Extensions of Morphic Quasi-morphic and Centrally Morphic Rings

Serap Şahinkaya

(Communicated by Tamer KOŞAN)

Abstract In the present paper, we define the ring $T = [R; I, \sigma, n] := \left\{ a_0 + a_1 x + \ldots + a_n x^n \in \frac{(R, I)[x; \sigma]}{(x^{n+1})} : a_0 \in R, a_i \in I \text{ for } i = 1, \ldots, n \right\},$

which is a subring of $R[x;\sigma]/(x^{n+1})$. It is proved that; If R is a unit regular ring, each $\alpha \in T$ is equivalent to an element $e_0 + e_1x + \cdots + e_nx^n$, where e_0, e_1, \dots, e_n is a sequence of orthogonal idempotents such that $e_0 \in R$, $e_1, \dots, e_n \in I$ and $n \ge 1$. As an application of this, it has shown that;

(1) The ring $[R;I,\sigma,n]$ is left morphic.

(2) $(R, I)(x)/(x^{n+1})$ is left centrally morphic for each $n \ge 0$.

Also, we prove that the ring $(R, I)(x)/(x^{n+1})$ is left quasi-morphic.

Keywords: Morphic rings; quasi-morphic rings; unit (strongly) regular rings; centrally morphic rings *AMS Subject Classification (2010):* Primary: 16D10

1. Introduction

Throughout this paper, all rings are associative with identity. For $a, b \in R$, we say that a is *equivalent* to b, if b = uav for some units u and v in R. Let R be a ring. For any element a in R, the left (respectively, right) annihilator of a in R is denoted by $l_R(a)$ (respectively, $\mathbf{r}_R(a)$), and it is well known that $R/l_R(a) \cong Ra$ as left R-modules.

If $R/Ra \cong l_R(a)$, then *a* is called a *left morphic* element (see [10]). Equivalently, $a \in R$ is left morphic if and only if there exists $b \in R$ such that $l_R(a) = Rb$ and $l_R(b) = Ra$ (see [10, Lemma 1]). A ring *R* is called *left morphic* if every element of *R* is left morphic. An element *a* in *R* is *unit regular* if there exists $u \in U(R)$ such that a = aua, where U(R) denotes the group of units of *R*. The ring itself is unit regular if all of its elements are unit regular. *R* is *unit-strongly regular ring*, every element *r* of *R* there exists a unit element $u \in R$, $r = r^2u$. Ehrlich [3], has shown that a ring is unit regular if and only if it is (von Neumann) regular and left morphic. In [7] Lee and Zhou studied the relationships between these properties for rings of the form S/I, where S is either a polynomial ring R[x] or a skew polynomial ring $R[x; \sigma]$, and where *I* is an ideal of the form (x^n) . Thus by [7, Theorem 2] if *R* is unit regular, and if the endomorphism $\sigma : R \to R$ is onto and fixes all idempotents of *R*, then all such rings S/I are left morphic. This had previously been known only when *R* is strongly regular by [2]. Let *I* be an ideal of *R* and $\sigma : R \to R$ be a ring endomorphism. Then define ring *T* as following:

$$T = [R; I, \sigma, n] := \left\{ a_0 + a_1 x + \ldots + a_n x^n \in \frac{(R, I)[x; \sigma]}{(x^{n+1})} : a_0 \in R, a_i \in I \text{ for } i = 1, \ldots, n \right\}$$

It is clear that *T* is a ring (a subring of $R[x;\sigma]/(x^{n+1})$). The ring *S* below is the special case of *T* where $\sigma = 1_R$. Let $\sigma : R \to R$ is a ring endomorphism such that $\sigma(e) = e$ for all $e^2 = e \in R$. In section 2, it is shown that $[R; I, \sigma, n]$ is a left morphic ring for every $n \ge 0$. This result is a generalization of [8, Corollary 3].

The ring *R* is called *left centrally morphic* if, for each $a \in R$, there exists $b \in C(R)$ such that $l_R(a) = Rb$ and $l_R(b) = Ra$, where C(R) denotes the center of *R* (see [9, Section 5]). In [6], Huang and Chen considered the following situation: Let *I* be an ideal of a unit regular ring *R* and let

$$S := \frac{(R,I)[x]}{(x^{n+1})} = \Big\{ \sum_{i=0}^{n} a_i x_i : a_0 \in R, a_i \in I, i = 1, 2, \cdots, n \Big\}.$$

They showed in [6, Theorem 2.2] that every matrix ring over *S* is morphic. In [9, Section 5], Lee and Zhou proved that, for an integer $n \ge 1$, a ring *R* is strongly regular iff $R[x]/(x^{n+1})$ is left centrally morphic. Note that this result is a generalization of [7, Corollary 5] and [7, Theorem 12]. In section 3, we generalize this result for the ring *S*.

An element $a \in R$ is called *left quasi-morphic* if there exist $b, c \in R$ such that Ra = l(b) and Rb = l(a) (see [1]). This notion was introduced as a generalization of left morphic rings and regular rings. Also in [1], it was shown that left quasi morphic rings share a number of important properties with regular rings. In section 4, we used the technique which was a generalization of technique that Herbera used in [5]. By using that, we prove that the ring *S* is quasi morphic for each $n \ge 0$.

2. The ring $[R; I, \sigma, n]$ is left morphic

Proposition 1. [8, Proposition 1] Let R be a semiprime ring and let σ be an endomorphism of R such that $\sigma(e) = e$ for all $e^2 = e \in R$. Then $e(\sigma^k(x) - x)(1 - e) = 0$ for all $x \in R$, all $e^2 = e \in R$ and positive integers k.

The following Theorem is a generalization of [8, Theorem 2]. We prove it by the similar way.

Theorem 2. Let I be an ideal of a unit regular ring R and let $\sigma : R \to R$ is a ring endomorphism such that $\sigma(e) = e$ for all $e^2 = e \in R$. Then each $\alpha \in T$ is equivalent to $e_0 + e_1x + \cdots + e_nx^n$, where e_0, e_1, \dots, e_n is a sequence of orthogonal idempotents such that $e_0 \in R$ and $e_1, \dots, e_n \in I$ and $n \ge 1$.

Proof. It is enough to prove the following claim:

Claim: For each integer k, there exists idempotents $e_0 \in R$, $e_1, \ldots, e_{k-1} \in I$, and $r_k, \ldots, r_n \in I$ such that up to equivalence

$$\alpha = e_0 + e_1 x + \dots + e_{k-1} x^{k-1} + \sum_{j=k}^n r_j x^j, \quad (*)$$

where $e_i \in (1 - e_{i-1}) \dots (1 - e_0)I(1 - e_0) \dots (1 - e_{i-1})$ for $i = 1, \dots, k-1$ and $r_j \in (1 - e_{k-1}) \dots (1 - e_0)I(1 - e_0) \dots (1 - e_{k-1})$ for $j = k, \dots, n$. When we take k = n, theorem will be proved. In this case we have that

$$\alpha = e_0 + e_1 x + \dots + e_{k-1} x^{k-1} + r_n x^n$$

where $e_i \in (1-e_{i-1}) \dots (1-e_0)I(1-e_0) \dots (1-e_{i-1})$ for $i = 1, \dots, n-1$ and $r_n \in hIh$ with $h := (1-e_0) \dots (1-e_{n-1})$. It is known hRh unit-regular by [4, Corollary 4.7], so there exists a unit $u \in hRh$ with inverse v and an idempotent $e_n \in hRh$ such that $r_n = ue_n$. We have $e_n = vr_n \in hIh$, because $r_n \in hIh$. Clearly, $(e_0 + \dots + e_{n-1}) + v$ is a unit in R and

$$(e_0 + \dots + e_{n-1} + v)\alpha = e_0 + e_1x + \dots + e_{n-1}x^{n-1} + e_nx^n$$

Proof of Claim : We prove it by induction on *k*.

Let k = 1 and $\alpha = r_0 + r_1 x + \cdots + r_n x^n \in T$. Every r_0 can be written as a product of unit and an idempotent because R is unit regular. Hence, up to equivalence, left multiplying α by a suitable unit of R, we can assume that $r_0 = e_0$ is an idempotent. Because

$$(1 - (1 - e_0)r_1x)\alpha(1 - r_1x) = e_0 + (1 - e_0)r_1(1 - e_0)x + \dots$$

where both $1 - (1 - e_0)r_1x$ and $1 - r_1x$ are units of *T*, we can further assume that $r_1 \in (1 - e_0)I(1 - e_0)$. Now

$$(1 - (1 - e_0)r_2x^2)\alpha(1 - r_2x^2) = e_0 + r_1x + (1 - e_0)r_2(1 - e_0)x^2 + \dots$$

where both $1 - (1 - e_0)r_2x^2$ and $1 - r_2x^2$ are units of *T*, so we can assume that $r_2 \in (1 - e_0)I(1 - e_0)$. A simple induction shows that

$$\alpha = e_0 + r_1 x + r_2 x^2 + \dots + r_n x^n \ r_i \in (1 - e_0) I(1 - e_0) \ for \ i = 1, \dots, n$$

So the case k = 1 is proved.

Assume that (*) holds for a fixed integer k with 1 < k < n. It is clear that e_0, \ldots, e_{k-1} are orthogonal idempotents. Set

 $f_{k-1} := (1-e_0) \dots (1-e_{k-1}) \in I$ and $g_{k-1} := e_0 + \dots + e_{k-1} \in R$. Then f_{k-1} and g_{k-1} are orthogonal idempotents and $f_{k-1} + g_{k-1} = 1$. Because $f_{k-1}Rf_{k-1}$ is unit regular by [4, Corollary 4.7], write $r_k = ue_k$ where e_k is an idempotent element in $f_{k-1}Rf_{k-1}$ and u is an unit element of $f_{k-1}Rf_{k-1}$ with inverse v. Then $e_k = vr_k \in f_{k-1}If_{k-1}$, since $r_k \in f_{k-1}If_{k-1}$. Then $g_{k-1} + v$ is a unit of R with inverse $g_{k-1} + u$. Since

$$(g_{k-1}+v)\alpha = e_0 + e_1x + \dots + e_kx^k + \sum_{j=k+1}^n vr_jx^j,$$

up to equivalence, we can assume that

$$\alpha = e_0 + e_1 x + \dots + e_k x^k + \sum_{j=k+1}^n r_j x^j$$

where $e_k^2 = e_k \in f_{k-1}If_{k-1}$ and $r_j \in f_{k-1}If_{k-1}$ for j = k + 1, ..., n. Now

$$\alpha' := (1 - r_{k+1}x)\alpha = e_0 + e_1x + \dots + e_kx^k + r_{k+1}(1 - e_k)x^{k+1} + \sum_{j=k+2}^n r'_j x^j,$$

where $r_{k+1}, r'_{k+2}, \ldots, r'_n \in f_{k-1}If_{k-1}$. Set $r'_{k+1} := r_{k+1}(1-e_k)$. Then compute,

$$(1 - (1 - e_k)r'_{k+1}x)\alpha'(1 - r'_{k+1}x) = \sum_{i=0}^k e_i x^i + \sum_{j=k+1}^n r''_j x^j,$$

where

$$\begin{aligned} r_{k+1}^{''} &= r_{k+1}^{\prime} - e_k \sigma^k(r_{k+1}^{\prime}) - (1 - e_k) r_{k+1}^{\prime} e_k \\ &= e_k (r_{k+1}^{\prime} - \sigma^k(r_{k+1}^{\prime})) + (1 - e_k) r_{k+1}^{\prime} (1 - e_k) \\ &= e_k (r_{k+1} - \sigma^k(r_{k+1})) (1 - e_k) + (1 - e_k) r_{k+1}^{\prime} (1 - e_k) \\ &= (1 - e_k) r_{k+1}^{\prime} (1 - e_k) \in (1 - e_k) f_{k-1} I f_{k-1} (1 - e_k) \end{aligned}$$

since $e_k(r_{k+1} - \sigma^k(r_{k+1}))(1 - e_k)$ by Proposition 1, and where all $r_i^{''} \in f_{k-1}If_{k-1}$ for $i \ge k+2$. We set $f_i := (1 - e_0) \dots (1 - e_i)$ for $i = 0, 1, \dots, k$. Up to equivalence we may assume that

$$\alpha = \sum_{i=0}^{k} e_i x^i + r_{k+1} x^{k+1} + \sum_{j=k+2}^{n} r_j x^j,$$

where $e_i = e_i^2 \in f_{i-1}If_{i-1}$ for i = 1, ..., k and where $r_{k+1} \in f_kIf_k$, $r_j \in f_{k-1}If_{k-1}$ j = k + 2, ..., n. Then compute

$$\begin{aligned} \alpha' &= (1 - r_{k+2} x^2) \alpha \\ &= \sum_{i=0}^k e_i x^i + r_{k+1} x^{k+1} + \sum_{j=k+2}^n r'_j x^j, \end{aligned}$$

where $r'_j \in f_{i-1}If_{i-1}$ for j > k+2 and where $r'_{k+2} = r_{k+2}(1-e_k)$. Then compute

$$(1 - (1 - e_k)r'_{k+2}x^2)\alpha'(1 - r'_{k+2}x^2) = \sum_{i=0}^k e_i x^i + r_{k+1}x^{k+1} + \sum_{j=k+2}^n r''_j x^j,$$

where

$$\begin{aligned} r_{k+2}^{\prime\prime} &= r_{k+2}^{\prime} - e_k \sigma^k (r_{k+2}^{\prime}) - (1 - e_k) r_{k+2}^{\prime} e_k \\ &= e_k (r_{k+2}^{\prime} - \sigma^k (r_{k+2}^{\prime})) + (1 - e_k) r_{k+2}^{\prime} (1 - e_k) \\ &= e_k (r_{k+2} - \sigma^k (r_{k+2})) (1 - e_k) + (1 - e_k) r_{k+2}^{\prime} (1 - e_k) \\ &= (1 - e_k) r_{k+2}^{\prime} (1 - e_k) \in (1 - e_k) f_{k-1} I f_{k-1} (1 - e_k) = f_k I f_k \end{aligned}$$

since $e_k(r_{k+2} - \sigma^k(r_{k+2}))(1 - e_k)$ by Proposition 1, and where all $r_i'' \in f_{k-1}If_{k-1}$ for $i \ge k+3$. Repeating analogous arguments, up to equivalence we may assume that

$$\alpha = e_0 + e_1 x + \dots + e_k x^k + \sum_{j=k+1}^n r_j x^j,$$

where $r_j \in f_k I f_k$ for j = k + 1, ..., n. So we complete the inductive step and we are done.

Corollary 3. Let I be an ideal of a unit regular ring R and let $\sigma : R \to R$ is a ring endomorphism such that $\sigma(e) = e$ for all $e^2 = e \in R$. Then T is a left morphic ring for each $n \ge 0$.

Proof. We will show arbitrary $\alpha \in T$ is left morphic in $T = [R; I, \sigma, n]$. Let $\beta = \sum_{i=0}^{n} b_i x^i \in T$, where $b_0 = (1 - e_0)(1 - e_1) \dots (1 - e_n) = 1 - e_0 - e_1 - \dots - e_n$ and $b_i = e_{n-i}$ for $i = 1, \dots, n$.

Claim: $T\alpha = \mathbf{l}_T \beta$ and $T\beta = \mathbf{l}_T \alpha$. By Theorem 2, α is equivalent to $\gamma := e_0 + e_1 x + \dots + e_n x^n$, where $e_0^2 = e_0 \in R$ and $e_i^2 = e_i \in (1 - e_{i-1}) \dots (1 - e_0)I(1 - e_0) \dots (1 - e_{i-1})$ for $i = 1, \dots, n$.

Given $\lambda = \sum_{i=0}^{n} r_i x^i \in T$ with $r_0 \in Re_0$ and $r_i \in I \sum_{j=0}^{i} e_j$, let $\gamma = \sum_{i=0}^{n} a_i x^i \in T$, where

$$a_{0} = r_{0}e_{0} + r_{1}e_{1} + \dots + r_{n}e_{n}$$

$$a_{1} = r_{1}e_{0} + r_{2}e_{1} + \dots + r_{n}e_{n-1}$$

$$\vdots$$

$$a_{i} = r_{i}e_{0} + r_{i+1}e_{1} + \dots + r_{n}e_{n-i}$$

$$\vdots$$

$$a_{n} = r_{n}e_{0}$$

Then $\lambda = \gamma \alpha \in T \alpha$.

For any $\omega = \sum_{i=0}^{n} a_i x^i \sum_{j=0}^{n} e_j x^j \in T \alpha$, the coefficient of x^k , is

$$\sum_{i=0}^{k} a_i \sigma^i(e_{k-i}) = \sum_{i=0}^{n} a_i(e_{k-i}) = a_0 e_k + a_1 e_{k-1} + \dots + a_k e_0$$

= $(a_0 e_k + a_1 e_{k-1} + \dots + a_k e_0)(e_0 + e_1 + \dots + e_k) \in I(e_0 + e_1 + \dots + e_k).$

Hence,

$$T\alpha = \{r_0 + r_1 x + \dots + r_{n-1} x^n : r_0 \in Re_0, r_1 \in I(e_0 + e_1), \dots, r_n \in I(e_0 + e_1 + \dots + e_n)\}.$$

Similarly,

$$T\beta = \{r_0 + r_1 x + \dots + r_{n-1} x^n : r_0 \in R(1 - e_0 - e_1 - \dots - e_n), r_1 \in I(1 - e_0 - e_1 - \dots - e_{n-1}), \dots, r_n \in I(1 - e_0)\}.$$

For any $\gamma = \sum_{i=0}^{n} a_i x^i \in T$, we have $\gamma \in \mathbf{l}_T(\alpha)$ if and only if

$$a_0e_0 = 0,$$

$$a_0e_1 + a_1\sigma(e_0) = 0,$$

$$a_0e_2 + a_1\sigma(e_1) + a_2\sigma^2(e_0) = 0,$$

$$\vdots$$

$$a_0e_n + a_1\sigma(e_{n-1}) + \dots + a_n\sigma^n(e_0) = 0,$$

but since $\sigma(e) = 0$ for all idempotens, we have,

 $a_0e_0 = 0,$ $a_0e_1 + a_1e_0 = 0,$ $a_0e_2 + a_1e_1 + a_2e_0 = 0,$ \vdots $a_0e_n + a_1e_{n-1} + \dots + a_ne_0 = 0,$ if and only if

$$\begin{array}{rl} a_{0}e_{i} & = 0 \ (0 \leq i \leq n), \\ a_{1}e_{i} & = 0 \ (0 \leq i \leq n-1), \\ & \vdots \\ a_{j}e_{i} & = 0 \ (0 \leq i \leq n-j), \\ & \vdots \\ a_{n}e_{0} & = 0; \end{array}$$

if and only if $a_0 \in R(1 - \sum_{i=0}^n e_i)$ and $a_j \in I(1 - \sum_{i=0}^{n-j} e_i)$ for any j with $1 \le j \le n$. Hence $\mathbf{l}_T(\alpha) = T\beta$. Using similar argument one can have $\mathbf{l}_T(\beta) = T\alpha$. So T is left morphic.

Corollary 4. [8, Corollary 3] If R is a unit regular ring and $\sigma : R \to R$ is a ring endomorphism such that $\sigma(e) = e$ for all $e^2 = e \in R$. Then $R[x;\sigma]/(x^{n+1})$ is a left morphic ring for all $n \ge 0$.

Proof. Let take I = R in the previous corollary then the result follows.

3. The ring $(R, I)(x)/(x^{n+1})$ is centrally morphic

Remark 5. If R is a unit-regular ring and if $\alpha \in S = (R, I)(x)/(x^{n+1})$ where $n \geq 0$, then by Theorem 2 there exist a sequence of orthogonal idempotents $e_0, e_1, ..., e_n$, where $e_0 \in R$, $e_1, ..., e_n \in I$, and units $u, v \in U(S)$ such that $\alpha = v(e_0 + e_1x + ... + e_nx^n)u$. Thus, $\alpha S = v(e_0 + e_1x + ... + e_nx^n)S$ and $S\alpha = S(e_0 + e_1x + ... + e_nx^n)u$.

For
$$\alpha = \sum_{i=0}^{n} a_i x^i \in S$$
, let

$$\alpha^{\circ} = (1 - a_0 - \dots - a_n) + a_n x + \dots + a_1 x^n.$$

Note that $(\alpha^{\circ})^{\circ} = \alpha$ *for all* $\alpha \in S$

Lemma 6. Let R be a ring and let $\alpha = \sum_{i=0}^{n} e_i x^i \in S = (R, I)(x)/(x^{n+1})$ where $e_0, e_1, ..., e_n$ is a sequence of orthogonal idempotents such that $e_0 \in R$ and $e_1, ..., e_n \in I$. Then

$$S(\alpha) = \mathbf{l}(\alpha^{\circ}) \text{ and } S(\alpha^{\circ}) = \mathbf{l}(\alpha).$$

Proof. An easy calculation shows that

$$S\alpha = Re_0 + I(e_0 + e_1)x + \dots + I(e_0 + \dots + e_n)x^n = \mathbf{l}(\alpha^{\circ}).$$

Since $(1 - e_0 - \dots - e_n), e_1, \dots, e_n$ is a sequence of orthogonal idempotents such that $e_1, \dots, e_n \in I$ and $(1 - e_0 - \dots - e_n) \in R$, the second equality follows.

For the next theorem, its proof is a modification of [9, Theorem 20].

Theorem 7. Let *I* be an ideal of a ring *R* and let $\sigma : R \to R$ is a ring endomorphism such that $\sigma(e) = e$ for all $e^2 = e \in R$. *R* is strongly regular if and only if *S* is left centrally morphic for every $n \ge 0$.

Proof. Assume that *R* is a unit strongly regular ring and let $\alpha \in S = (R, I)(x)/(x^{n+1})$. By Theorem 2, there exists orthogonal idempotents $e_0, e_1, ..., e_n$, where $e_1, ..., e_n \in I$ and $e_0 \in R$ such that α is equivalent to $\beta := e_0 + e_1 x + ... + e_n x^n \in S$. By Lemma 6, $S\beta = l(\beta^0)$ and $S\beta^0 = l(\beta)$. Since *R* is strongly regular all idempotents of *R* are central. So β and β^0 are central in *S*. Then there exists $u, v \in U(S)$ such that $\alpha = u\beta v = (uv)\beta$. It follows that $S\alpha = S\beta = l(\beta^0)$ and $l(\alpha) = l(\beta) = S\beta^0$. So *S* is left centrally morphic.

Let $a \in R$. Since a is left morphic in R by Lemma 15, we have Ra = l(b) for some $b \in R$. Let $\alpha = bx^n \in S$. Then there exists $\beta = \sum_{i=0}^{n} b_i x^i \in C(S)$ such that $l(\alpha) = S\beta$. We have $b_i \in C(I)$ for i = 1, ..., n and $b_0 \in C(R)$ because $\beta \in C(S)$. By computation, one can obtain

$$l(\alpha) = l(b) + Ix + \dots + Ix^n$$

and $S\beta = \{r_0b_0 + (r_0b_1 + r_1b_0)x + ... + (r_0b_n + ... + r_nb_0)x^n : r_i \in R \text{ for } 1 \leq i \leq n \text{ and} r_0 \in R\}$. Hence there exists $r_0 \in R, r_1 \in I$ such that $0 = r_0b_0$. Also $S\beta = l(\alpha) \subseteq l(b) + Rx + ... + Rx^n$ we have $1 = r_0b_1 + r_1b_0$. So $b_0 = b_0(r_0b_1 + r_1b_0) = b_0r_0b_1 + b_0r_1b_0 = r_0b_0b_1 + b_0r_1b_0 = b_0r_1b_0$. Therefore b_0 is regular in R. But from $l(\alpha) = S\beta$ it follows that $Rb_0 = l(b)$. Since l(b) = Ra we have $Ra = Rb_0$ is an ideal of R. Thus we have proved that R is regular and every principal left ideal of R is an ideal. Hence R is strongly regular by [4, Theorem 3.2].

Corollary 8. [9, Theorem 20] Let $n \ge 1$ be an integer. Then R is strongly regular if and only if $R[x]/(x^{n+1})$ is a left centrally morphic ring.

Proof. Let I = R, then proof is by previous theorem.

4. The ring $(R, I)(x)/(x^{n+1})$ is left quasi-morphic

First we fix some notation. Following Herbera [5], we define set *E* as following:

$$E = \{e(x) \in (R, I)[[x]] : e(x) = e + \sum_{i=1}^{\infty} (1-e)a_i ex^i \text{ where } e^2 = e \in R \text{ and } a_i \in I \text{ for } i = 1, \dots \}.$$

Fix an integer n and $(R, I)[[x]]/(x^{n+1}) \cong (R, I)(x)/(x^{n+1})$. For any $\alpha = \sum_{i=0}^{\infty} a_i x^i \in (R, I)[[x]]$, let $\overline{\alpha} = \sum_{i=0}^{n} a_i x^i$ be the image of α . We let

$$\overline{E} = \{\overline{e(x)} : e(x) \in E\}.$$

The following two lemmas are a generalization of [5, Lemma 1.3 and Lemma 1.4]. The proofs are similar to [5] but for the sake of completeness, we write them again.

Remark 9. (1) *The elements of E are idempotents of* (R, I)[[x]]. (2) *Let* $e(x) = e + \sum_{i=1}^{\infty} (1-e)a_i ex^i \in E$, then $\mathbf{r}_{(R,I)[[x]]}(e(x)) = \mathbf{r}_R(e)(R, I)[[x]]$

Lemma 10. Let *R* be a regular ring, *I* be an ideal of *R* and $a(x) \in (R, I)[[x]]$. Then there exists power series $e(x) \in E$ and a'(x) such that

$$a(x)(R,I)[[x]] = e(x)(R,I)[[x]] + xa'(x)(R,I)[[x]] \text{ and } e(x)a'(x) = 0.$$

Moreover,

$$l_R(a(x)) \subseteq l_R(e(x)) \cap l_R(a'(x)).$$

Proof. If the zero degree term of a(x) is zero then the proof is clear. Assume that

$$a(x) = a_0 + x\widetilde{a}(x)$$

with $0 \neq a_0 \in R$ and $\tilde{a}(x) \in I(x)/(x^{n+1})$. Since *R* is regular there exists an element $t \in R$ such that $a_0ta_0 = a_0$. So $a_0t = e$ and $ta_0 = f$ are idempotent elements of *R*. Then

$$\begin{aligned} a(x)(R,I)[[x]] &= a(x)f(R,I)[[x]] + a(x)(1-f)(R,I)[[x]] \\ &= a(x)f(R,I)[[x]] + x\tilde{a}(x)(1-f)(R,I)[[x]] \end{aligned}$$

Moreover,

$$a(x)f(R,I)[[x]] = (ea(x)f + (1-e)\tilde{a}(x)fx)(R,I)[[x]] = (ea(x)f + (1-e)\tilde{a}(x)fx)te(R,I)[[x]]$$

ea(x)fte + 1 - e is a unit element of (R, I)[[x]] because $ea_0fte = e$. Let u(x) be inverse of ea(x)fte + 1 - e. Also note that u(x) = eu(x)e + 1 - e. Thus $ea(x)fte = (eu(x)e)^{-1}$ is a unit of e(R, I)[[x]]e. So we have

$$a(x)f(R,I)[[x]] = e(x)(R,I)[[x]]$$

where

$$e(x) = (ea(x)f + (1-e)a(x)f)te(eu(x)e + (1-e)) = e + \sum_{i=1}^{\infty} (1-e)b_n ex^n,$$

for suitable $b_n \in I$. By definition of the set E, e(x) is an element of the set E. Hence,

$$a(x)(R,I)[[x]] = e(x)(R,I)[[x]] + x\tilde{a}(x)(1-f)(R,I)[[x]] = e(x)(R,I)[[x]] + x(1-e(x))\tilde{a}(x)(1-f)(R,I)[[x]]$$

If we choose $a'(x) := (1 - e(x))\tilde{a}(x)(1 - f)(R, I)[[x]]$, then we are done. For the moreover part, it suffices to show that $l_R(a(x)) \subseteq l_R(e(x))$. If $r \in l_R(a(x))$ then re = 0, and so r(1 - e) = r. But e(x) = (ea(x)f + (1 - e)a(x)f)te(eu(x)e + (1 - e)), so we have re(x) = 0.

Lemma 11. Let R be a regular ring, I be an ideal of R and $a(x) \in (R, I)[[x]]$. Then there exits sequence of idempotents $e_i(x) \in E$ such that, for any $n \ge 0$, there exits $a'_n(x) \in (R, I)[[x]]$ which satisfies

$$a(x)(R,I)[[x]] = \left(\sum_{i=0}^{n} e_i(x)x^i\right)(R,I)[[x]] + a'_n(x)x^{n+1}(R,I)[[x]]$$

Moreover,

(i) $e_i(x)e_j(x) = 0$ for any $j > i \ge 0$, and (ii) for every $0 \le i \le n$, $e_i(x)a'_n(x) = 0$.

Proof. We will proof it by induction on n. For the case n = 0, there is no need to prove because of Lemma 10. Assume $n \ge 1$ and statement is true for n - 1. Then

$$a(x)(R,I)[[x]] = \left(\sum_{i=0}^{n-1} e_i(x)x^i\right)(R,I)[[x]] + a'_{n-1}(x)x^n(R,I)[[x]]$$

and this decomposition satisfies (*i*) and (*ii*). By applying Lemma 10 to $a'_{n-1}(x)$ we have the equality:

$$a'_{n-1}(x)x^{n}(R,I)[[x]] = (e_{n}(x)x^{n})(R,I)[[x]] + a'_{n}(x)x^{n+1}(R,I)[[x]],$$

with $e_n(x) \in E$, $e_n(x)a'_n(x) = 0$ and $l_R(a'_{n-1}(x)) \subseteq l_R(e_n(x)) \cap l_R(a'_n(x))$. Since $e_i(x)a'_{n-1}(x) = 0$, for $0 \le i \le n-1$, by Remark 9, this happens iff $e_ia'_{n-1}(x) = 0$, where $e_i = e_i^2 \in R$ is the term of zero degree of $e_i(x)$. Thus $e_i(x)e_n(x) = 0$ and $e_i(x)a'_n(x) = 0$, for $0 \le i \le n-1$.

Proposition 12. Let R be a regular ring and let $S = (R, I)(x)/(x^{n+1})$ where $n \ge 0$. For $\alpha \in S$ the followings are true: (i) There exits a sequence of orthogonal idempotents $e_0, e_1, \ldots, e_n \in R$ and $u \in U(S)$ such that $S\alpha = S(e_0 + e_1x + \cdots + e_nx^n)u$.

(*ii*) There exits a sequence of orthogonal idempotents $f_0, f_1, \ldots, f_n \in R$ and $v \in U(S)$ such that $\alpha S = v(f_0 + f_1x + \cdots + f_nx^n)S$.

Proof. By symmetry it is enough to prove one of the statement. We will prove the statement (*ii*). In order to apply Lemma 11, we will think S as $(R, I)[[x]]/(x^{n+1})$. Modulo the ideal (x^{n+1}) , the equality in Lemma 11 becomes

$$\alpha S = (\sum_{k=0}^{n} \overline{e_k(x)} x^k) S,$$

where $e_k(x) \in \overline{E}$ and $\overline{e_i(x)} \cdot e_j(x) = 0$ whenever $j > i \ge 0$. We will proceed just as in [9, Proposition 1]. For each k with $0 \le k \le n$, let $\overline{e_k(x)} = e_k + \sum_{i=1}^n (1-e_k) a_i^{(k)} e_k x^i$. It follows that $e_i e_j = 0$ whenever $j > i \ge 0$. Now we will use the same technique in [5, Corollary 1.7]. Let $\overline{e_k(x)} = e_k + \sum_{i=1}^n (1-e_k) a_i^{(k)} e_k x^i$, for each k with $0 \le k \le n$. Then we have $e_i e_j = 0$, whenever $j > i \ge 0$. Hence $\sum_{k=0}^n e_k R = \bigoplus_{k=0}^n e_k R$. By hypothesis we can write $\bigoplus_{k=0}^n e_k R = eR$ where e is an idempotent element of R. Define $h_i : \bigoplus_{k=0}^n e_k R \to R$ by $h_i(\sum_{k=0}^n e_k r_k) = \sum_{k=0}^n (1-e_k) a_i^{(k)} e_k r_k$ which is a left multiplication by $b_i = h_i(e)$, for each i with $1 \le i \le n$. So $b_i e_k = h_i(e_k) = (1-e_k) a_i^{(k)} e_k$. Define v as following:

$$v := 1 + \sum_{i=1}^{n} b_i x^i.$$

Then $v \in U(S)$ and $v(\sum_{k=0}^{n} e_k x^k) = \sum_{k=0}^{n} \overline{e_k(x)} x^k$. Sequence of orthogonal idempotents $\{f_k\}_{k=0}^{n}$ can be constructed such as :

$$f_0 = e_0$$
 and $f_k = e_k(1 - f_0 - \dots - f_{k-1})$ for $k = 1, \dots, n$.

By [5, Remark 1.6], the *R*-module epimorphism $g : \bigoplus_{k=0}^{n} Re_k \to \bigoplus_{k=0}^{n} Rf_k$ which is given by $g(\sum_{k=0}^{n} r_k e_k) = \sum_{k=0}^{n} r_k f_k$ is an isomorphism. Write $\bigoplus_{k=0}^{n} Re_k = Ra$ and $\bigoplus_{k=0}^{n} Rf_k = Rb$, where *a* and *b* are idempotents of *R*. Say c = g(a) and $d = g^{-1}(b)$. Then *g* and g^{-1} are the right multiplication by *c*, and *d*, respectively. Hence

$$\sum_{k=0}^{n} e_k x^k = \sum_{k=0}^{n} g^{-1}(f_k) x^k = \sum_{k=0}^{n} f_k dx^k = (\sum_{k=0}^{n} f_k x^k) dx^k$$

and

$$\sum_{k=0}^{n} f_k x^k = \sum_{k=0}^{n} g(e_k) x^k = \sum_{k=0}^{n} e_k c x^k = (\sum_{k=0}^{n} e_k x^k) c.$$

So $(\sum_{k=0}^{n} e_k x^k) S = (\sum_{k=0}^{n} f_k x^k) S$. Hence $\alpha S = v(\sum_{k=0}^{n} e_k x^k) S = v(\sum_{k=0}^{n} f_k x^k) S$.

Theorem 13. Let R be a regular ring and let $n \ge 0$. Then $S = (R, I)(x)/(x^{n+1})$ is a quasi-morphic ring.

Proof. By symmetry, we only show that *S* is a left quasi morphic ring. Let $\alpha \in S$. By Proposition 12,

$$S\alpha = S(e_0 + e_1x + \dots + e_nx^n)u$$

and

$$\alpha S = v(f_0 + f_1 + \dots + f_n x^n)S$$

where u,v are unit elements of S and $\{e_i\}_{i=0}^n$, $\{f_i\}_{i=0}^n$ are sequences of orthogonal idempotents of R. Let $\beta = \sum_{i=0}^n e_i x^i$ and $\gamma = \sum_{i=0}^n f_i x^i$. Then, by [9, Lemma 3],

$$S\alpha = (S\beta)u = l(\beta^{0})u = l(u^{-1}\beta^{0}),$$
$$l(\alpha) = l(v\gamma) = l(\gamma)v^{-1} = (S\gamma^{0})v^{-1} = S(\gamma^{0}v^{-1}).$$

So α is a left quasi-morphic in *S*.

Corollary 14. If R is regular and $n \ge 0$, then the matrix rings over $(R, I)(x)/(x^{n+1})$ are all quasi-morphic.

Proof. If *R* is regular then $M_k(R)$ is regular for each $k \ge 1$. So $M_k((R, I)(x)/(x^{n+1})) \cong M_k(R, I)(x)/(x^{n+1})$ is quasi-morphic by Theorem 13.

The following theorem generalizes [9, Lemma 10].

Lemma 15. Let $n \ge 0$ be an integer. If $S = (R, I)(x)/(x^{n+1})$ is left quasi-morphic (resp., left morphic), then so is R.

Proof. Let $a \in R$ and let $\alpha = a \in S$. Since α is left quasi-morphic in S, $S\alpha = \mathbf{l}(\beta)$ and $\mathbf{l}(\alpha) = S\gamma$, where $\beta = \sum_{i=0}^{n} b_i x^i$ and $\gamma = \sum_{i=0}^{n} c_i x^i i n S$. But

$$\mathbf{l}(\alpha) = \mathbf{l}(a) + \mathbf{l}(a)x + \dots + \mathbf{l}(a)x^n$$
 and

$$S\gamma = \{r_0c_0 + (r_0c_1 + r_1c_0)x + \dots + (r_0c_n + r_1c_{n-1} + \dots + r_nc_0)x^n : r_0 \in \mathbb{R} \ r_1, \dots, r_n \in I\}.$$

So it follows from $l(\alpha) = S\gamma$ that $l(a) = Rc_0$. On the other hand, $\alpha\beta = 0$ clearly implies that $Ra \subseteq lb_0$. Moreover,

$$(\mathbf{l}(b_0) \cap \cdots \cap \mathbf{l}(b_n)) + (\mathbf{l}(b_0) \cap \cdots \cap \mathbf{l}(b_{n-1}))x + \cdots + \mathbf{l}(b_0)x^n$$

 $\mathbf{l}(\beta) = S\alpha = Ra + Iax + \dots + Iax^n.$

So $l(b_0) \subseteq Ra$. Hence $Ra = l(b_0)$. So *a* is left quasi-morphic in *R*. If α is left morphic in *S*, then β and γ can be chosen to be the same. Thus, *a* is left morphic in *R* since $b_0 = c_0$ in this case.

References

- [1] Camillo V., Nicholson W.K. Quasi-morphic rings, J. Algebra Applications 2007; 6: 789-799.
- [2] Chen J. L. and Zhou Y., Glasg. Math. J. 2005, 47 (1): 139-148.
- [3] Ehrlich G., Units and one-sided units in regular rings, Trans. AMS 1976; 216: 81-90.
- [4] Goodearl K.R. Von Neumann Regular Rings, Monographs and Studies in Mathematics, Pitman, Boston: Mass.London, 1979.
- [5] Herbera D. Bezeout and semiheriditary power series ring, Journal of Algebra 2003; 270: 150-168.
- [6] Huang Q., Chen J. Morphic properties of extension rings, Algebra Colloquim 2010; 270:337-344
- [7] Lee T.K., Zhou Y. Morphic rings and unit regular rings, J. Pure. Appl. Algebra 2007; 210: 501-510.
- [8] Lee T.K., Zhou Y. A theorem on unit regular rings, Canadian Math. Bull 2010; 53: 321-326.
- [9] Lee T.K., Zhou Y. Regularity and Morphic property of rings, J. Algebra 2009; 322: 1072-1085.
- [10] Nicholson W. K., Sánchez Campós E., Rings with the dual of the isomorphism theorem, J. Algebra 2004; 271: 391-406.

Affiliations

SERAP ŞAHINKAYA **ADDRESS:** Gebze Technical University, Department of Mathematics, Çayirova Campus 41400 Gebze- Kocaeli, Turkey **E-MAIL:** ssahinkaya@gtu.edu.tr