−

s2

4ξ
γ + ln ξ

−ξ
dξ = −2

(
γ + ln s

s

)
.

Now, by choosing s = 1 and after simplifying, we arrive at∫ ∞

0

√
1

4πξ
e−

1
4ξ
γ + ln ξ

ξ
dξ = 2γ.

Lemma 1.4. Let us assume that L{f(t)} = F (s), then we have the following relation

L{tνf(t2)} =
1

4
√
π

∫ ∞

0

ξν−2e−
s2ξ2

2 Dν(sξ)F (
1

2ξ2
)dξ.

Proof. See [3].

The above Lemma has immediate interesting applications as below

Example 1.2. The following integral identity holds true

1

2
√
π

∫ ∞

0

ξν−2e
− ξ2

2 − 1
2ξ2Dν(ξ)dξ = e−1.

Solution. Let us take f(t) = 1√
t
, then we have

L(f(t)) = F (s) = L
(

1√
t

)
=

√
π

s
.

At this point, we can evaluate L(tν
√

1
t2 ), in two different ways as follows. First, by definition of the Laplace

transform we have

L(tν
√

1

t2
) =

∫ +∞

0

e−sttν−1dt =
Γ(ν)

sν
.

Second, by using the Lemma 1.4 and denoting by Dν the parabolic Cylinder function of order ν, we get

L(tνδ( 1
t2

− λ)) =
1

4
√
π

∫ ∞

0

ξν−2e−
s2ξ2

2 Dν(sξ)e
− λ

2ξ2 dξ.

Consequently, we obtain the following result

L(tνδ( 1
t2

− λ)) =
1

4
√
π

∫ ∞

0

ξν−2e−
s2ξ2

2 Dν(sξ)e
− λ

2ξ2 dξ =
1

2
λ−

ν+3
2 e

− s√
λ ,
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after simplifying, we get the following relation

1

4
√
π

∫ ∞

0

ξν−2e−
s2ξ2

2 Dν(sξ)e
− λ

2ξ2 dξ =
1

2
λ−

ν+3
2 e

− s√
λ .

In the above, let us choose s = λ = 1, after simplifying, we obtain

1

2
√
π

∫ ∞

0

ξν−2e
− ξ2

2 − 1
2ξ2Dν(ξ)dξ = e−1.

Lemma 1.5. The following exponential identities hold true

1. exp(±λ d
dt )Φ(t) = Φ(t±λ),

2. exp(±λt ddt )Φ(t) = Φ(te±λ),

3. exp(λq(t) ddt )Φ(t) = Φ(Q(F (t) + λ)).

Where F (t) is a primitive of 1
q(t) , and Q(t) = F−1(t).

Proof. See [5, 6].

Lemma 1.6. The following exponential identity holds true

exp(± t
2

η

d

dt
)Φ(t) = Φ

(
ηt

t∓ η

)
.

Proof. Let us take t−1 = ξ , then we have the following sequence of relations

exp(± t
2

η

d

dt
)Φ(t) = exp(∓1

η

d

dξ
)Φ(

1

ξ
)

= ϕ(
1

ξ ∓ 1
η

)

= ϕ(
1

1
t ∓

1
η

) = ϕ(
ηt

η ∓ t
).

Lemma 1.7. The following exponential identity holds true for 1 ≤ k ≤ m− 1(
λ− t2

d

dt

)− k
m

ϕ(t) =
1

Γ( km )

∫ +∞

0

ξ
k
m−1e−λξϕ(

t

1− tξ
)dξ.

Proof. In order to show this identity, let us recall the following elementary integral relation

s−α =
1

Γ(α)

∫ +∞

0

ξα−1e−sξdξ.

Let use the above integral with s = λ− t2 ddt , α = k
m , we get(

λ− t2
d

dt

)− k
m

ϕ(t) =
1

Γ( km )

∫ +∞

0

ξ
k
m−1(e−ξ(λ−t

2 d
dt )ϕ(t))dξ.

Using the Lemma 1.6, we get(
λ− t2

d

dt

)− k
m

ϕ(t) =
1

Γ( km )

∫ +∞

0

ξ
k
m−1e−λξϕ

(
t

1− tξ

)
dξ.
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Example 1.3. Let us consider the following nonlinear fractional differential equation

m

√
β − t2

d

dt
y(t) = ϕ(t).

The above fractional differential equation has the following formal solution

y(t) =
1

Γ( 1
m )

∫ +∞

0

ξ
1
m−1e−βξϕ(

t

1− tξ
)dξ.

Solution. We can rewrite the above equation as follows

y(t) = (
1

m

√
β − t2 ddt

)ϕ(t) =

(
β − t2

d

dt

)− 1
m

ϕ(t),

at this point, let us recall the following well - known identity

a−ν =
1

Γ(ν)

∫ +∞

0

e−aξξν−1dξ, for ν > 0.

Now, in the above integral we set a = β − t2 ddt and ν = 1
m and infer

(β − t2
d

dt
)−

1
mϕ(t) =

1

Γ( 1
m )

∫ +∞

0

ξ
1
m−1(e−(β−t2 d

dt )ξϕ(t))dξ.

Using again the Lemma 1.6 and after simplifying, we obtain the solution as follows

y(t) =
1

Γ( 1
m )

∫ +∞

0

ξ
1
m−1e−βξϕ

(
t

1− tξ

)
dξ.

2. Main Results
In this section, we implement the exponential operator method to solve two partial differential equations with

variable coefficients.

Problem 1. Let us consider the following initial value problem with the given initial condition

∂u

∂t
+ λtλ−1x2

∂αu

∂xα
= −βtβ−1u, 0 < α, β, λ < 1.

u(x, 0) = ϕ(x).

for t > 0 and x ∈ R.

Solution. The above partial differential equation can be written as follows

∂u

∂t
= −(λtλ−1(x2

∂α

∂xα
) + βtβ−1)u, 0 < α, β, λ < 1.

At this point, we solve the above first order differential equation with respect to variable t and using initial condi-
tion to obtain

u(x, t) = e−t
β

e−( x2

t−λ
∂α

∂xα )ϕ(x).

By using the second part of the Lemma 1.1, we find the result of the action of the exponential operator over the
function. Therefore, we get the solution to PDE given as below

u(x, t) =
e−t

β

π

∫ ∞

0

e−r
α(tλx2 cosαπ) sin(tλx2rα sinαπ)

(∫ ∞

0

e−rτe−τ
∂
∂xϕ(x)dτ

)
dr

=
e−t

β

π

∫ ∞

0

e−r
α(tλx2 cosαπ) sin(tλx2rα sinαπ)

(∫ ∞

0

e−rτϕ(x− τ)dτ

)
dr.
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Note. Let us consider the special case α = 0.5, β = 2 and ϕ(x) = δ(x−c) with c ∈ R, we get the following boundary
value problem for t > 0 and x ∈ R

∂u

∂t
+ λtλ−1x2

∂
1
2u

∂x
1
2

= −2tu, λ > 0. (2.1)

u(x, 0) = δ(x− c).

Using the relation (2.1), we get the following formal solution

u(x, t) =
e−t

2

π

∫ ∞

0

sin(tλx2r0.5)

(∫ ∞

0

e−rτδ(x− τ − c)dτ

)
dr.

After simplifying, we obtain

u(x, t) =
x2tλe−t

2− x4t2λ

4(x−c)

2
√
π(x− c)

3
2

.

Problem 2. Let us consider the following generalized Lamb–Bateman singular integral equation in two dimensions where ϕ
is the unknown function ∫ +∞

−∞

∫ +∞

−∞

ϕ(ξ − x2 − y2)

2π
√
x2 + y2

dxdy = g(ξ). (LBSIE)

The Lamb–Bateman singular integral equation was introduced to study the solitary wave diffraction and its solution was
written in terms of an integral transform (see [4]).

Solution. Let us introduce the change of variable x = r cos θ, y = r sin θ, then (LBSIE) can be rewritten in the
following form ∫ +∞

−∞

∫ 2π

0

ϕ(ξ − r2)

2π
√

(r cos θ)2 + (r sin θ)2
rdrdθ = g(ξ).

or ∫ +∞

−∞
ϕ(ξ − r2)dr = g(ξ).

Equivalently, we have (∫ +∞

−∞
e−r

2∂ξdr

)
ϕ(ξ) = g(ξ).

The evaluation of the above integral leads to the following√
π

∂ξ
ϕ(ξ) = g(ξ)

in view of the Lemma 1.5, we arrive at the following relation

ϕ(ξ) =

√
∂ξ
π
g(ξ).

At this point, in order to find the result of the action of fractional operator, we may re-write the above relation as
follows

ϕ(ξ) =

√
1

π
(∂ξ)(∂ξ)

− 1
2 g(ξ).

finally we get

ϕ(ξ) =
1√
π
∂ξ

(
1√
π

∫ +∞

0

dη
1
√
η
e−η∂ξg(ξ)

)
.

The above is equivalent to

ϕ(ξ) =
1√
π

∫ +∞

0

1
√
η
g′(ξ − η)dη.

Let us introduce the change of variable ξ − η = w, we get

ϕ(ξ) =
1√
π

∫ ξ

−∞

1√
ξ − w

g′(w)dw.
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Example 2.1. Let us solve the following two dimensional Lamb–Bateman singular integral equation with the given
initial condition ∫ +∞

−∞

∫ +∞

−∞

ϕ(ξ − 4x2 − 9y2)

2π
√
4x2 + 9y2

dxdy = J0(ξ).

Solution Using the change of variable x = r
2 cos θ, y = r

3 sin θ, the above equation rewrites as∫ +∞

−∞

∫ 2π

0

ϕ(ξ − r2)

12π
√
(r cos θ)2 + (r sin θ)2

rdrdθ = J0(ξ).

or ∫ +∞

−∞
ϕ(ξ − r2)dr = 6J0(ξ).

Solving the above singular integral equation yields

ϕ(ξ) =
6√
π

∫ ξ

−∞

1√
ξ − w

J
′

0(w)dw.

Such that one gets finally

ϕ(ξ) =
−6√
π

∫ ξ

−∞

J1(w)√
ξ − w

dw.

Remark. We can generalize the integral equation (LBSIE) to the form∫ +∞

−∞

∫ +∞

−∞
...

∫ +∞

−∞

ϕ(ξ − xTAx)√
(xTx)n−1

dx1dx2......dxn = g(ξ),

where x = (x1, x2, ......, xn)
T and A is positive-definite.

3. Conclusion
Operational methods provide fast and universal mathematical tools for obtaining the solution of PDEs or even

FPDEs. Combination of integral transforms, operational methods and special functions give more powerful ana-
lytical instruments for solving a wide range of engineering and physical problems. The paper is devoted to study
exponential operators and their applications in solving certain boundary value problems. The main purpose of
this work is to develop methods for solving two-dimensional Lamb–Bateman singular integral equation. We note
that within such a new framework as we have described and developed in this article, the extensive usage of the
integral transforms and exponential operator method opens up new and powerful possibilities, which be more
deeply explored in the future publications.

4. Acknowledgements

The author would like to thank the referee/s for helpful comments.

References
[1] Aghili, A., New results involving Airy polynomials, fractional calculus and solution to generalized heat equa-

tion, New trends in mathematical sciences, 3 (2015).

[2] Aghili, A., Fractional Black–Scholes equation, International Journal of Financial Engineering, 4 (1) (2017) World
Scientific Publishing Company, DOI: 10.1142/S2424786317500049.

[3] Apelblat, A., Laplace transforms and their applications, Nova Science Publishers Inc., New York, 2012.

[4] Babusci, D., Dattoli, G., Sacchetti, D., The Lamb-–Bateman Integral Equation and the Fractional Derivatives, Frac-
tional calculus and applied analysis, 14 (2) (2011), 317–320.

[5] Dattoli, G., Operational methods, fractional operators and special polynomials. Applied Mathematics and Computa-
tions, 141 (2003) 151–159.

[6] Dattoli, G., Srivastava, H.M., Zhukovsky, K.V., Operational methods and differential equations to initial value prob-
lems. Applied Mathematics and computations, 184 (2007) 979–1001.



Exponential Operators for Generalized Lamb–Bateman Singular Integral Equation 9

Affiliations

ARMAN AGILI
ADDRESS: Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O.Box,
1841, Rasht-Iran
E-MAIL: arman.aghili@gmail.com, armanaghili@yahoo.com


