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Abstract
In the present paper, we define the ring
(R, I)[x; 0]

(@) tap € R,a; € I'fori= 1,...,n},

T=I[R;I,0,n]:= {ao—i—alx—i-...—l—anx" €

which is a subring of R[z;c]/(z" ). It is proved that; If R is a unit regular ring, each « € T is equivalent
to an element ey + e1z + - - - + e, 2", Where e, €1, ..., €y, is a sequence of orthogonal idempotents such that
e € R, e1,...,en, € L and n > 1. As an application of this, it has shown that;

(1) The ring [R; I, 0, n] is left morphic.

(2) (R, I)(x)/(2™*!) is left centrally morphic for each n > 0.

Also, we prove that the ring (R, I)(x)/(z" ") is left quasi-morphic.

Keywords: Morphic rings; quasi-morphic rings; unit (strongly) regular rings; centrally morphic rings

AMS Subject Classification (2010): Primary: 16D10

1. Introduction

Throughout this paper, all rings are associative with identity. For a,b € R, we say that a is equivalent to b, if
b = uav for some units # and v in R. Let R be a ring. For any element ¢ in R, the left (respectively, right) annihilator
of a in R is denoted by 1z (a) (respectively, rr(a)), and it is well known that R/1z(a) = Ra as left R-modules.

If R/Ra = 1g(a), then a is called a left morphic element (see [10]). Equivalently, a € R is left morphic if and
only if there exists b € R such that1li(a) = Rband 1z (b) = Ra (see [10, Lemma 1]). A ring R is called left morphic
if every element of R is left morphic. An element @ in R is unit regular if there exists u € U(R) such that a = aua,
where U(R) denotes the group of units of R. The ring itself is unit regular if all of its elements are unit regular. R is
unit-strongly reqular ring, every element r of R there exists a unit element u € R, r = r?u. Ehrlich [3], has shown that
a ring is unit regular if and only if it is (von Neumann) regular and left morphic. In [7] Lee and Zhou studied the
relationships between these properties for rings of the form S/I, where S is either a polynomial ring R[z] or a skew
polynomial ring R[z; o], and where [ is an ideal of the form (z™). Thus by [7, Theorem 2] if R is unit regular, and if
the endomorphism o : R — R is onto and fixes all idempotents of R, then all such rings S/I are left morphic. This
had previously been known only when R is strongly regular by [2].
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Let I be an ideal of R and ¢ : R — R be a ring endomorphism. Then define ring T as following:

(B, I)[z; 0]

T=[R;I,0,n]:= {ao+a1$+---+an$n = (znt1)

tag € Rya; € I'fori = 1,...,n}.
It is clear that 7' is a ring (a subring of R[z; o]/(z""1)). The ring S below is the special case of T" where o = 1. Let
o : R — Ris aring endomorphism such that o(e) = e forall e = e € R. In section 2, it is shown that [R; I, o, n] is a
left morphic ring for every n > 0. This result is a generalization of [8, Corollary 3].

The ring R is called left centrally morphic if, for each a € R, there exists b € C(R) such that 1z(a) = Rb and
1zr(b) = Ra, where C(R) denotes the center of R (see [9, Section 5]). In [6], Huang and Chen considered the following
situation: Let I be an ideal of a unit regular ring R and let

)T N
S~—(xn+1)_{;azwz-aOERyaZGI,Z—1727... ,n}_

They showed in [6, Theorem 2.2] that every matrix ring over S is morphic. In [9, Section 5], Lee and Zhou proved
that, for an integer n > 1, a ring R is strongly regular iff R[z]/(z"?) is left centrally morphic. Note that this result
is a generalization of [7, Corollary 5] and [7, Theorem 12]. In section 3, we generalize this result for the ring S.

An element a € R is called left quasi-morphic if there exist b, ¢ € R such that Ra = I(b) and Rb = I(a) (see [1]).
This notion was introduced as a generalization of left morphic rings and regular rings. Also in [1], it was shown
that left quasi morphic rings share a number of important properties with regular rings. In section 4, we used the
technique which was a generalization of technique that Herbera used in [5]. By using that, we prove that the ring S
is quasi morphic for each n > 0.

2. Thering [R; I, 0, n] is left morphic

Proposition 1. [8, Proposition 1] Let R be a semiprime ring and let o be an endomorphism of R such that o(e) = e for all
e? =e € R. Then e(c®(x) — 2)(1 —e) =0 forall x € R, all e* = e € R and positive integers k.

The following Theorem is a generalization of [8, Theorem 2 ]. We prove it by the similar way.

Theorem 2. Let I be an ideal of a unit reqular ring R and let o : R — R is a ring endomorphism such that o(e) = e for
all > = e € R. Then each o € T is equivalent to eg + e1x + - - - + e,x™, where eq, e1, ..., e, is a sequence of orthogonal
idempotents such that eg € Rand ey, ...,e, € T andn > 1.

Proof. 1t is enough to prove the following claim:
Claim: For each integer k, there exists idempotents e € R, e1,...,ex—1 € I, and 7, ...,r, € I such that up to
equivalence

n
-1 i
a=ey+ex+-+ep_1a* +E rjzt, (%)
j=k

where ¢; € (1 —67;,1)...(1 —60)[(1 —60)...(1 —62',1) fori = 1,...,]{}— 1and7'j € (]. —ek,l)...(l —60)[(1 —
€o)...(1 —ep_1) for j =k,...,n. When we take k& = n, theorem will be proved. In this case we have that

k—1 ,
a=eytex+--+ep12"  +rpz”,

wheree; € (1—e;—1)...(1—eg)I(1—ep)...(1—e;—1)fori=1,...,n—1landr, € hIhwithh := (1—eg)...(1—€p_1)
. It is known hRh unit-regular by [4, Corollary 4.7], so there exists a unit u € hRh with inverse v and an idempotent
en € hRh such that r, = ue,,. We have e,, = vr,, € hIh, because r,, € hIh,. Clearly, (eo + - -+ €,—1) + v is a unit in
Rand

(eo+-Fep1+v)a=ey+erx+--+e, 12" +ea"

Proof of Claim : We prove it by induction on k.
Letk=1land a =rg+riz + - -+ rpa™ € T. Every ro can be written as a product of unit and an idempotent

because R is unit regular. Hence, up to equivalence, left multiplying « by a suitable unit of R, we can assume that
ro = € is an idempotent. Because

(1—=(1—eg)rix)a(l —riz)=eg+ (1 —eg)ri(l —eg)z + ...
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where both 1 — (1 — eg)riz and 1 — ry 2 are units of T, we can further assume that r, € (1 — eg)I(1 — eg). Now
(1—(1—eq)roaz®)a(l — rox?) = eg + iz + (1 — eg)r2(1 — eg)z? + ...

where both 1 — (1 — eg)r22? and 1 — r2z? are units of 7', so we can assume that 7y € (1 — eg)I(1 — eg). A simple
induction shows that

a=co+rxt+roxi+-4ra” v € (1—e)l(l—e) fori=1,...,n
So the case k = 1 is proved.
Assume that (%) holds for a fixed integer k£ with 1 < k < n. Itisclear thatey, ..., e;_; are orthogonal idempotents.
Set

fi—1:=(1—eg)...(1—eg—1) € I and gx_1 := eg+- - -+ex—1 € R. Then fi_; and g;_; are orthogonal idempotents and
fr—1+ gx—1 = 1. Because fi_1 R fi—1 is unit regular by [4, Corollary 4.7], write r;, = ue, where e;, is an idempotent
element in f_1Rfr_1 and u is an unit element of f;_; Rfy_1 with inverse v. Then e, = vry € fr_11fr_1, since
7k € fu_1lfr_1. Then gy_1 + v is a unit of R with inverse g;_1 + u. Since

n
(gk71 + v)a =eytex+---+ ekl'k + Z ’Ule’j,
Jj=k+1
up to equivalence, we can assume that
n
a=ey+ ez 4 +epah + Z rjxt,
Jj=k+1
where €2 = ey, € fy_1Ify—1and rj € fy_1Ify_1for j=k+1,...,n. Now
n
o =1 —rpz)a=ey+ex+ - +epa® +rppr (1 —ep)a T+ Z rial,
Jj=k+2

where rj41,7 5,7y, € fo—1lfr—1. Setr) | :=rpy1(1 — ex). Then compute,

(1—(1—ep)rppz)a’ (1 —r,,2) = Zelx + Z 7" "2

j=k+1
where .
Tpa1 = 7"24-1 - ekak(rkﬂ) (1- ek)r;c+1ek
= ek(r;chl (Tk+1)) (1 6k)’”k+1(1 —er)
= ep(rrp1 — 0" (re)) (1 —ex) + (1 — e)rpy (1 — ex)
= (1 —er)rp (I —ex) € (L—ep)frm1d fr—1(1 —ex)
since ey, (rr+1 — 0% (rx+1))(1 — ex) by Proposition 1, and where all ri € fp_1lfr_1fori>k+2.
Weset f; :=(1—ep)...(1 —¢;) fori =0,1,...,k Up to equivalence we may assume that
k n
a= Zeixl + rk_Hx]Hl + Z rjz?,
i=0 j=k+2

wheree; = €? € fi_1If;_1fori=1,...,kand where ry11 € fil fi,7; € fe—1lfe—1Jj =k +2,...,n. Then compute
o = (1—rper?)a

_\k i k41 n /
— Zvﬁ:O €T + 11T + Zj:k+2 le'j,

where 7 € fi_11f;—1 for j > k + 2 and where 7 5, = ri42(1 — ex). Then compute

(1= (1 — ep)rpyaz®)a (1 — 1y 02?) Z et + a4 Z r z,
j=k+2
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where

r;+2 = T;c+2 - ekak(r;H_Q) —(1- ek)T§c+2ek

er(Thyo — 0" (Thy0)) + (1= ex)rp o (1 —ex)

en(rere — 0% (rie2)) (1 —ex) + (1 = ex)riyo(1 — ex)

= —er)rp ol —er) € (1 —ep) fom1lfe—1(1 —ex) = ful fr

since ex (1k12 — 0¥ (4+2))(1 — ex) by Proposition 1, and where all r;/ € fu—11fr—1 fori > k+ 3. Repeating analogous
arguments, up to equivalence we may assume that

n
X .
a=ey+ex+--+epx+ E rjxt,
j=k+1

where r; € filfi for j = k+1,...,n. So we complete the inductive step and we are done. O

Corollary 3. Let I be an ideal of a unit reqular ring R and let o : R — R is a ring endomorphism such that o(e) = e for all
e? = e € R. Then T is a left morphic ring for each n > 0.

Proof. We will show arbitrary a € T is left morphic in T = [R;I,0,n]. Let 8 = Y. bz’ € T, where by =
(I1—e)(l—e1)...(1—ep)=1—€ey—e€y—--—e,and b, =e¢,_;fori=1,...,n.
Claim : Ta = 174 and T8 = lra. By Theorem 2, ais equivalent to v :=eg + ez + - - - + e, z™, where e% =e€R
ande? =e€; € (1 —61',1)...(1—60)_[(1 —60)...(1 —ei,l) fori= 1,....n.

Given A = >0 r;z' € T withrg € Regand r; € IZ;ZO ej lety=3""  az" € T, where

ag =roeot+rier+ -+ rpen

ay =T1€g+ 71261+ -+ Tpen_1

a; =mieg+rip1€1+ o+ Tpln_;
an = Tn€o

Then A = vya € Ta. _ _
Forany w = Y"" ja;a’ Y7 ejal € Ta, the coefficient of 2%, is

Zfzo a;ot(ep—;) = Z?zo ai(ex—i) = aper +arex_1 + -+ + areg
= (agex + arex—1 + - +ageg)(eo+e1+---+ex) €Ileg+er+ - +eg).

Hence,
Ta= {ro+rz+ - +rp_12":r9 € Reg,m1 € I(eg +€1),...,
rn €I(eg+e1+--+epn)t
Similarly,
T6= {ro+rmax+- - +r_1z":ro € R(1—ey—e1 — - —ep),
rmel(l—e—e—-—ep_1),...,7n € I(1 —ep)}.

Forany v = >"" ,a;z" € T, we have v € 17(«) if and only if

apep = 0,
aper + a0 (eg) =0,
ages + ajo(er) + azo?(eg) = 0,

apen +aro(ep—1)+ -+ ano™(eg) =0,
but since o(e) = 0 for all idempotens, we have,

ageg = 0,
ager +areg = 0,
apez + aje; + azeg = 0,

apen + a1p—1+ -+ aneg =0,
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if and only if
ape; =0 (0<1i<n),
ae; =0(0<i<n-1),
aje; =0 (0<i<n-—j),
aneg = 0;

if and only if agp € R(1 — 31 e;) and a; € I(1 — 7"/ ¢;) for any j with 1 < j < n. Hence ly(a) = T5. Using
similar argument one can have 1y (8) = T'a. So T is left morphic. O

Corollary 4. [8, Corollary 3] If R is a unit reqular ring and o : R — R is a ring endomorphism such that o(e) = e for all
e? = e € R. Then R[x;0]/(x™ ) is a left morphic ring for all n > 0.

Proof. Let take I = R in the previous corollary then the result follows. O

3. The ring (R, I)(x)/(z™*!) is centrally morphic

Remark 5. If R is a unit-reqular ring and if « € S = (R, I)(z)/(z™*) where n > 0, then by Theorem 2 there exist
a sequence of orthogonal idempotents eg, e1, ..., e, Where ey € R, e1,...,e, € I, and units u,v € U(S) such that oo =
v(eg + €1 + ... + epz™)u. Thus, S =v(eg + e1x + ... + e,z™)S and Sa = S(ep + ey + ... + e x™)u.
For o = E;l:o a;xt € 8, let
a°=1—-ay—...—ap)+apz+..+az".

Note that (a®)° = aforallc € S

Lemma 6. Let Rbearingandleta =Y ez’ € S = (R, I)(x)/(z"T) where ey, e1, ..., e, is a sequence of orthogonal
idempotents such that eg € Rand ey, ...,e, € I . Then

S(a) =1(a®) and S(a®) =1(a).
Proof. An easy calculation shows that
Sa=Rey+1I(eg+er)r+---+1(eg+ - -+ ey)x” =1a).

Since (1 —eg — -+ —ep), €1, . ., €, is a sequence of orthogonal idempotents such that ey, ...,e, € I and (1 — ey —
.-+ —ep) € R, the second equality follows. O

For the next theorem, its proof is a modification of [9, Theorem 20].

Theorem 7. Let I be an ideal of a ring R and let o : R — R is a ring endomorphism such that o(e) = e forall e* = e € R.
R is strongly reqular if and only if S is left centrally morphic for every n > 0.

Proof. Assume that R is a unit strongly regular ring and let « € S = (R,I)(z)/(z"™!). By Theorem 2, there
exists orthogonal idempotents e, 1, ..., e,, Where e4,....,e, € I and eg € R such that « is equivalent to § :=
eo +e1x + ... + e,z" € S. By Lemma 6, S8 = [(8°) and S3° = I(3). Since R is strongly regular all idempotents of R
are central. So 3 and 3° are central in S. Then there exists u,v € U(S) such that a = ufBv = (uv)p. It follows that
Sa=S3=1(8°) and I(a) = I(B) = SB°. So S is left centrally morphic.

Let a € R. Since a is left morphic in R by Lemma 15, we have Ra = I(b) for some b € R. Let & = bz™ € S. Then
there exists 3 = Y. bz’ € C(S) such that [(a) = SB. We have b; € C(I) fori = 1,...,n and by € C(R) because
B € C(S). By computation, one can obtain

o) =1(0) + Iz + ... + Iz"



Extensions of Morphic Quasi-morphic and Centrally Morphic Rings 65

and S8 = {robg + (rob1 + m1bo)x + ... + (Tobyn + ... + Tpbo)z™ 1 7, € R for 1 <i < n andry € R}. Hence there
exists rg € R,r1 € I such that 0 = rgbg. Also S = I(a)) C I(b) + Rx + ... + Ra™ we have 1 = rob; + r1bg. So
by = bo(rob1 + r1bg) = borob1 + bor1bo = robob1 + bor1by = bor1bo. Therefore by is regular in R. But from I(«) = S8
it follows that Rbg = I(b). Since I(b) = Ra we have Ra = Rby is an ideal of R. Thus we have proved that R is regular
and every principal left ideal of R is an ideal. Hence R is strongly regular by [4, Theorem 3.2]. O

Corollary 8. [9, Theorem 20] Let n > 1 be an integer. Then R is strongly regular if and only if R[z]/(x™ 1) is a left centrally
morphic ring.

Proof. Let I = R, then proof is by previous theorem. O

4. Thering (R, I)(x)/(z™*?) is left quasi-morphic

First we fix some notation. Following Herbera [5], we define set E as following:

E={e(z) € (R,I)[[z]] - e(x) =e+ i(l —e)ajex’ where e? =e€ R and a; €I for i=1,...}.
i=1

Fix an integer n and (R, I)[[z]]/(z"*') = (R,I)(z)/(z"t!). For any a = > 2 a;x* € (R, I)[[z]], let @ =
S, a;z’ be the image of a.. We let

E = {e(x) : e(x) € E}.

The following two lemmas are a generalization of [5, Lemma 1.3 and Lemma 1.4]. The proofs are similar to [5] but
for the sake of completeness, we write them again.

Remark 9. (1) The elements of E are idempotents of (R, I)[[z]].
(2) Let e(x) = e+ Y2, (1 — e)aex’ € E, then r(g, 127 (e(x)) = rr(e)(R, I)[[z]]

Lemma 10. Let R be a reqular ring, I be an ideal of R and a(x) € (R, I)[[x]]. Then there exists power series e(x) € E and
a'(x) such that
a(z)(R, I)|[z]] = e(x)(R, D)[[]] + za'(z)(R, I)[[z]] and e(x)a’(z) = 0.

Moreover,
lr(a(2)) € Lp(e(e)) N1r(d (2)).

Proof. If the zero degree term of a(z) is zero then the proof is clear. Assume that
a(x) = ag + xa(zx)

with 0 # ap € Rand a(z) € I(x)/(z"!). Since R is regular there exists an element ¢ € R such that agtag = ag. So
apt = e and tag = f are idempotent elements of R. Then

a(z)(R, D[] =

Moreover,

a(x)f(R, D[[z]] = (ea(x)f + (1 —e)a(x)fz)(R, I)[[z]]
= (ea(x)f + (1 = e)a(z) fr)te(R, I)[[z]].
ea(z)fte +1 — e is a unit element of (R, I)[[x]] because eag fte = e. Let u(z) be inverse of ea(x) fte + 1 — e. Also
note that u(z) = eu(x)e + 1 — e. Thus ea(z) fte = (eu(x)e) ! is a unit of (R, I)[[x]]e. So we have

a(@) f(R, I)[[z]] = e(z) (R, I)[[«]],
where

e(z) = (ea(z)f + (1 — e)a(z) fite(eu(x)e + (1 —e)) = e+ Z(l —e)byex”,

i=1
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for suitable b,, € I. By definition of the set E, e(x) is an element of the set E. Hence,

a(z)(R, D[z]] = e(z)(R, D)[[x]] + za(2)(1 = f)(R, I)[[x]
e(@)(R, D[[z]] + 2(1 — e(x))a(x)(1 = f)(R, D)[[z]].

If we choose o' (z) := (1—e(x))a(z)(1— f)(R, I)[[x]], then we are done. For the moreover part, it suffices to show that
Ir(a(x)) Clg(e(z)). Ifr € Ig(a(x)) thenre = 0, and so r(1 — e) = r. But e(z) = (ea(x) f + (1 — e)a(z) f)te(eu(x)e +
(1 —e)), sowehave re(z) = 0. O

Lemma 11. Let R be a reqular ring, I be an ideal of R and o(z) € (R, I)[[z]]. Then there exits sequence of idempotents
ei(x) € E such that, for any n > 0, there exits a),(x) € (R, I)[[x]] which satisfies

n

a(@)(R, Dll2]] = Y ei(@)2’) (R, D[] + ap, (@)™ (R, I)[[]).

i=0
Moreover,

() ei(z)ej(x) =0 forany j > i >0, and

(i3) for every 0 < i < n, e;(z)a, (z) = 0.

Proof. We will proof it by induction on n. For the case n = 0, there is no need to prove because of Lemma 10.
Assume n > 1 and statement is true for n — 1. Then

n—1

a(@)(R, D)lla]] = () ei(@)2") (R, Dlle]) + af_y (x)2" (R, 1)[[a],

s
I
=)

and this decomposition satisfies (i) and (i7). By applying Lemma 10 to a),_, (x) we have the equality:

ap 1 (2)2" (R, D[z]] = (en(2)2™) (R, 1)[[2]] + ay, (@)™ (R, I)[[2]],

with e, (z) € E, e (x)al,(x) = 0and lR( a,,_1(z)) Clgr(en(z)) Nlg(al,(x)). Since e;(z)a,_,(x) =0,for0 <i<n-—1,
by Remark 9, this happens iff e;a,,_,(z) = 0, where e; = e? € R is the term of zero degree of ¢;(z). Thus

ei(z)en(z) =0and e;(z)a, () =0,for0 <i<n—1. O

Proposition 12. Let R be a reqular ring and let S = (R, I)(z)/(x™*1) where n > 0. For o € S the followings are true:

(¢) There exits a sequence of orthogonal idempotents ey, e1, ..., e, € Rand u € U(S) such that Sa = S(eg + e12+ -+ - +
enx™ ).

(43) There exits a sequence of orthogonal idempotents fy, f1,..., fn € Rand v € U(S) such that oS = v(fo + frz+--- +
fnz™)S.

Proof. By symmetry it is enough to prove one of the statement. We will prove the statement (7).

In order to apply Lemma 11, we will think S as (R, I)[[z]]/(z"*!). Modulo the ideal (z"*!) , the equality in Lemma

11 becomes .
= (> ex(a)a®)s,
k=0

where e (z) € E and e;(z).ej(x) = 0 whenever j > i > 0. We will proceed just as in [9, Proposition 1]. For each k
with0 <k <n,letey(z) =ex+> (1 —ex)a; (k) 2. Tt follows that e;e; = 0 whenever j > i > 0. Now we will

use the same technique in [5, Corollary 1.7]. Let e, (z) = e, + >, (1 — ex)aM erat, for each k with 0 < k < n. Then
we have e;e; = 0, whenever j > i > 0. Hence >, _, ex R = @)_, ex R. By hypothesis we can write @, _, ex R = ¢R

where e is an idempotent element of R. Define h; : @;_,exR — Rby hi(}p_gerrs) = Dpo(l — er)a; ®) e
which is a left multiplication by b; = h;(e), for each ¢ with 1 < ¢ < n. So b;ey, = hi(ex) = (1 — e)a; % )ek. Define v as

following:

v:=1 —|—Zbixi.

i=1

Thenv € U(S) and v(}_5_, exz®) = >1_, ex(z)2*. Sequence of orthogonal idempotents { fx }_, can be constructed
such as :

fo=eo and fr=ex(1—fo— - — fx—1) for k=1,...,n
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By [5, Remark 1.6], the R-module epimorphism g : @;_, Rex — @, _, Rfx which is given by g(3> ,_, rrer) =
> r_o rkfris an isomorphism. Write @) _, Re,, = Ra and @) _, Rfx = Rb, where a and b are idempotents of R.
Say ¢ = g(a) and d = g~ *(b). Then g and g~ ! are the right multiplication by ¢, and d, respectively. Hence

Yot =Yg (f)ak = frda® = (O frat)d
k=0 k=0 k=0 k=0
and
kaa:k = Zg(ek)xk = Zekcxk = (Z exz”)e.
k=0 k=0 k=0 k=0
So (X p_pent®)S = (3 p_o fux®)S. Hence aS = v(3__, exz®)S = v(3}_, fra®)S. O

Theorem 13. Let R be a reqular ring and let n > 0. Then S = (R, I)(z)/(z™*') is a quasi-morphic ring.
Proof. By symmetry, we only show that S is a left quasi morphic ring. Let o € S. By Proposition 12,
Sa = S(eg+e1x+ ... + epz™)u

and
aS=9v(fo+ fr +...+ faz™)S,

where u,v are unit elements of S and {e;}}, {fi}i, are sequences of orthogonal idempotents of R. Let 5 =
S peixtandy =" f;z'. Then, by [9, Lemma 3],

Sav= (SB)u = 1(8%u = 1(u""'5°),

(o) = (v7) = I(y)o~! = (7)o" = S0

So « is a left quasi-morphic in S. O

Corollary 14. If R is regular and n > 0, then the matrix rings over (R, I)(x)/(x™ ") are all quasi-morphic.

Proof. If R is regular then My(R) is regular for each k¥ > 1. So My ((R,I)(x)/(z" ")) = My(R,I)(z)/(z" ") is
quasi-morphic by Theorem 13. O

The following theorem generalizes [9, Lemma 10].
Lemma 15. Let n > 0 be an integer. If S = (R, I)(z)/(x™*1) is left quasi-morphic (resp., left morphic), then so is R.

Proof. Leta € Randleta = a € S. Since « is left quasi-morphicin S, Soe = 1(8) and 1(ar) = S, where § = Y"1 b;z’
and v = Y., c;z'inS. But
o) =1(a) +1(a)z+ -+ 1(a)z" and
Sy = {roco + (roc1 + rico)x + -+ (rocp + ricn_1+ - +rpco)z™ : ro €ER 11,1y €T}
So it follows from 1(a)) = S+ that 1(a) = Rcy. On the other hand, a8 = 0 clearly implies that Ra C 1by. Moreover,
(I(bg) N---N1(by)) + (L(bo) N - - N 1(bp—1))x + - - + 1(bg) 2"
1(8) = Sae = Ra + Iax + - - - + Taz™.

So 1(by) € Ra. Hence Ra = 1(by). So a is left quasi-morphic in R. If « is left morphic in S, then 8 and ~y can be
chosen to be the same. Thus, a is left morphic in R since by = ¢y in this case. O
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