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Abstract
The family of self-dual codes particularly the ones over the binary alphabet is studied often. Recently,
Z2Z2[u]-linear codes have been defined as R-submodules of Zr2 × Rs in [4] where R = Z2 + uZ2 =
{0, 1, u, u+ 1} is the ring with four elements, u2 = 0 and r, s are positive integers. In this work, we study
self-dual Z2Z2[u]-linear codes. We introduce two types of self-dual codes. Some examples of self-dual
separable and non-separable Z2Z2[u]-linear codes for each type are given. Binary self-dual codes are
obtained as the Gray images of self-dual Z2Z2[u]-codes.
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1. Introduction
Self-dual codes over the binary field have been an attractive research area in the last decades. The structure

of binary and quaternary linear codes have been studied in details for the last sixty years. An upper bound on
the minimum distance of a self-dual binary code is given in [7]. Since then, the construction and classification of
extremal binary self-dual codes has generated interest. For instance, some new extremal binary self-dual codes of
length 68 obtained by codes over the alphabet Z2[x]/

〈
x3 − 1

〉
with eight elements in [10].

Another recent research area is additive codes. Finite rings of different characteristics have been used by
researchers. Codes over alphabets such as Z2Z4 have been studied. For some of the works done in this direction we
refer the reader to [1, 3, 6]. In [6], Borges et al. defined a new class of error correcting codes called Z2 × Z4-additive
codes, which generalize the class of binary linear codes and the class of quaternary linear codes. A Z2Z4-additive
code C is defined to be a subgroup of Zα2 × Zβ4 where α + 2β = n. Binary linear codes and codes over Z4 can
be considered as subfamilies of Z2Z4-additive codes. The ring R = Z2[x]/

〈
x2
〉

is an important ring with four
elements where R = Z2[u] = {0, 1, u, u+ 1} and u2 = 0. Cyclic, constacyclic and self-dual codes over the ring R
have been studied by many researchers, for some of them we refer to [2, 5, 8, 11]. Z2Z2 [u]-additive codes have been
investigated in [4].

In this work, we consider self-dual Z2Z2 [u]-linear codes, determine the conditions on self-dual codes. Via a
duality preserving linear Gray map we obtain self-dual binary codes.

The rest of the work is organized as follows: some of the basic definitions about Z2Z2 [u], Gray map to the binary
space and their properties are given in Section 2, in Section 3 we study the structure of separable, non-separable,
antipodal, Type I and Type II self-dual Z2Z2 [u]-linear codes. Some examples of self-dual codes of each type are
given in Section 4.
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2. Preliminaries
Let R = Z2 + uZ2 = {0, 1, u, u+ 1} be the finite ring with four elements where u2 = 0. It is clear that the ring Z2

is a subring of the ring R. Therefore we define the set

Z2Z2[u] = {(a, b) | a ∈ Z2 and b ∈ R} .

Here, the set Z2Z2[u] is not well-defined with respect to the usual multiplication by u ∈ R. So, we must define a
new way of multiplication on Z2Z2[u] to make this set an R-module. Now define the mapping

η : R→ Z2

η (p+ uq) = p.

i.e., η(0) = 0, η(1) = 1, η(u) = 0 and η(u+ 1) = 1. It is easy to show that η is a ring homomorphism. And also, for
any element d ∈ R, we can define an R-scalar multiplication on Z2Z2[u] as

d (a, b) = (η(d)a, db) .

Furthermore, this multiplication can be extended to Zr2 ×Rs as follows. Let d ∈ R and
v = (a0, a1, ..., ar−1,b0, b1, ..., bs−1) ∈ Zr2 ×Rs define

dv = (η(d)a0, η(d)a1, ..., η(d)ar−1,db0, db1, ..., dbs−1) .

Definition 2.1. Let C be a non-empty subset of Zr2×Rs. Then C is called a Z2Z2[u]-linear code if it is anR-submodule
of Zr2 ×Rs.

Let a ∈ R, then there exists unique p1, q1 ∈ Z2 such that a = p1 + uq1. And also, as an additive group, the ring R
is isomorphic to Z2

2. Therefore, if C is a Z2Z2[u]−linear code then it is isomorphic to an abelian group of the form
Zk02 × Z2k1

2 , where k0 and k1 are positive integers. Now consider the following sets.

CFs = {(a, b) ∈ Zr2 ×Rs | b free over Rs} and dim(CFs ) = k1.

Let D = C\CFs = C0 ⊕ C1 such that

C0 = 〈{(a, ub) ∈ Zr2 ×Rs | a 6= 0}〉 ⊆ C\CFs
C1 = 〈{(a, ub) ∈ Zr2 ×Rs | a = 0}〉 ⊆ C\CFs .

Hence, denote the dimension of C0 and C1 as k0 and k2 respectively. Considering all these parameters we say such a
Z2Z2[u]-linear code C is of type (r, s; k0, k1, k2).

We can look at Z2Z2[u]-linear codes as binary codes under a special map. For (x, y) ∈ Zr2 × Rs, where x =
(x0, x1, . . . , xr−1, y0, y1, . . . , ys−1) and yi = pi + uqi define the Gray map

Φ : Zr2 ×Rs → Zn2
Φ (x0, . . . xr−1, p0 + uq0, . . . ps−1 + uqs−1)

= (x0, . . . xr−1, q0, . . . , qs−1, p0 ⊕ q0, . . . , ps−1 ⊕ qs−1)

where pi ⊕ qi = pi + qi mod 2 and n = r + 2s. The Gray map is a distance preserving map which transforms
the Lee distance in Zr2 × Rs to the Hamming distance in Zn2 , where the Hamming and the Lee distance between
two codewords is the Hamming weight and the Lee weight of their differences, respectively. The Hamming
weight of an any codeword is the number of its nonzero entries, and the Lee weight of an elements of R are,
wtL(0) = 0, wtL(1) = wtL(1 + u) = 1, wtL(u) = 2. Furthermore, Φ is a linear map, so the binary image Φ (C) of an
any Z2Z2[u]-linear code C, is also a linear code. If C is a Z2Z2[u]-linear code of type (r, s, k0, k1, k2) then the binary
image C = Φ(C) is a binary linear code of length n = r + 2s and size 2n.

Next, for any elements

v = (a0, . . . , ar−1, b0, . . . , bs−1) , w = (d0, . . . , dr−1, e0, . . . , es−1) ∈ Zr2 ×Rs,

define the inner product as

〈v, w〉 =

u r−1∑
i=0

aidi +

s−1∑
j=0

bjej

 ∈ Z2 + uZ2.
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According to this inner product, the dual linear code C⊥ of an any Z2Z2[u]-linear code C is defined in a usual way,

C⊥ = {w ∈ Zr2 ×Rs| 〈v, w〉 = 0 for all v ∈ C} .

Therefore, if C is a Z2Z2[u]-linear code, then C⊥ is also a Z2Z2[u]-linear code.
Two codewords c1 and c2 of a Z2Z2[u]-linear code may be orthogonal to each other but the binary parts of the

vectors may not be orthogonal. For example, (1|1 + u) and (1|u) are orthogonal in Z2 ×R whereas the binary or
R-components are not orthogonal. The Gray map ϕ from Rs into Z2s

2 defined as ϕ
(
a+ ub

)
=
(
b, a+ b

)
preserves

orthogonality. But, that is not enough to conclude that Φ preserves orthogonality. Hence, we need to verify that Φ
preserves orthogonality.

Theorem 2.1. Let C be a self-dual Z2Z2[u]-linear code then Φ (C) is a binary self-dual code.

Proof. It is enough to show that the Gray images of codewords are orthogonal whenever the codewords are. Let
C be a self-dual Z2Z2[u]-linear code and v =

(
a, b+ uc

)
, w =

(
d, e+ uf

)
∈ Zr2 × Rs be codewords in C where

a, d ∈ Zr2 and b, c, e and f ∈ Zs2. Then 〈v, w〉 = u
〈
a, d
〉

+
〈
b+ uc, e+ uf

〉
= 0 in R. For ease of notation

denote the standard inner product of two binary vectors
〈
a, d
〉

as ad. So we have u
(
ad+ bf + ce

)
+ be = 0 in

R which implies ad + bf + ce = 0 = be in Z2. On the other hand, Φ (v) =
(
a, c, b+ c

)
, Φ (w) =

(
d, f, e+ f

)
and

〈Φ (v) ,Φ (w)〉 = ad+ cf+ be+ bf + ce +cf =
(
ad+ bf + ce

)
+ be = 0. Hence the binary image of a self-dual code

is self-dual.

The standard forms of generator and parity-check matrices of a Z2Z2[u]-linear code C were given as follows.

Theorem 2.2. [4] Let C be a Z2Z2[u]-linear code of type (r, s; k0, k1, k2). Then the generator and the parity-check matrices of
C are given in the following standard forms.

G =

 Ik0 A1 0 0 uT
0 S Ik1 A B1 + uB2

0 0 0 uIk2 uD


H =

 −At1 Ir−k0 −uSt 0 0
−T t 0 −(B1 + uB2)t +DtAt −Dt Is−k1−k2

0 0 −uAt uIk2 0


where A, A1, B1, B2, D, S and T are matrices over Z2.

Corollary 2.1. [4] If C is a Z2Z2[u]-linear code of type (r, s; k0, k1, k2) then C⊥ is of type (r, s; r − k0, s− k1 − k2, k2).

Let C be a Z2Z2[u]-linear code of type (r, s; k0, k1, k2) with n = r + 2s. Then the weight enumerator of C is
defined as

WC(x, y) =
∑
c∈C

xn−w(c)yw(c).

Theorem 2.3. [4] Let C be a Z2Z2[u]−linear code. The relation between the weight enumerators of C and its dual is,

WC⊥ (x, y) =
1

|C|
WC (x+ y, x− y) .

3. The Structure of Self-Dual Z2Z2[u]-linear Codes

In this section of the paper we investigate the structure of self-dual Z2Z2[u]-linear codes.

Lemma 3.1. If C is a self-dual Z2Z2[u]-linear code then C is of type (2k0, 2k1 + k2; k0, k1, k2).

Proof. Since C is a self-dual Z2Z2[u]-linear code, C = C⊥. So, types of the C and its dual have to be equal. Hence,

(r, s; k0, k1, k2) = (r, s; r − k0, s− k1 − k2, k2)

and we have r = 2k0 and s = 2k1 + k2.

Corollary 3.1. If C is a self-dual Z2Z2[u]-linear code of type (r, s; k0, k1, k2) and length n, then both r and n are even.
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Lemma 3.2. Let C ⊆ Zr2 ×Rs be a self-dual code. Let (x, y) ∈ C and let us denote the number of unit coordinates(coordinates
1 or 1 + u) of any vector y ∈ Rs by Nu(y). Therefore, we have both wH(x) and Nu(y) are even.

Proof. Take c = (x0, x1, . . . , xr−1, y0, y1, . . . , ys−1) in C. We know that C is self-dual so it is self-orthogonal. Hence,

〈c, c〉 = u
(
x20 + x21 + . . .+ x2r−1

)
+ y20 + y21 + . . .+ y2s−1 = uwH(x) +Nu(y) = 0.

Therefore, in order to hold to above statement, both of wH(x) and Nu(y) must be even.

Corollary 3.2. Let kt denote the tuple (k, k, . . . , k) of length t. If C is self-dual then (0r, us) is clearly a codeword in C.

Lemma 3.3. Let C be a self-dual Z2Z2[u]-linear code. Let Cr be the punctured code of C by deleting the coordinates outside r.
Denote the binary subcode of C by (Cb) which actually contains all order two codewords and denote the dimension of (Cb)r by
k0. Then (Cb)r is a binary self-dual code.

Proof. Since C is self-dual then is of type (2k0, 2k1 + k2; k0, k1, k2). For any pair of codewords (x, y), (x′, y′) ∈ Cb we
have y and y′ are orthogonal vectors. So, x and x′ are also orthogonal to each other. Moreover, (Cb)r has dimension
k0 and is of length 2k0. Hence we have (Cb)r self-dual.

Definition 3.1. Let C be Z2Z2[u]-linear code. Let Cr (respectively Cs) be the punctured code of C by deleting the
coordinates outside r (respectively s). If C = Cr × Cs then C is called separable.

If C is a separable Z2Z2[u]-linear code of type (r, s; k0, k1, k2) then it has the following generator matrix in the
following form,

G =

 Ik0 A1 0 0 0
0 0 Ik1 A B1 + uB2

0 0 0 uIk2 uD


where A1, A, B1, B2 and D are binary matrices.

Theorem 3.1. Let C be a self-dual Z2Z2[u]-linear code of type (2k0, 2k1 + k2; k0, k1, k2). Then the following statements are
equivalent.

• Cr is a binary self-dual code.

• Cs is a self-dual code over R.

• |Cr| = 2k0 and |Cs| = 22k1+k2 .

• C is separable.

Proof. The proof comes from the natural consequence of Definition 3.1.

Theorem 3.2. If C is a binary self-dual code of length r and D is a self-dual code over R of length s. Then C ×D is a self-dual
Z2Z2[u]-linear code of length r + s.

Proof. Let v = (v0, v1, . . . , vr−1), v′ = (v′0, v
′
1, . . . , v

′
r−1) ∈ C and w = (w0, w1, . . . , ws−1), w′ = (w′0, w

′
1, . . . , w

′
r−1) ∈

D. Since both of C and D are self-dual,

〈(v, w), (v′, w′)〉 = u

r−1∑
i=0

viv
′
i +

s−1∑
i=0

wiw
′
i ≡ 0 (mod 2).

Therefore, C × D is self-orthogonal. It follows that it is self-dual due to the size of the code.

Lemma 3.4. Let C and D are self-dual Z2Z2[u]-linear codes of type (r, s; k0, k1, k2) and (r′, s′; k′0, k
′
1, k
′
2) respectively. Then

C × D is a self-dual Z2Z2[u]-linear code of type (r + r′, s+ s′; k0 + k′0, k1 + k′1, k2 + k′2).

Proof. Let the generator matrix of C be (Gr | Gs) and the generator matrix of D be (G′r | G′s). Then C × D has the
following generator matrix of the form. (

Gr 0 Gs 0
0 G′r 0 G′s

)
It is clear that the rows of the above matrix is orthogonal to each other. Since C and D are self-dual, the parameters
of the new self-dual code C × D are (r + r′, s+ s′; k0 + k′0, k1 + k′1, k2 + k′2).
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Corollary 3.3. There exists self-dual Z2Z2[u]-linear codes of type (r, s; k0, k1, k2) for all even r and all s.

Definition 3.2. Let C be a self-dual Z2Z2[u]-linear code. If C has a codeword of odd weight then it is called Type 0.
If all codewords of C have weights divisible by 4 then it is said to be Type II and Type I otherwise.

We easily observe that Type 0 self-dual Z2Z2[u]-linear codes do not exist. Since the binary image is a binary
self-dual code and there is no Type 0 binary self-dual code.

Definition 3.3. Let C be a binary code and c ∈ C. C is called antipodal if c + 1 ∈ C. In the case, where C is a
Z2Z2[u]-linear code, we say C is antipodal if Φ(C) is antipodal.

It is clear that a Z2Z2[u]-linear code C is antipodal if and only if (1r, us) ∈ C.

Proposition 3.1. Let C ⊆ Zr2 ×Rs be a self-dual code. C is antipodal if and only if C is of Type I or Type II.

Proof. We know that C is antipodal if and only if (1r, us) ∈ C and also it is obvious that (0r, us) ∈ C. Therefore we
have, C is antipodal if and only if (1r, 0s) ∈ C. This means that all codewords of Cr have even weight.

Proposition 3.2. Let C be a self-dual Z2Z2[u]-linear code. If C is separable then C is antipodal.

Proof. Assume that C = Cr × Cs is separable where Cr and Cs are self-dual codes over Zr2 and Rs respectively. Hence
Cr contains all-1 vector and Cs contains all-u vector then (1r, us) ∈ C.

4. Examples of Self-Dual Z2Z2[u]-linear Codes

In this section some examples of separable and non-separable self-dual Z2Z2[u]-linear codes are given. Self-dual
binary codes obtained as Gray images of these and some of them are optimal binary codes. If the minimum distance
of an any code C get the possible maximum value according to its length and dimension, then C is called optimal
code. We use the table of optimal linear codes in the website http://www.codetables.de/ [9]. Further, an upper
bound for the minimum distance d of a binary self-dual code of length n is given in [7] as d ≤ 4b n24c+ 4 if n 6≡ 22
(mod 24). A self-dual binary code of length n where n 6≡ 22 (mod 24) is called extremal if it meets the bound. The
following examples illustrate extremal self-dual binary codes of lengths 8, 10, 14, 16 and 20.

Example 4.1. (Separable Type I) Let C1 be self-dual Z2Z2[u]-linear code of type (2, 3; 1, 1, 1) with the generator
matrix of the following form.

G1 =

 1 1 0 0 0
0 0 1 0 1
0 0 0 u 0

 .

Therefore, C1 is a Type I separable code and its image Φ(C1) is the self-dual [8, 4, 2]2 code.

Example 4.2. (Separable Type I) Let C2 be Z2Z2[u]-linear code of type (8, 1; 4, 0, 1) with the generator matrix,

G2 =


1 0 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1 0
0 0 1 0 1 1 0 1 0
0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 u

 .

C2 is a separable Type I code and Φ(C2) is a self-dual [10, 5, 2]2 code with weight enumerator 1 + z2 + 14z4 + 14z6 +
z8 + z10. Moreover, if we add (0 0 0 0 u) as a last column to G2, then we have separable Type II, Z2Z2[u]-linear
code of type (8, 2; 4, 0, 1) and the parameters of the binary image of this new self-dual code is [12, 5, 4], which is
optimal.

Example 4.3. (Separable Type I) Let C3 be Z2Z2[u]-linear code of type (8, 6; 4, 3, 0) with the generator matrix,

G3 =



1 0 0 0 0 1 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 1 0 0 0 0 0 0
0 0 1 0 1 1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 u u 1 + u
0 0 0 0 0 0 0 0 0 1 0 1 + u u u
0 0 0 0 0 0 0 0 0 0 1 u 1 + u u


.
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Then C3 is a separable Type I code and Φ(C3) is a self-dual Type I [20, 10, 4]2 code with weight enumerator

1 + 29z4 + 32z6 + 226z10 + 448z12 + 226z14 + 32z16 + 29z18 + z20.

The automorphism group of the code is of order 215 × 33 × 5× 7.

Example 4.4. (Non-separable Type I) Let C4 be Z2Z2[u]-linear code of type (4, 5; 2, 2, 1) with the generator matrix,

G4 =


1 0 1 0 0 0 u u u
0 1 0 1 0 0 0 u u
0 0 1 1 1 0 0 u 1 + u
0 0 1 1 0 1 0 1 + u u
1 1 1 1 0 0 u 0 0

 .

Then C4 is a self-dual non-separable Type I code. The binary image is the unique self-dual Type I [14, 7, 4]2 optimal
code with weight enumerator 1 + 10z4 + 21z6 + 21z8 + 10z10 + z14 with an automorphism group of order 28×32×5.

Example 4.5. (Separable Type II) Let C5 ⊆ Z8
2 ×R4 be a self-dual code with generator matrix G5.

G5 =



1 0 1 0 1 0 1 0 0 0 0 0
0 1 1 0 0 1 1 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 u 0 u
0 0 0 0 0 0 0 0 0 0 u u


.

Therefore, C5 is a separable Type II code. Then Φ(C5) is a self-dual Type II [16, 8, 4]2 code with weight enumerator
1 + 28z4 + 198z8 + 28z12 + z16. The code has an automorphism group of order 213 × 32 × 72. Note that, Cr is the
extended binary Hamming code of length 8.

Example 4.6. (Non-separable Type II) Let C6 be the Z2Z2[u]-linear code with the generator matrix:

G6 =



1 0 0 0 1 0 0 0 0 0 0 u
0 1 0 0 0 1 0 0 0 0 0 u
0 0 1 0 0 0 1 0 0 0 0 u
0 0 0 1 0 0 0 1 0 0 0 u
0 0 0 0 1 1 1 1 1 1 1 1 + u
0 0 0 0 0 0 0 0 0 u 0 u
0 0 0 0 0 0 0 0 0 0 u u


.

Then C6 is a non-separable self-dual Type II code. The binary image of C6 is a self-dual Type II code of parameters
[16, 8, 4]2. The code has the same weight enumerator with C5 in the previous example. Φ(C6) has an automorphism
group of order 214 × 32 × 5× 7. Therefore it is not equivalent to Φ(C5).
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