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Abstract
In the present paper, we define the ring

T = [R; I, σ, n] :=
{
a0 + a1x+ . . .+ anx

n ∈ (R, I)[x;σ]

(xn+1)
: a0 ∈ R, ai ∈ I for i = 1, . . . , n

}
,

which is a subring of R[x;σ]/(xn+1). It is proved that; If R is a unit regular ring, each α ∈ T is equivalent
to an element e0 + e1x+ · · ·+ enx

n, where e0, e1, ..., en is a sequence of orthogonal idempotents such that
e0 ∈ R, e1, ..., en ∈ I and n ≥ 1. As an application of this, it has shown that;

(1) The ring [R; I, σ, n] is left morphic.

(2) (R, I)(x)/(xn+1) is left centrally morphic for each n ≥ 0.

Also, we prove that the ring (R, I)(x)/(xn+1) is left quasi-morphic.
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1. Introduction
Throughout this paper, all rings are associative with identity. For a, b ∈ R, we say that a is equivalent to b, if

b = uav for some units u and v in R. Let R be a ring. For any element a in R, the left (respectively, right) annihilator
of a in R is denoted by lR(a) (respectively, rR(a)), and it is well known that R/lR(a) ∼= Ra as left R-modules.

If R/Ra ∼= lR(a), then a is called a left morphic element (see [10]). Equivalently, a ∈ R is left morphic if and
only if there exists b ∈ R such that lR(a) = Rb and lR(b) = Ra (see [10, Lemma 1]). A ring R is called left morphic
if every element of R is left morphic. An element a in R is unit regular if there exists u ∈ U(R) such that a = aua,
where U(R) denotes the group of units of R. The ring itself is unit regular if all of its elements are unit regular. R is
unit-strongly regular ring, every element r of R there exists a unit element u ∈ R, r = r2u. Ehrlich [3], has shown that
a ring is unit regular if and only if it is (von Neumann) regular and left morphic. In [7] Lee and Zhou studied the
relationships between these properties for rings of the form S/I , where S is either a polynomial ring R[x] or a skew
polynomial ring R[x;σ], and where I is an ideal of the form (xn). Thus by [7, Theorem 2] if R is unit regular, and if
the endomorphism σ : R→ R is onto and fixes all idempotents of R, then all such rings S/I are left morphic. This
had previously been known only when R is strongly regular by [2].
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Let I be an ideal of R and σ : R→ R be a ring endomorphism. Then define ring T as following:

T = [R; I, σ, n] :=
{
a0 + a1x+ . . .+ anx

n ∈ (R, I)[x;σ]

(xn+1)
: a0 ∈ R, ai ∈ I for i = 1, . . . , n

}
.

It is clear that T is a ring (a subring of R[x;σ]/(xn+1)). The ring S below is the special case of T where σ = 1R. Let
σ : R→ R is a ring endomorphism such that σ(e) = e for all e2 = e ∈ R. In section 2, it is shown that [R; I, σ, n] is a
left morphic ring for every n ≥ 0. This result is a generalization of [8, Corollary 3].

The ring R is called left centrally morphic if, for each a ∈ R, there exists b ∈ C(R) such that lR(a) = Rb and
lR(b) = Ra, whereC(R) denotes the center ofR (see [9, Section 5]). In [6], Huang and Chen considered the following
situation: Let I be an ideal of a unit regular ring R and let

S :=
(R, I)[x]

(xn+1)
=

{ n∑
i=0

aixi : a0 ∈ R, ai ∈ I, i = 1, 2, · · · , n
}
.

They showed in [6, Theorem 2.2] that every matrix ring over S is morphic. In [9, Section 5], Lee and Zhou proved
that, for an integer n ≥ 1, a ring R is strongly regular iff R[x]/(xn+1) is left centrally morphic. Note that this result
is a generalization of [7, Corollary 5] and [7, Theorem 12]. In section 3, we generalize this result for the ring S.

An element a ∈ R is called left quasi-morphic if there exist b, c ∈ R such that Ra = l(b) and Rb = l(a) (see [1]).
This notion was introduced as a generalization of left morphic rings and regular rings. Also in [1], it was shown
that left quasi morphic rings share a number of important properties with regular rings. In section 4, we used the
technique which was a generalization of technique that Herbera used in [5]. By using that, we prove that the ring S
is quasi morphic for each n ≥ 0.

2. The ring [R; I, σ, n] is left morphic

Proposition 1. [8, Proposition 1] Let R be a semiprime ring and let σ be an endomorphism of R such that σ(e) = e for all
e2 = e ∈ R. Then e(σk(x)− x)(1− e) = 0 for all x ∈ R, all e2 = e ∈ R and positive integers k.

The following Theorem is a generalization of [8, Theorem 2 ]. We prove it by the similar way.

Theorem 2. Let I be an ideal of a unit regular ring R and let σ : R → R is a ring endomorphism such that σ(e) = e for
all e2 = e ∈ R. Then each α ∈ T is equivalent to e0 + e1x + · · · + enx

n, where e0, e1, ..., en is a sequence of orthogonal
idempotents such that e0 ∈ R and e1, ..., en ∈ I and n ≥ 1.

Proof. It is enough to prove the following claim:
Claim: For each integer k, there exists idempotents e0 ∈ R, e1, . . . , ek−1 ∈ I , and rk, . . . , rn ∈ I such that up to
equivalence

α = e0 + e1x+ · · ·+ ek−1x
k−1 +

n∑
j=k

rjx
j , (∗)

where ei ∈ (1 − ei−1) . . . (1 − e0)I(1 − e0) . . . (1 − ei−1) for i = 1, . . . , k − 1 and rj ∈ (1 − ek−1) . . . (1 − e0)I(1 −
e0) . . . (1− ek−1) for j = k, . . . , n. When we take k = n, theorem will be proved. In this case we have that

α = e0 + e1x+ · · ·+ ek−1x
k−1 + rnx

n,

where ei ∈ (1−ei−1) . . . (1−e0)I(1−e0) . . . (1−ei−1) for i = 1, . . . , n−1 and rn ∈ hIhwith h := (1−e0) . . . (1−en−1)
. It is known hRh unit-regular by [4, Corollary 4.7], so there exists a unit u ∈ hRh with inverse v and an idempotent
en ∈ hRh such that rn = uen. We have en = vrn ∈ hIh, because rn ∈ hIh,. Clearly, (e0 + · · ·+ en−1) + v is a unit in
R and

(e0 + · · ·+ en−1 + v)α = e0 + e1x+ · · ·+ en−1x
n−1 + enx

n.

Proof of Claim : We prove it by induction on k.

Let k = 1 and α = r0 + r1x+ · · ·+ rnx
n ∈ T . Every r0 can be written as a product of unit and an idempotent

because R is unit regular. Hence, up to equivalence, left multiplying α by a suitable unit of R, we can assume that
r0 = e0 is an idempotent. Because

(1− (1− e0)r1x)α(1− r1x) = e0 + (1− e0)r1(1− e0)x+ . . .
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where both 1− (1− e0)r1x and 1− r1x are units of T , we can further assume that r1 ∈ (1− e0)I(1− e0). Now

(1− (1− e0)r2x
2)α(1− r2x2) = e0 + r1x+ (1− e0)r2(1− e0)x2 + . . .

where both 1 − (1 − e0)r2x
2 and 1 − r2x2 are units of T , so we can assume that r2 ∈ (1 − e0)I(1 − e0). A simple

induction shows that

α = e0 + r1x+ r2x
2 + · · ·+ rnx

n ri ∈ (1− e0)I(1− e0) for i = 1, . . . , n.

So the case k = 1 is proved.
Assume that (∗) holds for a fixed integer k with 1 < k < n. It is clear that e0, . . . , ek−1 are orthogonal idempotents.

Set
fk−1 := (1−e0) . . . (1−ek−1) ∈ I and gk−1 := e0+· · ·+ek−1 ∈ R. Then fk−1 and gk−1 are orthogonal idempotents and
fk−1 + gk−1 = 1. Because fk−1Rfk−1 is unit regular by [4, Corollary 4.7], write rk = uek where ek is an idempotent
element in fk−1Rfk−1 and u is an unit element of fk−1Rfk−1 with inverse v. Then ek = vrk ∈ fk−1Ifk−1, since
rk ∈ fk−1Ifk−1. Then gk−1 + v is a unit of R with inverse gk−1 + u. Since

(gk−1 + v)α = e0 + e1x+ · · ·+ ekx
k +

n∑
j=k+1

vrjx
j ,

up to equivalence, we can assume that

α = e0 + e1x+ · · ·+ ekx
k +

n∑
j=k+1

rjx
j ,

where e2k = ek ∈ fk−1Ifk−1 and rj ∈ fk−1Ifk−1 for j = k + 1, . . . , n. Now

α′ := (1− rk+1x)α = e0 + e1x+ · · ·+ ekx
k + rk+1(1− ek)xk+1 +

n∑
j=k+2

r′jx
j ,

where rk+1, r
′
k+2, . . . , r

′
n ∈ fk−1Ifk−1. Set r′k+1 := rk+1(1− ek). Then compute,

(1− (1− ek)r′k+1x)α′(1− r′k+1x) =

k∑
i=0

eix
i +

n∑
j=k+1

r
′′

j x
j ,

where
r
′′

k+1 = r′k+1 − ekσk(r′k+1)− (1− ek)r′k+1ek
= ek(r′k+1 − σk(r′k+1)) + (1− ek)r′k+1(1− ek)
= ek(rk+1 − σk(rk+1))(1− ek) + (1− ek)r′k+1(1− ek)
= (1− ek)r′k+1(1− ek) ∈ (1− ek)fk−1Ifk−1(1− ek)

since ek(rk+1 − σk(rk+1))(1− ek) by Proposition 1, and where all r
′′

i ∈ fk−1Ifk−1 for i ≥ k + 2.
We set fi := (1− e0) . . . (1− ei) for i = 0, 1, . . . , k. Up to equivalence we may assume that

α =

k∑
i=0

eix
i + rk+1x

k+1 +

n∑
j=k+2

rjx
j ,

where ei = e2i ∈ fi−1Ifi−1 for i = 1, . . . , k and where rk+1 ∈ fkIfk, rj ∈ fk−1Ifk−1 j = k + 2, . . . , n. Then compute

α′ = (1− rk+2x
2)α

=
∑k

i=0 eix
i + rk+1x

k+1 +
∑n

j=k+2 r
′
jx

j ,

where r′j ∈ fi−1Ifi−1 for j > k + 2 and where r′k+2 = rk+2(1− ek). Then compute

(1− (1− ek)r′k+2x
2)α′(1− r′k+2x

2) =

k∑
i=0

eix
i + rk+1x

k+1 +

n∑
j=k+2

r
′′

j x
j ,
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where
r
′′

k+2 = r′k+2 − ekσk(r′k+2)− (1− ek)r′k+2ek
= ek(r′k+2 − σk(r′k+2)) + (1− ek)r′k+2(1− ek)
= ek(rk+2 − σk(rk+2))(1− ek) + (1− ek)r′k+2(1− ek)
= (1− ek)r′k+2(1− ek) ∈ (1− ek)fk−1Ifk−1(1− ek) = fkIfk

since ek(rk+2−σk(rk+2))(1− ek) by Proposition 1, and where all r
′′

i ∈ fk−1Ifk−1 for i ≥ k+ 3. Repeating analogous
arguments, up to equivalence we may assume that

α = e0 + e1x+ · · ·+ ekx
k +

n∑
j=k+1

rjx
j ,

where rj ∈ fkIfk for j = k + 1, . . . , n. So we complete the inductive step and we are done.

Corollary 3. Let I be an ideal of a unit regular ring R and let σ : R→ R is a ring endomorphism such that σ(e) = e for all
e2 = e ∈ R. Then T is a left morphic ring for each n ≥ 0.

Proof. We will show arbitrary α ∈ T is left morphic in T = [R; I, σ, n]. Let β =
∑n

i=0 bix
i ∈ T , where b0 =

(1− e0)(1− e1) . . . (1− en) = 1− e0 − e1 − · · · − en and bi = en−i for i = 1, . . . , n.
Claim : Tα = lTβ and Tβ = lTα. By Theorem 2, α is equivalent to γ := e0 + e1x+ · · ·+ enx

n, where e20 = e0 ∈ R
and e2i = ei ∈ (1− ei−1) . . . (1− e0)I(1− e0) . . . (1− ei−1) for i = 1, . . . , n.

Given λ =
∑n

i=0 rix
i ∈ T with r0 ∈ Re0 and ri ∈ I

∑i
j=0 ej , let γ =

∑n
i=0 aix

i ∈ T , where

a0 = r0e0 + r1e1 + · · ·+ rnen
a1 = r1e0 + r2e1 + · · ·+ rnen−1

...
ai = rie0 + ri+1e1 + · · ·+ rnen−i

...
an = rne0

.

Then λ = γα ∈ Tα.
For any ω =

∑n
i=0 aix

i
∑n

j=0 ejx
j ∈ Tα , the coefficient of xk, is∑k

i=0 aiσ
i(ek−i) =

∑n
i=0 ai(ek−i) = a0ek + a1ek−1 + · · ·+ ake0

= (a0ek + a1ek−1 + · · ·+ ake0)(e0 + e1 + · · ·+ ek) ∈ I(e0 + e1 + · · ·+ ek).

Hence,

Tα = {r0 + r1x+ · · ·+ rn−1x
n : r0 ∈ Re0, r1 ∈ I(e0 + e1), . . . ,

rn ∈ I(e0 + e1 + · · ·+ en)}.
Similarly,

Tβ = {r0 + r1x+ · · ·+ rn−1x
n : r0 ∈ R(1− e0 − e1 − · · · − en),

r1 ∈ I(1− e0 − e1 − · · · − en−1), . . . , rn ∈ I(1− e0)}.
For any γ =

∑n
i=0 aix

i ∈ T , we have γ ∈ lT (α) if and only if

a0e0 = 0,
a0e1 + a1σ(e0) = 0,
a0e2 + a1σ(e1) + a2σ

2(e0) = 0,
...
a0en + a1σ(en−1) + · · ·+ anσ

n(e0) = 0,

but since σ(e) = 0 for all idempotens, we have,

a0e0 = 0,
a0e1 + a1e0 = 0,
a0e2 + a1e1 + a2e0 = 0,
...
a0en + a1en−1 + · · ·+ ane0 = 0,
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if and only if
a0ei = 0 (0 ≤ i ≤ n),
a1ei = 0 (0 ≤ i ≤ n− 1),

...
ajei = 0 (0 ≤ i ≤ n− j),

...
ane0 = 0;

if and only if a0 ∈ R(1 −
∑n

i=0 ei) and aj ∈ I(1 −
∑n−j

i=0 ei) for any j with 1 ≤ j ≤ n. Hence lT (α) = Tβ. Using
similar argument one can have lT (β) = Tα. So T is left morphic.

Corollary 4. [8, Corollary 3] If R is a unit regular ring and σ : R→ R is a ring endomorphism such that σ(e) = e for all
e2 = e ∈ R. Then R[x;σ]/(xn+1) is a left morphic ring for all n ≥ 0.

Proof. Let take I = R in the previous corollary then the result follows.

3. The ring (R, I)(x)/(xn+1) is centrally morphic

Remark 5. If R is a unit-regular ring and if α ∈ S = (R, I)(x)/(xn+1) where n ≥ 0, then by Theorem 2 there exist
a sequence of orthogonal idempotents e0, e1, ..., en ,where e0 ∈ R, e1, ..., en ∈ I , and units u,v ∈ U(S) such that α =
v(e0 + e1x+ ...+ enx

n)u. Thus, αS = v(e0 + e1x+ ...+ enx
n)S and Sα = S(e0 + e1x+ ...+ enx

n)u.
For α =

∑n
i=0 aix

i ∈ S, let
α◦ = (1− a0 − ...− an) + anx+ ...+ a1x

n.

Note that (α◦)◦ = α for all α ∈ S

Lemma 6. Let R be a ring and let α =
∑n

i=0 eix
i ∈ S = (R, I)(x)/(xn+1) where e0, e1, ..., en is a sequence of orthogonal

idempotents such that e0 ∈ R and e1, ..., en ∈ I . Then

S(α) = l(α◦) and S(α◦) = l(α).

Proof. An easy calculation shows that

Sα = Re0 + I(e0 + e1)x+ · · ·+ I(e0 + · · ·+ en)xn = l(α◦).

Since (1− e0 − · · · − en), e1, . . . , en is a sequence of orthogonal idempotents such that e1, ..., en ∈ I and (1− e0 −
· · · − en) ∈ R, the second equality follows.

For the next theorem, its proof is a modification of [9, Theorem 20].

Theorem 7. Let I be an ideal of a ring R and let σ : R→ R is a ring endomorphism such that σ(e) = e for all e2 = e ∈ R.
R is strongly regular if and only if S is left centrally morphic for every n ≥ 0.

Proof. Assume that R is a unit strongly regular ring and let α ∈ S = (R, I)(x)/(xn+1). By Theorem 2, there
exists orthogonal idempotents e0, e1, ..., en, where e1, ..., en ∈ I and e0 ∈ R such that α is equivalent to β :=
e0 + e1x+ ...+ enx

n ∈ S. By Lemma 6, Sβ = l(β0) and Sβ0 = l(β). Since R is strongly regular all idempotents of R
are central. So β and β0 are central in S. Then there exists u, v ∈ U(S) such that α = uβv = (uv)β. It follows that
Sα = Sβ = l(β0) and l(α) = l(β) = Sβ0. So S is left centrally morphic.

Let a ∈ R. Since a is left morphic in R by Lemma 15, we have Ra = l(b) for some b ∈ R. Let α = bxn ∈ S. Then
there exists β =

∑n
i=0 bix

i ∈ C(S) such that l(α) = Sβ. We have bi ∈ C(I) for i = 1, ..., n and b0 ∈ C(R) because
β ∈ C(S). By computation, one can obtain

l(α) = l(b) + Ix+ ...+ Ixn
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and Sβ = {r0b0 + (r0b1 + r1b0)x + ... + (r0bn + ... + rnb0)xn : ri ∈ R for 1 ≤ i ≤ n andr0 ∈ R}. Hence there
exists r0 ∈ R, r1 ∈ I such that 0 = r0b0. Also Sβ = l(α) ⊆ l(b) + Rx + ... + Rxn we have 1 = r0b1 + r1b0. So
b0 = b0(r0b1 + r1b0) = b0r0b1 + b0r1b0 = r0b0b1 + b0r1b0 = b0r1b0. Therefore b0 is regular in R. But from l(α) = Sβ
it follows that Rb0 = l(b). Since l(b) = Ra we have Ra = Rb0 is an ideal of R. Thus we have proved that R is regular
and every principal left ideal of R is an ideal. Hence R is strongly regular by [4, Theorem 3.2].

Corollary 8. [9, Theorem 20] Let n ≥ 1 be an integer. Then R is strongly regular if and only if R[x]/(xn+1) is a left centrally
morphic ring.

Proof. Let I = R, then proof is by previous theorem.

4. The ring (R, I)(x)/(xn+1) is left quasi-morphic

First we fix some notation. Following Herbera [5], we define set E as following:

E = {e(x) ∈ (R, I)[[x]] : e(x) = e+

∞∑
i=1

(1− e)aiexi where e2 = e ∈ R and ai ∈ I for i = 1, . . . }.

Fix an integer n and (R, I)[[x]]/(xn+1) ∼= (R, I)(x)/(xn+1). For any α =
∑∞

i=0 aix
i ∈ (R, I)[[x]], let α =∑n

i=0 aix
i be the image of α. We let

E = {e(x) : e(x) ∈ E}.

The following two lemmas are a generalization of [5, Lemma 1.3 and Lemma 1.4]. The proofs are similar to [5] but
for the sake of completeness, we write them again.

Remark 9. (1) The elements of E are idempotents of (R, I)[[x]].
(2) Let e(x) = e+

∑∞
i=1(1− e)aiexi ∈ E, then r(R,I)[[x]](e(x)) = rR(e)(R, I)[[x]]

Lemma 10. Let R be a regular ring, I be an ideal of R and a(x) ∈ (R, I)[[x]]. Then there exists power series e(x) ∈ E and
a′(x) such that

a(x)(R, I)[[x]] = e(x)(R, I)[[x]] + xa′(x)(R, I)[[x]] and e(x)a′(x) = 0.

Moreover,
lR(a(x)) ⊆ lR(e(x)) ∩ lR(a′(x)).

Proof. If the zero degree term of a(x) is zero then the proof is clear. Assume that

a(x) = a0 + xã(x)

with 0 6= a0 ∈ R and ã(x) ∈ I(x)/(xn+1). Since R is regular there exists an element t ∈ R such that a0ta0 = a0. So
a0t = e and ta0 = f are idempotent elements of R. Then

a(x)(R, I)[[x]] = a(x)f(R, I)[[x]] + a(x)(1− f)(R, I)[[x]]
= a(x)f(R, I)[[x]] + xã(x)(1− f)(R, I)[[x]].

Moreover,

a(x)f(R, I)[[x]] = (ea(x)f + (1− e)ã(x)fx)(R, I)[[x]]
= (ea(x)f + (1− e)ã(x)fx)te(R, I)[[x]].

ea(x)fte + 1 − e is a unit element of (R, I)[[x]] because ea0fte = e. Let u(x) be inverse of ea(x)fte + 1 − e. Also
note that u(x) = eu(x)e+ 1− e. Thus ea(x)fte = (eu(x)e)−1 is a unit of e(R, I)[[x]]e. So we have

a(x)f(R, I)[[x]] = e(x)(R, I)[[x]],

where

e(x) = (ea(x)f + (1− e)a(x)f)te(eu(x)e+ (1− e)) = e+

∞∑
i=1

(1− e)bnexn,
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for suitable bn ∈ I . By definition of the set E, e(x) is an element of the set E. Hence,

a(x)(R, I)[[x]] = e(x)(R, I)[[x]] + xã(x)(1− f)(R, I)[[x]]
= e(x)(R, I)[[x]] + x(1− e(x))ã(x)(1− f)(R, I)[[x]].

If we choose a′(x) := (1−e(x))ã(x)(1−f)(R, I)[[x]], then we are done. For the moreover part, it suffices to show that
lR(a(x)) ⊆ lR(e(x)). If r ∈ lR(a(x)) then re = 0, and so r(1− e) = r. But e(x) = (ea(x)f + (1− e)a(x)f)te(eu(x)e+
(1− e)), so we have re(x) = 0.

Lemma 11. Let R be a regular ring, I be an ideal of R and a(x) ∈ (R, I)[[x]]. Then there exits sequence of idempotents
ei(x) ∈ E such that, for any n ≥ 0, there exits a′n(x) ∈ (R, I)[[x]] which satisfies

a(x)(R, I)[[x]] = (

n∑
i=0

ei(x)xi)(R, I)[[x]] + a′n(x)xn+1(R, I)[[x]].

Moreover,
(i) ei(x)ej(x) = 0 for any j > i ≥ 0, and
(ii) for every 0 ≤ i ≤ n, ei(x)a′n(x) = 0.

Proof. We will proof it by induction on n. For the case n = 0, there is no need to prove because of Lemma 10.
Assume n ≥ 1 and statement is true for n− 1. Then

a(x)(R, I)[[x]] = (

n−1∑
i=0

ei(x)xi)(R, I)[[x]] + a′n−1(x)xn(R, I)[[x]],

and this decomposition satisfies (i) and (ii). By applying Lemma 10 to a′n−1(x) we have the equality:

a′n−1(x)xn(R, I)[[x]] = (en(x)xn)(R, I)[[x]] + a′n(x)xn+1(R, I)[[x]],

with en(x) ∈ E, en(x)a′n(x) = 0 and lR(a′n−1(x)) ⊆ lR(en(x)) ∩ lR(a′n(x)). Since ei(x)a′n−1(x) = 0, for 0 ≤ i ≤ n− 1,
by Remark 9, this happens iff eia′n−1(x) = 0, where ei = e2i ∈ R is the term of zero degree of ei(x). Thus
ei(x)en(x) = 0 and ei(x)a′n(x) = 0, for 0 ≤ i ≤ n− 1.

Proposition 12. Let R be a regular ring and let S = (R, I)(x)/(xn+1) where n ≥ 0. For α ∈ S the followings are true:
(i) There exits a sequence of orthogonal idempotents e0, e1, . . . , en ∈ R and u ∈ U(S) such that Sα = S(e0 + e1x+ · · ·+
enx

n)u.
(ii) There exits a sequence of orthogonal idempotents f0, f1, . . . , fn ∈ R and v ∈ U(S) such that αS = v(f0 + f1x+ · · ·+
fnx

n)S.

Proof. By symmetry it is enough to prove one of the statement. We will prove the statement (ii).
In order to apply Lemma 11, we will think S as (R, I)[[x]]/(xn+1). Modulo the ideal (xn+1) , the equality in Lemma
11 becomes

αS = (

n∑
k=0

ek(x)xk)S,

where ek(x) ∈ E and ei(x).ej(x) = 0 whenever j > i ≥ 0 . We will proceed just as in [9, Proposition 1]. For each k
with 0 ≤ k ≤ n, let ek(x) = ek +

∑n
i=1(1− ek)a

(k)
i ekx

i. It follows that eiej = 0 whenever j > i ≥ 0. Now we will
use the same technique in [5, Corollary 1.7]. Let ek(x) = ek +

∑n
i=1(1− ek)a

(k)
i ekx

i, for each k with 0 ≤ k ≤ n. Then
we have eiej = 0, whenever j > i ≥ 0. Hence

∑n
k=0 ekR =

⊕n
k=0 ekR. By hypothesis we can write

⊕n
k=0 ekR = eR

where e is an idempotent element of R. Define hi :
⊕n

k=0 ekR → R by hi(
∑n

k=0 ekrk) =
∑n

k=0(1 − ek)a
(k)
i ekrk

which is a left multiplication by bi = hi(e), for each i with 1 ≤ i ≤ n. So biek = hi(ek) = (1− ek)a
(k)
i ek. Define v as

following:

v := 1 +

n∑
i=1

bix
i.

Then v ∈ U(S) and v(
∑n

k=0 ekx
k) =

∑n
k=0 ek(x)xk. Sequence of orthogonal idempotents {fk}nk=0 can be constructed

such as :
f0 = e0 and fk = ek(1− f0 − · · · − fk−1) for k = 1, . . . , n.
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By [5, Remark 1.6], the R-module epimorphism g :
⊕n

k=0Rek →
⊕n

k=0Rfk which is given by g(
∑n

k=0 rkek) =∑n
k=0 rkfkis an isomorphism. Write

⊕n
k=0Rek = Ra and

⊕n
k=0Rfk = Rb , where a and b are idempotents of R.

Say c = g(a) and d = g−1(b). Then g and g−1 are the right multiplication by c, and d, respectively. Hence

n∑
k=0

ekx
k =

n∑
k=0

g−1(fk)xk =

n∑
k=0

fkdx
k = (

n∑
k=0

fkx
k)d

and
n∑

k=0

fkx
k =

n∑
k=0

g(ek)xk =

n∑
k=0

ekcx
k = (

n∑
k=0

ekx
k)c.

So (
∑n

k=0 ekx
k)S = (

∑n
k=0 fkx

k)S. Hence αS = v(
∑n

k=0 ekx
k)S = v(

∑n
k=0 fkx

k)S.

Theorem 13. Let R be a regular ring and let n ≥ 0. Then S = (R, I)(x)/(xn+1) is a quasi-morphic ring.

Proof. By symmetry, we only show that S is a left quasi morphic ring. Let α ∈ S. By Proposition 12,

Sα = S(e0 + e1x+ ...+ enx
n)u

and
αS = v(f0 + f1 + ...+ fnx

n)S,

where u,v are unit elements of S and {ei}ni=0, {fi}ni=0 are sequences of orthogonal idempotents of R. Let β =∑n
i=0 eix

i and γ =
∑n

i=0 fix
i. Then, by [9, Lemma 3],

Sα = (Sβ)u = l(β0)u = l(u−1β0),

l(α) = l(vγ) = l(γ)v−1 = (Sγ0)v−1 = S(γ0v−1).

So α is a left quasi-morphic in S.

Corollary 14. If R is regular and n ≥ 0, then the matrix rings over (R, I)(x)/(xn+1) are all quasi-morphic.

Proof. If R is regular then Mk(R) is regular for each k ≥ 1. So Mk((R, I)(x)/(xn+1)) ∼= Mk(R, I)(x)/(xn+1) is
quasi-morphic by Theorem 13.

The following theorem generalizes [9, Lemma 10].

Lemma 15. Let n ≥ 0 be an integer. If S = (R, I)(x)/(xn+1) is left quasi-morphic (resp., left morphic), then so is R.

Proof. Let a ∈ R and let α = a ∈ S. Since α is left quasi-morphic in S, Sα = l(β) and l(α) = Sγ, where β =
∑n

i=0 bix
i

and γ =
∑n

i=0 cix
iinS. But

l(α) = l(a) + l(a)x+ · · ·+ l(a)xn and

Sγ = {r0c0 + (r0c1 + r1c0)x+ · · ·+ (r0cn + r1cn−1 + · · ·+ rnc0)xn : r0 ∈ R r1, . . . , rn ∈ I}.

So it follows from l(α) = Sγ that l(a) = Rc0. On the other hand, αβ = 0 clearly implies that Ra ⊆ lb0. Moreover,

(l(b0) ∩ · · · ∩ l(bn)) + (l(b0) ∩ · · · ∩ l(bn−1))x+ · · ·+ l(b0)xn

l(β) = Sα = Ra+ Iax+ · · ·+ Iaxn.
So l(b0) ⊆ Ra. Hence Ra = l(b0). So a is left quasi-morphic in R. If α is left morphic in S, then β and γ can be
chosen to be the same. Thus, a is left morphic in R since b0 = c0 in this case.
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