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Abstract
In this study, we present an approach by introducing the quaternionic structure of framed curves.
Furthermore, we derive Serret-Frenet formulas and give specific results for quaternionic framed curves.
Initially, we focus on the moving frame and its curvatures corresponding to the frame T,N,B along the
quaternionic framed base curve in three-dimensional Euclidean space R3. Then, we establish the Serret-
Frenet type formulas of quaternionic framed curves. We then generalize these formulas and the definition
of quaternionic framed curves to four-dimensional Euclidean space, highlighting the relationship between
the curvatures in both 3-dimensional and four-dimensional Euclidean spaces. In addition, the theorems
are supported by examples, demonstrating the applicability of the proposed results.
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1. Introduction
The theory of curves is one of the most fundamental subjects of differential geometry and has been studied

for many years. Different frame constructions for curves have also been investigated, as first introduced in [1].
Furthermore, associated curves and their geometric properties have been examined in the Frenet frame context,
offering valuable insights into curve behavior [2]. In the theory of curves, the Serret-Frenet formulas of a curve are
given by defining the constant quantities of curvatures and torsions of the curve. The harmonic curvatures of the
Frenet curve have been researched by K. Arslan and H.H. Hacısalihoğlu [3]. The generalized helix concept, which
is an important curve making a constant angle with a constant vector with a fixed direction, has been studied in
[4]. Various types of curves, such as rectifying, osculating, and normal curves, have been studied with the help
of the frameworks of the curves, known as Serret-Frenet elements, where their changes can be observed instantly.
A study on these curves can be found in [5]. The important point here is that by defining Frenet elements with
the help of regular curves, many properties of the curve, such as the geometric structure of the relevant space, are
investigated. However, if space curves contain singular points, constructing the Frenet frame becomes impossible
to examine the structure of these curves. As it is known, the fact that the tangent vectors are zero at singular points
creates some difficulties. Because the principal normal and binormal vectors cannot be normalized by known
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methods. However, thanks to the recently defined generalized tangent, principal normal vector, special curves with
singular points can also be studied at non-singular points [6]. Framed curves, defined as space curves equipped
with a moving frame that may include singular points, have been described to be both a generalization of Legendre
curves and a generalization of regular curves with linearly independent conditions, and also Serret-Frenet type
formulas of framed curves have been given by Honda and Takahashi [7]. In addition, spinors in terms of framed
Manheim curves and framed Bertrand curves are discussed in [8, 9]. Framed curves have been studied in recent
years, both as special curve couples in Lie groups [10] and as surfaces formed in Euclidean space [11], making
important contributions to this field. Apart from these framed curves have been studied in the Euclidean space
[12, 13]. Some geometric properties of framed curves in all four dimensions have been investigated [14, 15].

During the study of curves, quaternionic curves have been studied. The properties of smooth quaternionic
curves in spatial and non-spatial quaternion spaces were studied by Baharatti and Nagaraj [16]. In addition,
Serret-Frenet formulas are also given in this study. The Serret-Frenet formulas are given by Tuna for quaternionic
curves in semi-Euclidean space [17]. In recent years, studies on quaternionic curves in differential geometry [18, 19]
have come to the fore. For basic notions of differential geometry, we refer to [20]. In order to strengthen the
theoretical background and provide a broader context, we have incorporated relevant studies on quaternionic
frames and curves [21–25].

In this study, we derive the well-known Serret-Frenet formulas of differential geometry in terms of framed
curves using quaternion algebra. We begin by presenting the fundamental definitions and algebraic properties of
quaternions, along with the concept of framed curves in three-dimensional Euclidean space. Next, we introduce a
notion of quaternionic framed curves in three-dimensional Euclidean space. We then rigorously prove the Serret-
Frenet-type formulas for quaternionic framed curves and provide their matrix representations. Following this,
we extend these formulas and the definition of quaternionic framed curves to four-dimensional Euclidean space,
establishing a relationship between the curvatures in both 3-dimensional and 4-dimensional Euclidean spaces. This
innovative framework, encompassing the definitions of quaternionic framed curves and their associated theorems
offers a fresh perspective on the geometry of curves. Classical methods in elementary differential geometry do not
provide a direct approach for relating a curve γ in R3 to its corresponding a curve γ̃ in R4. However, through the
use of quaternions, we are able to achieve this connection. The study is further substantiated by examples in both
three-dimensional and four-dimensional spaces, demonstrating the practical application of the developed theory.

2. Preliminary

In this section, some definitions and theorems that are useful in our study are given. The set of real quaternions
is defined as:

H =
{
q : q = a0e0 + a1e1 + a2e2 + a3e3, a0, a1, a2, a3 ∈ R, e0, e1, e2, e3 ∈ R4

}
.

Here, e0, e1, e2, e3 are quaternion base elements and satisfy the following multiplication rules:

e0
2 = 1, e1

2 = e2
2 = e3

2 = e1 × e2 × e3 = −1,

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2,

e2 × e1 = −e3, e3 × e2 = −e1, e1 × e3 = −e2.

Here, the symbol × denotes the quaternionic product. A quaternion q with the scalar part is denoted by Sq and
the vector part is denoted by V q . Here Sq = a0 and V q = a1e1 + a2e2 + a3e3 are written as q = Sq + V q . Then the
quaternionic products of two quaternions q and p are given by:

q × p = SqSp − ⟨V q,V p⟩+ SqV p + SpV q + V q ∧ V p .

Here the symbols ⟨, ⟩ and ∧ denote the Euclidean dot product and the vector product in R3, respectively. The
conjugate of a quaternion q ∈ H is defined as αq = Sq − V q. Accordingly, the product of the quaternion and its
conjugate is written as follows:

q × αq = (a0e0 + a1e1 + a2e2 + a3e3)× (a0e0 − a1e1 − a2e2 − a3e3) = a0
2 + a1

2 + a2
2 + a3

2.

Also, the properties related the conjugate of the quaternion q and p for a, b ∈ R are given by:

α (aq + bp) = aα (q) + bα (p) ,
α (q × p) = α (p)× α (q) ,

α (αq) = q.
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The inner product for real quaternions p, q ∈ H is defined as:

h : H ×H → R,

(p, q) → h (p, q) =
1

2
(p× αq + q × αp)

where h is real-valued, symmetric, and bilinear. The norm of the quaternion q ∈ H defined by:

∥∥ : H → R,
q → ∥q∥ ,

∥q∥2 = h (q, q) = a0
2 + a1

2 + a2
2 + a3

2.

If the quaternion q ∈ H satisfies the equality
q + αq = 0, (2.1)

then it is called a spatial quaternion. If for the quaternion q ∈ H

q − αq = 0

then it is called a temporal quaternion. In general, the quaternion q ∈ H can be written as

q =
1

2
(q + αq + q − αq) =

1

2
(q + αq) +

1

2
(q − αq) .

On the first hand, Honda and Takahashi stated that a framed curve is a smooth space curve with a moving frame
with singular points [7]. In order to construct a framed curve, a structure known as a "Stiefel Manifold" in the
literature is defined as follows:

∆n−1 = {v = (v1, v2, ..., vn−1) ∈ Rn × ...× Rn : ⟨vi, vj⟩ = δij , i, j = 1, ..., n− 1}
=

{
v = (v1, v2, ..., vn−1) ∈ Sn−1 × ...× Sn−1 : ⟨vi, vj⟩ = 0, i ̸= j, i, j = 1, ..., n− 1

}
.

This manifold is n(n−1)
2 -dimensional and smooth. If taken as v = (v1, v2, ..., vn−1) ∈ ∆n−1 , the unit vector µ ∈ Rn

can be defined as µ = v1 ∧ v2... ∧ vn−1. It can be seen from here that (v,µ) ∈ ∆n−1 and det (v,µ) = 1.

Definition 2.1. (γ,ν) : I → Rn × ∆n−1 is called a framed curve if h (γ̇ (t) , νi (t)) = 0 for all t ∈ I and i =
1, 2, ...n− 1.γ : I → Rn is said that a framed base curve if there exists ν : I → ∆n−1 such that (γ, v1, v2, ..., vn−1) is a
framed curve [7].

Along the framed base curve γ (t), the moving frame {µ (t) ,v (t)} can be defined and the Serret-Frenet type
formulas are given as [

v̇ (t)
µ̇ (t)

]
= A (t)

[
v (t)
µ (t)

]
.

Here i, j = 1, 2, ..., n is for each A (t) = (σij (t)) ∈ o (n) and o (n) is the set of anti-symmetric matrices. Also the
smooth function σ : I → R given as

γ̇ (t) = σ (t)µ (t) .

In addition, the necessary and sufficient condition for the point t to be a singular point of the curve γ is that it is
σ (t) = 0. Here the functions (σij (t) , σ (t)) are called the curvatures of the framed curve. Now we will give the
definition of framed curves, especially in the case of n = 3. The definition of framed curves in R3 ×∆2 is given as
follows:
Let be (γ, v1, v2) : I → R3 ×∆2 a framed curve and µ = v1 ∧ v2. In this case, the following conditions are satisfied

⟨γ̇ (t) , vi (t)⟩ = 0, ∀t ∈ I, i = 1, 2.

Here it is expressed as

∆2 =
{
v = (v1, v2) ∈ R3 × R3 : ⟨v1, v2⟩ = 0, ⟨v1, v1⟩ = 1, ⟨v2, v2⟩ = 1

}
.

The Serret-Frenet type formulas are given by

{µ (t) ,v (t)} ∈ ∆2 ,

 v̇1 (t)
v̇2 (t)
µ̇3 (t)

 =

 0 l (t) m (t)
−l (t) 0 n (t)
−m (t) −n (t) 0

 v1 (t)
v2 (t)
µ (t)


where the curvatures are l (t) = ⟨v̇1 (t) , v2 (t)⟩, m (t) = ⟨v̇1 (t) ,µ (t)⟩,
n (t) = ⟨v̇2 (t) ,µ (t)⟩ and σ (t) = ⟨γ̇ (t) ,µ (t)⟩ [7].



Serret-Frenet formula of quaternionic framed curves 95

3. Serret-Frenet formulas for quaternionic framed curves

In this section, the definition of a spatial quaternionic framed curve in 3-dimensional Euclidean space R3 is
given. Then, the Serret-Frenet type formula is obtained for these quaternionic framed curves. Also, the relationship
between their curvatures is presented. Serret-Frenet type formula for spatial quaternionic framed curve and framed
curvatures is supported with an example and illustrated.

Definition 3.1. We define (γ,ν) : I → H ×∆2 is a quaternionic framed curve in three dimensional Euclidean space
R3 if h (γ̇ (t) , νi (t)) = 0 for all t ∈ I and i = 1, 2. In other words, we say that γ : I → H is a quaternionic framed
base curve in R3 if there exists ν : I → ∆2 such that (γ, v1, v2) is a quaternionic framed curve.

Theorem 3.1. Let (γ, v1, v2) : I → H × ∆2 be a quaternionic framed curve in three dimensional Euclidean space R3

and µ = v1 ∧ v2 with the space of spatial quaternions {γ ∈ H : γ + α (γ) = 0} which the quaternionic framed base curve

γ : I ⊂ R → H defining by t → γ (t) =
3∑

i=1

γi (t) ei for all t ∈ I = [0, 1] ⊂ R. Then, Serret-Frenet type formula of the

quaternionic framed curve (γ,ν) at point γ (t) is given by v̇1 (t)
v̇2 (t)
µ̇ (t)

 =

 0 l (t) m (t)
−l (t) 0 n (t)
−m (t) −n (t) 0

 v1 (t)
v2 (t)
µ (t)


where the curvatures of the quaternionic framed curve are l (t) = h (v̇1 (t) , v2 (t)), m (t) = h (v̇1 (t) ,µ (t)), n (t) =
h (v̇2 (t) ,µ (t)) and σ (t) = h (γ̇ (t) ,µ (t)) .

Proof. Let (γ,ν) be the quaternionic framed curve and µ (t) = v1 (t) ∧ v2 (t) for all t ∈ I = [0, 1] ⊂ R. Since

∥µ (t)∥2 = h (µ (t) ,µ (t)) =
1

2
(µ (t)× α (µ (t)) + µ (t)× α (µ (t))) = µ (t)× α (µ (t)) = 1.

µ (t) has unit length. Taking the derivative of both sides of the above equation is obtained

µ̇ (t)× αµ (t) + µ (t)× (α̇µ) (t) = 0. (3.1)

We get from the equation (3.1) as follows:

h (µ̇ (t) ,µ (t)) =
1

2
(µ̇ (t)× αµ (t) + µ (t)⊗ αµ̇ (t)) = 0. (3.2)

In this case it is µ̇⊥µ. This shows the meaning of quaternionic orthogonality. If the equation (3.1) is arranged
according to the conjugate rules, then we have (µ̇× αµ) + α (µ× αµ̇) = 0. Hence, µ̇× αµ is a spatial quaternion
from equation (2.1). Since γ is a framed curve, there exists a smooth function σ : I → R such that γ̇ (t) = σ (t)µ (t)
and unit vector µ. Accordingly µ̇ (t) ∈ Sp {µ (t) , v1 (t) , v2 (t)} and since µ̇ is a spatial quaternion it can be written
as follows:

µ̇ (t) = a31(t)v1(t) + a32(t)v2(t) + a33(t)µ(t), (3.3)

where a31, a32, a33 : I → R are smooth functions. Right now, we compute quaternionic inner product that is h−
inner product of the vectors v1, v2,µ respectively, as follows:

h (v1 (t) ,µ (t)) =
1

2
(v1 (t)× αµ (t) + µ (t)× αv1 (t)) =

1

2
(v2 (t) + αv2 (t)) = 0,

h (v2 (t) ,µ (t)) =
1

2
(v2 (t)× αµ (t) + µ (t)× αv2 (t)) =

1

2
(αv1 (t) + v1 (t)) = 0.

It is seen that µ ,v1 and v2 are orthogonal quaternions. Also v1 and v2 are the unit spatial quaternions. It is a33(t) = 0
from the equation (3.2) and the last two equations. Thus the equation (3.3) becomes as follows:

µ̇(t) = a31(t)v1(t) + a32(t)v2(t). (3.4)

On the other hand, since it is v̇1 (t) ∈ Sp {v1(t), v2(t),µ(t)} a combination of the vectors, v1, v2 and µ can be written
as

v̇1 (t) = a11 (t) v1 (t) + a12 (t) v2 (t) + a13 (t)µ (t) . (3.5)
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From here, by h− inner producting with the vectors v1, v2 and µ respectively, for the vector v̇1 we have

h (v̇1 (t) , v1 (t)) = a11(t)h (v1 (t) , v1 (t)) + a12(t)h (v2 (t) , v1 (t)) + a13(t)h (µ (t) , v1 (t)) , (3.6)

h (v̇1 (t) , v2 (t)) = a11(t)h (v1 (t) , v2 (t)) + a12(t)h (v2 (t) , v2 (t)) + a13(t)h (µ (t) , v2 (t)) , (3.7)

h (v̇1 (t) ,µ (t)) = a11(t)h (v1 (t) ,µ (t)) + a12(t)h (v2 (t) ,µ (t)) + a13(t)h (µ (t) ,µ (t)) .

In addition, we obtain by the simple computing with inner products in the equation (3.6) as follows:

h (v1 (t) , v1 (t)) =
1

2
(v1 (t)× αv1 (t) + v1 (t)× αv1 (t)) =

1

2
2 (v1 (t)×−v1 (t)) = 1

and similarly, we get the following equations as

h (v2 (t) , v1 (t)) =
1
2
(v2 (t)× αv1 (t) + v1 (t)× αv2 (t)) = (v2 (t)×−v1 (t)) + (v1 (t)×−v2 (t))

= 1
2
(−⟨v2 (t) ,−v1 (t)⟩+ v2 (t) ∧ v1 (t) + (−⟨v1 (t) ,−v2 (t)⟩) + v1 (t) ∧ v2 (t))

= 1
2
(αµ+ µ) = 0,

h (µ (t) , v1 (t)) =
1
2
(µ (t)× αv1 (t) + v1 (t)× αµ (t)) = 1

2
((µ (t)×−v1 (t)) + (v1 (t)×−µ (t)))

= 1
2
(−⟨µ,−v1 (t)⟩+ µ (t) ∧ −v1 (t) + (−⟨v1 (t) ,−µ (t)⟩) + v1 (t) ∧ −µ (t))

= 1
2
(αv2 + v2) = 0.

It is seen that µ⊥v1 and v2⊥v1 are orthogonal unit quaternions. Here is

µ× v1 = −v1 × µ = v2,
µ× v2 = −v2 × µ = −v1

and by using quaternionic inner product we get

h (v̇1 (t) , v1 (t)) = a11(t),

h (v̇1 (t) , v2 (t)) = a12(t),

h (v̇1 (t) ,µ (t)) = a13(t).

Also, by taking the derivative of both sides of the expression h (v1 (t) , v1 (t)) = 1 for each t ∈ I we get

h (v̇1 (t) , v1 (t)) + h (v1 (t) , v̇1 (t)) = 0.

The last equation gives h (v1 (t) , v̇1 (t)) = 0. In this case, it is v̇1⊥v1. In this case, it is obtained as a11(t) = 0.
Therefore the equation (3.5) can be written as

v̇1 (t) = a12(t)v2 (t) + a13(t)µ (t) . (3.8)

The h− inner products in the equation (3.7) are obtained as follows:

h (v2 (t) , v2 (t)) =
1

2
(v2 (t)× αv2 (t) + v2 (t)× αv2 (t)) = 1,

and
h (µ (t) , v2 (t)) =

1

2
((µ (t)× αv2 (t)) + (v2 (t)× αµ (t))) = 0.

Hence, the vector v2 is unit and µ⊥v1. Now we take the derivative of both sides of the equation h (v2 (t) , v1 (t)) = 0
and by writing h (v̇1 (t) , v2 (t)) = l (t) we obtain the below equations: a12 = l (t) and h (v1 (t) , v̇2 (t)) = −l (t) . On
the other hand, by derivativing of both sides of the equation h (v1 (t) ,µ (t)) = 0 for each t ∈ I we obtain

h (v̇1 (t) ,µ (t)) + h (v1 (t) , µ̇ (t)) = 0

and this results as h (v̇1 (t) ,µ (t)) + h (v1 (t) , µ̇ (t)) = 0 with by writing m (t) := h (v̇1 (t) ,µ (t)). Hence also
a13(t) = m (t). Then, using the given values, the equation (3.5) can be re-written as

v̇1 (t) = l (t) v2 (t) +m (t)µ (t) . (3.9)

Now, considering that is v̇2 (t) = Sp {v1 (t) , v2 (t) ,µ (t)} the following equation can be written as

v̇2 (t) = a21(t)v1 (t) + a22(t)v2 (t) + a23(t)µ (t) .
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From here, by h− inner product with v1, v2 and µ respectively, we have for the quaternion v1

h (v̇2 (t) , v1 (t)) = a21(t)h (v1 (t) , v1 (t)) + a22(t)h (v2 (t) , v1 (t)) + a23(t)h (µ (t) , v1 (t))

where v1 (t) × v1 (t) = −1, v2 (t) × v1 (t) = 0 and µ (t) × v1 (t) = 0 from the above equation can be written as
−l (t) = a21(t).
Similarly, h− inner product for the quaternion v2 it can be obtained as

h (v̇2 (t) , v2 (t)) = a21(t)h (v1 (t) , v2 (t)) + a22(t)h (v2 (t) , v2 (t)) + a23(t)h (µ (t) , v2 (t)) .

Hence, it can be seen that h (v̇2 (t) ,µ (t)) = a23(t) . Also, by taking the derivative of both sides in the equation
h (v2 (t) ,µ (t)) = a23(t) for each t ∈ I we can write the following equation:

h (v̇2 (t) ,µ (t)) + h (v2 (t) , µ̇ (t)) = 0.

By writing n (t) := a23(t) = h (v̇2 (t) ,µ (t)) in the last equation we have

h (v2 (t) , µ̇ (t)) = −n (t)

and hence the equation (3.8) yields
v̇2 (t) = −l (t) v1 (t) + n (t)µ (t) . (3.10)

To summarize, by considering these equations (3.4), (3.9) and (3.10) we get

µ̇(t) = −m(t)v1(t)− n(t)v2(t),

v̇1(t) = l(t)v2(t) +m(t)µ(t),

v̇2(t) = −l(t)v1 (t) + n(t)µ(t) .

Hence,  v̇1 (t)
v̇2 (t)
µ̇ (t)

 =

 0 l (t) m (t)
−l (t) 0 n (t)
−m (t) −n (t) 0

 v1 (t)
v2 (t)
µ (t)

 . (3.11)

Now the formulas given in equation (3.11) can be better understood with the following example.

Example 3.1.
γ (t) =

(
3t2, t3,−t3

)
,

v1 (t) =
1√

t2 + 4
(t, 0, 2) ,

v2 (t) =
1√

t2 + 4
√
2t2 (t2 + 2)

(
2t2,−4t− t3,−t3

)
since h (γ̇ (t) , v1 (t)) = 0, h (γ̇ (t) , v2 (t)) = 0 and h (v1 (t) , v2 (t)) = 0 for all t ∈ I then (γ, v1, v2) : I → H ×∆2 is
quaternionic framed curve and µ = v1 ∧ v2 therefore we can calculate the vector µ as perpendicular both the vector
v1 and the vector v2 which

µ (t) =
1√

t2 + 2
(2, t,−t) .

It is clear from here that the point t = 0 is a singular point of the curve. In other words, since there exists µ for the
spatial quaternionic framed fundamental curve, Serret-Frenet type formulas and framed curvatures can be given in
a quaternionic sense. Here, the curvatures are obtained as follows:

l (t) = h (v̇1 (t) , v2 (t)) =
√
2t2

(t2+4)
√

t2(t2+2)
,

m (t) = h (v̇1 (t) ,µ (t)) = 2√
t2+2

√
t2+4

,

n (t) = h (v̇2 (t) ,µ (t)) = 2
√
2t√

t2+2
√

(t2+4)t2(t2+2)
,

σ(t) = 6t
√
t2 + 2.
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Figure 1. γ (t) =
(
3t2, t3,−t3

)
quaternionic framed base curve.

Example 3.2. The curve γ(t) =

(
t5

5
, sin t4, cos t4

)
is a quaternionic Frenet-type framed curve. Indeed, the first

derivative of the curve is taken, and the part that provides the singularity is separate,d and the other vector unit is
united to obtain as

σ (t) = t3
√
16 + t2,

µ (t) =
1√

16t6 + t8

(
t4, 4t3 cos t4,−4t3 sin t4

)
framed elements for each t ∈ I . Therefore, the frame can be established over this vector.

v1 (t) =
1√

sin t4 + cos t4

(
0, sin t4, cos t4

)
,

v2 (t) =
1√

sin t4 + cos t4

(
4t3,−t4 cos t4, t4 sin t4

)
since h (γ̇ (t) , v1 (t)) = 0 , h (γ̇ (t) , v2 (t)) = 0 and h (v1 (t) , v2 (t)) = 0 for all t ∈ I then (γ, v1, v2) : I → H ×∆2 is
quaternionic framed curve. Also the vector µ, since µ = v1 ∧ v2 as perpendicular both the vector v1 and the vector v2.
It is clear from here that the point t = 0 is a singular point of the curve. In other words, since there exists µ for the
spatial quaternionic framed fundamental curve, Serret-Frenet type formulas and framed curvatures can be given in
a quaternionic sense. Here, the curvatures are obtained as follows:

l (t) = h (v̇1 (t) , v2 (t)) = − 4t7√
t8 + 16t6

,

m (t) = h (v̇1 (t) ,µ (t)) =
16t6√

t8 + 16t6
,

n (t) = h (v̇2 (t) ,µ (t)) = − 4

t2 + 16
,

σ(t) = h (γ̇ (t) ,µ (t)) =
t8 + 16t6

t3
√
16 + t2

= t3
√

16 + t2.
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, sin t4, cos t4

)
quaternionic framed base curve

4. Quaternionic framed curves for R4

In this section, the relationship between a four-dimensional matrix and the curvatures of Serret-Frenet type
formulas for quaternionic framed curves in four-dimensional Euclidean space is given. Then, in the light of
the information obtained here, Serret-Frenet type formulas and framed curvatures in the quaternionic sense are
reinforced with an example.

Theorem 4.1. Let R4 denote the four dimensional Euclidean space and let (γ̃, ṽ1, ṽ2, ṽ3) : I = [0, 1] ⊂ R → H ×∆3 be a

quaternionic framed curve. Then the quaternionic framed basis curve is defined by t → γ̃ (t) =
3∑

i=0

γ̃i (t) ei, e0 = 1 where

t ∈ I is any parameter. In this case there exist curvature functions L,M, (−l +N), N, (−n−M), (m+ L), σ̃(t) : I → R
such that the Serret-Frenet type formulas at point γ̃ (t) of the quaternionic frame curve (γ̃, ν̃) are given as follows:

˙̃v1
˙̃v2
˙̃v3
˙̃µ

 =


0 L M −l +N
−L 0 N −n−M
−M −N 0 m+ L
l −N n+M −m− L 0




ṽ1
ṽ2
ṽ3
µ̃


where curvatures are
L (t) = h

(
˙̃v1 (t) , ṽ2 (t)

)
, M (t) = h

(
˙̃v1 (t) , ṽ3 (t)

)
, (−l +N) (t) = h

(
˙̃v1 (t) ,µ (t)

)
, N (t) = h

(
˙̃v2 (t) , ṽ3 (t)

)
, (−n−M) (t) =

h
(
˙̃v2 (t) , µ̃ (t)

)
, (m+ L) (t) = h

(
˙̃v3 (t) , µ̃ (t)

)
, σ̃ (t) = h

(
˙̃γ (t) , µ̃ (t)

)
.

Proof. Let (γ̃, ν̃) be a quaternionic framed curve and µ̃ (t) = ṽ1 (t) ∧ ṽ2 (t) ∧ ṽ3 (t) unit vector for each t ∈ I in R4.
On the other hand, there is the smooth function σ̃ : I → R that satisfies the condition ˙̃γ (t) = σ̃ (t) µ̃ (t). Also, since
µ̃ is the unit vector,

∥µ̃ (t)∥2 = h (µ̃ (t) , µ̃ (t)) =
1

2
(µ̃ (t)× αµ̃ (t) + µ̃ (t)× αµ̃ (t)) = µ̃ (t)× αµ̃ (t) = 1

can be written. From here, by taking the derivative of both sides in the last expression, it becomes

˙̃µ (t)× αµ̃ (t) + µ̃ (t)× α ˙̃µ (t) = 0.

In this case h
(
˙̃µ (t) , µ̃ (t)

)
= 1

2

(
˙̃µ (t)× αµ̃ (t) + µ̃ (t)× α ˙̃µ (t)

)
= 0. Then ˙̃µ (t) and µ̃ (t) are orthogonal. Since

˙̃µ (t)× αµ̃ (t) + µ̃ (t)× α ˙̃µ (t) = 0

then, according to conjugate properties we can write

˙̃µ (t)× αµ̃ (t) + α
(
µ̃ (t)× α ˙̃µ (t)

)
= 0.

Therefore ˙̃µ (t)× αµ̃ (t) is spatial quaternion. Also since µ are spatial and unit then

∥µ (t)∥ = µ (t)× αµ (t) = ˙̃µ (t)× αµ̃ (t)× α
(
˙̃µ (t)× αµ̃ (t)

)
= ˙̃µ (t)× αµ̃ (t)× µ̃ (t)× α ˙̃µ (t) = ˙̃µ (t)× α ˙̃µ (t) = 1.
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On the other hand since ˙̃µ(t) ∈ Sp {ṽ1 (t) , ṽ2 (t) , ṽ3 (t)} we get

˙̃µ(t) = a41(t)ṽ1(t) + a42(t)ṽ2(t) + a43(t)ṽ3(t) + a44(t)µ̃(t). (4.1)

Here, by using quaternionic inner product with ṽ1, ṽ2, ṽ3 and µ̃ respectively,

h
(
˙̃µ, ṽ1

)
= a41, h

(
˙̃µ, ṽ2

)
= a42, h

(
˙̃µ, ṽ3

)
= a43, h

(
˙̃µ, µ̃

)
= a44.

Also, since h (µ̃, µ̃) = 1 then h
(
˙̃µ, µ̃

)
+ h

(
µ̃, ˙̃µ

)
= 0. Thus, considering equation (4.1), it is seen that it is a44(t) = 0.

On the other hand, considering equation (4.1), we can write following equations

˙̃v1 (t) = a11(t)ṽ1 (t) + a12(t)ṽ2 (t) + a13(t)ṽ3 (t) + a14(t)µ̃ (t) ,

˙̃v2 (t) = a21(t)ṽ1 (t) + a22(t)ṽ2 (t) + a23(t)ṽ3 (t) + a24(t)µ̃ (t) ,

˙̃v3 (t) = a31(t)ṽ1 (t) + a32(t)ṽ2 (t) + a33(t)ṽ3 (t) + a34(t)µ̃ (t) .

By using quaternionic inner product with ṽ1, ṽ2, ṽ3 and µ̃ respectively,

h
(
˙̃v1, ṽ1

)
= a11 h

(
˙̃v2, ṽ1

)
= a21 h

(
˙̃v3, ṽ1

)
= a31,

h
(
˙̃v1, ṽ2

)
= a12 h

(
˙̃v2, ṽ2

)
= a22 h

(
˙̃v3, ṽ2

)
= a32,

h
(
˙̃v1, ṽ3

)
= a13 h

(
˙̃v2, ṽ3

)
= a23 h

(
˙̃v3, ṽ3

)
= a33,

h
(
˙̃v1, µ̃

)
= a14 h

(
˙̃v2, µ̃

)
= a24 h

(
˙̃v3, µ̃

)
= a34.

Considering that there are h (ṽ1, ṽ1) = 1, h (ṽ2, ṽ2) = 1 and h (ṽ1, ṽ2) = 0 then we get a11 = a22 = 0. It is also seen
that since h (ṽ1, ṽ2) = 0 then a12 + a21 = 0. Similarly, it can also be shown that a13 + a31 = 0. Suppose now that
a12 = L and a13 = M then we have a21 = −L and a31 = −M . Similarly, in the case that a23 = N , a14 = F , a24 = G
and a34 = H we have a32 = −N , a41 = −F , a42 = −G and a43 = −H . Using the given values, we get

˙̃µ (t) = −F (t)ṽ1 (t)−G(t)ṽ2 (t)−H(t)ṽ3 (t) ,

˙̃v1 (t) = L(t)ṽ2 (t) +M(t)ṽ3 (t) + F (t)µ̃ (t)

˙̃v2 (t) = −L(t)ṽ1 (t) +N(t)ṽ3 (t) +G(t)µ̃ (t) ,

˙̃v3 (t) = −M(t)ṽ1 (t)−N(t)ṽ2 (t) +H(t)µ̃ (t) .

(4.2)

On the other hand since h (ṽ1, µ̃) =
1
2 (ṽ1 × αµ̃+ µ̃× αṽ1) = 0 and

˙̃µ× αµ̃+ α
(
˙̃µ× αµ̃

)
= 0

then

−F (t)ṽ1 (t)−G(t)ṽ2 (t)−H(t)ṽ3 (t)× αµ̃ (t) + µ̃ (t)× α (−F (t)ṽ1 (t)−G(t)ṽ2 (t)−H(t)ṽ3 (t)) = 0.

If the above equation is arranged for each t ∈ I , then we get

−F (ṽ1 × αµ̃+ µ̃× αṽ1)−G (ṽ2 × αµ̃+ µ̃× αṽ2)−H (ṽ3 × αµ̃+ µ̃× αṽ3) = 0.

If F , G, and H are different from zero, then the following qualities are written

ṽ1 × αµ̃+ α (ṽ1 × αµ̃) = 0,

ṽ2 × αµ̃+ α (ṽ2 × αµ̃) = 0,

ṽ3 × αµ̃+ α (ṽ3 × αµ̃) = 0.

(4.3)

Thus ṽ1 × αµ̃, ṽ2 × αµ̃, ṽ3 × αµ̃ become spatial quaternions. Also, since µ is spatial and unit,

∥µ∥2 = µ× αµ = ṽ1 × αµ̃× α (ṽ1 × αµ̃) = ṽ1 × αµ̃× µ̃× αṽ1 = ṽ1 × αṽ1 = 1.

Since µ = ṽ1 × αµ̃ along the curve γ̃, the vector ṽ1 can be written as

µ× µ̃ = ṽ1. (4.4)
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On the other hand, from equation (4.3) we get

∥v1∥2 = v1 × αv1 = ṽ2 × αµ̃× α (ṽ2 × αµ̃) = ṽ2 × αµ̃× µ̃× αṽ2 = ṽ2 × αṽ2 = 1.

From the last equation, since v1 = ṽ2 × αµ̃ along the curve and γ̃ the vector ṽ3 can be written as

∥v2∥2 = v2 × αv2 = ṽ3 × αµ̃× α (ṽ3 × αµ̃) = ṽ3 × αµ̃× µ̃× αṽ3 = 1.

Hence,
v2 × µ̃ = ṽ3

can be written. Taking the derivative of both sides of equation (4.4), we get

(−mv1 − nv2)× µ̃+ µ× (−F ṽ1 −Gṽ2 −Hṽ3) = ˙̃v1.

By making the necessary arrangements to the above equation we obtain

−m+H = L ⇒ H = L+m,

−n−G = M ⇒ G = −n−M.

On the other hand, by using the equation v1 × µ̃ = ṽ2 and by differentiating we get

(v̇1 × µ̃+ v1)× ˙̃µ = ˙̃v2.

This leads to the following equation:

(lv2 +mµ)× µ̃+ v1 × (−F ṽ1 −Gṽ2 −Hṽ3) = −Lṽ1 +Nṽ3 +Gµ̃.

By using the equations, v2 × µ̃ = ṽ3, µ× µ̃ = ṽ1, v1 × µ = −v2 and v1 × v2 = µ in the above equation

l + F = N ⇒ F = −l +N,

m−H = −L ⇒ H = m+ L

are obtained. By differentiating v2 × µ̃ = ṽ3 we get

v̇2 × µ̃+ v2 × ˙̃µ = ˙̃v3.

Considering the equations (4.2), (3.10), the above equation can be written as

(−lv1 + nµ)× µ̃+ v2 × (−F ṽ1 −Gṽ2 −Hṽ3) = −Mṽ1 −Nṽ3 +Hµ̃.

If we use the ṽ2 following
v1 × µ̃ = ṽ2,

µ× µ̃ = ṽ1,

ṽ3 = v2 × µ̃.

Then we get the following relations
−l − F = −n ⇒ F = −l +N,

n+G = −M ⇒ G = −M − n.

Thus, the matrix representation of the Serret-Frenet formula is given by
˙̃v1
˙̃v2
˙̃v3
˙̃µ

 =


0 L M −l +N
−L 0 N −n−M
−M −N 0 m+ L
l −N n+M −m− L 0




ṽ1
ṽ2
ṽ3
µ̃

 . (4.5)

Therefore, the proof is completed.
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Here, a geometric interpretation can be provided. The quaternionic framed basis curve γ̃ is selected such that its
unit vector µ is defined by the relation µ = ṽ1 × αµ̃. In this context, the curvatures of a quaternionic framed curve
are associated with those in three-dimensional and four-dimensional Euclidean spaces. Consequently, the third
curvature of γ̃ is determined as the sum of the negative of the first curvature of γ and the positive of the fourth
curvature of γ̃. Similarly, the fifth curvature of γ̃ is the sum of the negative sign of the second curvature of γ̃ and
the third curvature of γ. Furthermore, the sixth curvature of γ̃ is the sum of the first curvature of γ̃ and the second
curvature of γ (See, 4.5).

Example 4.1. γ̃ (t) =
(
1
5 sin (5t)− t cos (5t) , 1

5 cos (5t) + t sin (5t) , 2t cos (2t)− sin (2t) , 2t sin (2t) + cos (2t)
)

ṽ1 (t) = (− cos (5t) , sin (5t) , 0, 0) ,

ṽ2 (t) = (0, 0, cos (2t) , sin (2t)) ,

ṽ3 (t) =
5√
41

(
4

5
sin (5t) ,

4

5
, cos (5t) , sin (2t) ,− cos (2t)

)
and for all t ∈ I since h

(
˙̃γ (t) , ṽ1 (t)

)
= 0, h

(
˙̃γ (t) , ṽ2 (t)

)
= 0, h (ṽ1 (t) , ṽ2 (t)) = 0, h (ṽ1 (t) , ṽ3 (t)) = 0, h (ṽ2 (t) , ṽ3 (t)) =

0, then (γ̃, ṽ1, ṽ2, ṽ3) : I → H ×∆3 is a quaternionic framed curve and there exists µ̃ (t) = ṽ1 (t)∧ ṽ2 (t)∧ ṽ3 (t) such
that

µ̃ (t) =
1√
41

(5 sin (5t) , 5 cos (5t) ,−4 sin (2t) , 4 cos (2t)) ,

σ̃ (t) =
√
(41)t.

Here, the quaternions are expressed in vector form. The unit quaternion µ̃ is computed as orthogonal to the
quaternion ṽ1, the quaternion ṽ2 and the quaternion ṽ3. It is clear from here that point t = 0 is a singular point of
the curve γ̃. In other words, since there exists µ̃ for the quaternionic framed fundamental curve γ̃, Serret-Frenet
type formulas and framed curvatures can be given in a quaternionic sense. Hence, the curvatures of the curve γ̃ are

L (t) = h
(
˙̃v1 (t) , ṽ2 (t)

)
= 0,

M (t) = h
(
˙̃v1 (t) , ṽ3 (t)

)
=

20
√
41

41
,

(N − l) (t) = h
(
˙̃v1 (t) , µ̃ (t)

)
=

25√
41

,

N (t) = h
(
˙̃v2 (t) , ṽ3 (t)

)
= −10

√
41

41
,

(−n−M) (t) = h
(
˙̃v2 (t) , µ̃ (t)

)
=

8
√
41

41
,

(m+ L) (t) = h
(
˙̃v3 (t) , µ̃ (t)

)
= 0,

σ̃ (t) = h
(
˙̃γ (t) , µ̃ (t)

)
=

√
41t.

Also, in this example we can find the spatial quaternionic framed curve γ related to curve γ̃ and its Frenet
elements and curvatures. Using the proof of Theorem 4.1, we get

γ (t) =

√
41

82
(10 cos (t) ,− sin (4t) + 2 sin (2t) ,− cos (4t) + 2 cos (2t))

v1 = −
√
41

41
(−4, 5 sin (3t) , 5 cos (3t)) ,

v2 = (0, cos (3t) ,− sin (3t)) ,

µ (t) = (5, 4 sin (3t) , 4 cos (3t)) ,

α (t) = sin (t) .

Thus, the curvatures of the spatial quaternionic framed curve γ are

l (t) = h (v̇1 (t) , v2 (t)) = −15
√
41

41
,
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m (t) = h (v̇1 (t) ,µ (t)) = 0,

n (t) = h (v̇2 (t) ,µ (t)) = −12
√
41

41

σ(t) = h (γ̇ (t) ,µ (t)) = sin (t).

Based on this example, the theorem has been verified, and corresponding relations have been successfully obtained.

5. Results
As is known, a framed curve is a smooth space curve with a moving frame with singular points. In this

study, the quaternionic structure of framed curves is discussed. Firstly, quaternionic framed curves are defined
in three-dimensional Euclidean space with the help of framed curve definitions, which are defined in [7]. Then,
Serret-Frenet formulas and curvatures for quaternionic framed curves in three-dimensional Euclidean space R3 are
given in Theorem 3.1. In addition, these formulas is supported by examples. It is seen in the matrix expression
given in (3.11) that the first curvature of γ is equal to the principal curvature given for regular curves and the third
curvature of γ is equal to the torsion given for regular curves. Then, for non-spatial quaternionic framed curves in
4-dimensional Euclidean space, Theorem 4.1 and Serret-Frenet type new formulas and curvatures are obtained as in
equation (4.5). Matrix representations of these new formulas are given. If we make some geometric deductions
from equation (4.5), Frenet elements and Serret-Frenet formulas for quaternionic framed base curve γ̃ are obtained
by using Serret-Frenet formulas for quaternionic framed base curve γ in R3 (See 4.5). Here, the quaternionic framed
basis curve γ̃ is chosen such that the unit vector µ of the curve γ̃ is given by the relation µ = ṽ1 × αµ̃. Thus, the
3th curvature of γ̃ is the sum of the negative sign of the 1st curvature of γ and the positive sign of 4th curvature
of γ̃, and the 5th curvature of γ̃ is the sum of the negative sign of 2th curvature of γ̃ and 3nd curvature of γ, and
the 6th curvature of γ̃ is the sum of the 1th curvature of γ̃ and 2nd curvature of γ(See, 4.5). Finally, the theoretical
framework is illustrated through examples, offering a quaternion-based perspective on framed curves.
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[24] Gök, İ., Okuyucu, O. Z., Kahraman, F., Hacısalihoğlu, H. H.: On the quaternionic B2 slant helices in Euclidean
4-space E4. Advances in Applied Clifford Algebras. 21, 707–719 (2011).
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