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Nuclei segmentation in histopathological images is crucial for the processing and analysis of medical images. Manual segmentation of nuclei 

images is challenging due to subjective errors by experts and image noise. Before the use of artificial intelligence in medical image analysis, 

segmentation tasks were performed with common classical methods such as thresholding and watershed. The development of deep learning 

has led to the emergence of models specifically designed for segmentation tasks. In this study, LinkNet model supported with Vgg16 backbone 

is proposed for segmenting histopathological images in CryoNuSeg dataset created for nucleus segmentation. After a small number of images 

are multiplied with data augmentation, feature maps are generated using the Vgg16 model integrated into the encoder of the LinkNet 

architecture. The results obtained in this study, with F1 Score, Intersection over Union (IoU), and Aggregated Jaccard Index (AJI) values of 

0.8447, 0.7312, and 0.7312 respectively, demonstrate superior performance compared to recent studies utilizing the same dataset. 

 Medical image segmentation, CryoNuSeg, Backbone, Vgg16, LinkNet 

Histopathology is the microscopic examination of tissue samples to detect structural abnormalities and pathological 
changes, serving as a cornerstone of disease diagnosis, particularly in oncology. In clinical practice, pathologists analyze 
stained tissue sections—typically prepared with Hematoxylin and Eosin (H&E)—to identify disruptions in tissue 
architecture, variations in nuclear morphology, and the presence of inflammatory or malignant cells. This process, 
although vital for determining disease stage and guiding treatment, is labor-intensive and subject to inter-observer 
variability. Recent advances in digital pathology and computational image analysis have transformed histopathology 
into a data-rich domain, allowing whole-slide images (WSIs) to be assessed algorithmically. In this context, deep 
learning-based approaches, often referred to as computational pathology (CPATH), have shown great potential in 
automating diagnostic workflows, improving reproducibility, and addressing the global shortage of expert pathologists 
[1]. 
Digital pathology enables the extraction of information from stained and digitized tissue samples obtained from 
patients. This information is shared and managed among experts, thereby providing benefits such as allowing remote 
specialists to interpret these images or utilizing samples for scientific research [2]. Additionally, digitized images can 
also be employed for computer-aided quantitative image analysis [3]. Performing image analysis in digital pathology 
supported by artificial intelligence raises expectations of significantly improving clinical applications [4]. 
 
Examination of tissue sections stained with H&E provides valuable insights into cells and their functions [5]. This is 
because H&E-stained tissue images play a crucial role in diagnosing various cancer types, including breast, prostate, 
and liver cancers. Factors such as shape, type, morphology, density, and quantity of nuclei are fundamental 
components in the evaluation of H&E-stained tissue images [6]. 
 
Nuclei segmentation is biologically crucial, as information extracted from tissue images enables observations regarding 
cell cycles and mutations in cancer-related proteins, thereby facilitating the advancement of research. However, 
challenges exist in nuclei segmentation due to factors such as noise in images, overlapping of cells, and complications 
arising during manual preparation processes [7-8]. 
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Manual segmentation is considerably costly due to factors such as the necessity for clinical expertise, the time-
consuming nature of the task, and susceptibility to human error. Consequently, automated nuclei segmentation 
methods have been developed to reduce workload and establish models with the highest possible accuracy. 
 
The initial models developed for automated nuclei segmentation mainly consisted of watershed segmentation, 
morphological operations, and thresholding methods. However, these classical approaches had several disadvantages, 
including the requirement for manual parameter tuning, limited generalizability across multiple organs and tissue types, 
and reduced performance in the presence of noise [9]. Following the availability of large annotated datasets and the 
success of deep learning models such as Convolutional Neural Networks (CNNs), the use of classical methods in 
automated nuclei segmentation tasks has progressively declined. Instead, models employing Fully Convolutional 
Networks (FCNs) have become more favorable [10]. FCN architectures typically consist of encoder-decoder blocks, 
which often exhibit symmetrical structures. Specifically, within medical image segmentation, the most popular FCN-
based architecture is the U-Net model [11]. Upon recognition of the significance of nuclei segmentation, state-of-the-
art models and their modified versions have emerged in this field. Examples of such advanced models include U-Net++ 
[12] and 3D U-Net [13]. 
 
Accurate decoding of features learned by the encoder at higher resolutions in the decoder is essential for automated 
nuclei segmentation. For this reason, proven deep learning architectures can be used as "backbones" in encoder 
sections instead of relying solely on the layers of the original model [14-16]. 
 
The objective of this study is to automate nuclei segmentation by utilizing the Vgg16 model [17] as the backbone 
structure of LinkNet [18], a Fully Convolutional Network (FCN) architecture specifically developed for segmentation 
tasks. The choice of the LinkNet model instead of the widely adopted U-Net architecture, which is extensively used in 
medical image segmentation, stems from the hypothesis that employing state-of-the-art architectures as backbones 
within segmentation models—rather than relying on their original internal layers—may yield superior performance. 
Here, the primary focus is placed upon the potential improvement in segmentation accuracy achievable by integrating 
more effective models within the encoder section. In other words, the emphasis is on evaluating the influence of the 
backbone model rather than the segmentation architecture itself. Consequently, the LinkNet model was preferred over 
the conventional U-Net. 
 
This study is organized as follows: Section 2 presents the relevant literature. The dataset is described in Section 3. 
Methodology is provided in Section 4. System details are discussed in Section 5. Section 6 presents the results of the 
study. Section 7 concludes the paper. 
 

Deep learning-based models play a crucial role in nuclei segmentation. Table 1 provides an overview of the literature 
on nuclei segmentation. 

Table 1. Literature review on nuclei segmentation in histopathological images 

Author(s) Methodology Dataset Metrics 
DCS F1-

Score 
IoU AJI 

[19] Enhanced U-Net with deeper encoder layers Data Science Bowl - - 0.567 - 
[20] Residual + Bottleneck + Attention-based Decoder Kumar [21] - 0.811 0.685 - 
[22] Multi-task, 3-branch U-Net with region 

enhancement 
ConSep 0.854 - - 0.561 
CPM17 0.884 - - 0.712 

[23] U-Net with ResNet encoder PanNuke - 0.841 - 0.740 
[24] Vision Transformer-based model with multi-scale 

encoding 
GCNS 0.725 - - - 

[25] Dense conv + normalization + local & global 
feature fusion 

PanNuke 0.865 - 0.844 - 
ConSep 0.844 - 0.823 - 

[26] U-Net with VGG16 encoder MoNuSeg - 0.845 0.693 - 
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In this study, a LinkNet segmentation model supported by a VGG16 backbone is proposed for nuclear segmentation, in 
which the VGG16 model serves as the encoder. The primary distinction of the proposed method from other 
conventional encoder-based models lies in the preprocessing of images before being fed into the model. Here, the 
proposed approach is not only a model but a comprehensive framework that incorporates image preprocessing prior 
to segmentation. The effectiveness of the proposed method was evaluated on histopathological images from the 
CryoNuSeg dataset, yielding successful results. 
 

The CryoNuSeg dataset [27] consists of 30 histopathological images stained with H&E, representing ten different organs, 
each with a resolution of 512×512 pixels. Figure 1 shows nuclei images of different organs in the CryoNuSeg dataset. 

 
Fig 1. Examples from the CryoNuSeg dataset (a) Organ images, (b) Segmentation masks  

(From left to right: adrenal gland, pancreas, and skin images.) 
 

Table 2 presents the descriptive statistics of the dataset, while Figure 1 illustrates example images from the CryoNuSeg 
dataset. 
 

Table 2. Descriptive Statistics of the CryoNuSeg Dataset 

Organ Number of Images Number of Nuclei 

Adrenal gland 3 344 
Thyroid gland 3 464 

Pleura (Lung membrane) 3 515 
Lymph node 3 1308 

Testis 3 793 
Skin 3 436 

Thymus 3 1646 
Pancreas 3 548 

Mediastinum 3 1349 
Larynx 3 641 
Total 30 8044 

 

 

The CPM-17 [28] dataset, provided as part of the MICCAI 2017 Digital Pathology Challenge, comprises a total of 64 
histopathological images—32 for training and 32 for testing—each with a resolution of 500×500 pixels, including 7,570 
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annotated nuclei. In this study, the proposed model, initially trained on the CryoNuSeg dataset, was evaluated on the 
32 test images from the CPM-17 dataset. 

Data augmentation was applied to the 30 images in the dataset. Data augmentation is a common regularization 
technique in deep learning [29]. When the number of training images is limited, increasing the dataset size enhances 
data diversity and improves model learning, making it a preferred preprocessing approach [30]. 
Flipping and cropping data augmentation techniques were applied to 25 training images. In the flipping technique, 
images were mirrored along the x-axis, y-axis, and both axes. In the cropping technique, images were randomly cropped 
within a range of pixel values. As a result of applying these two augmentation techniques, resulting in a total of 1,000 
augmented training images.  
 

LinkNet is a semantic segmentation model consisting of a total of eight blocks, including four encoder and four decoder 
blocks. On the encoder side, a convolution operation is first performed using a 7×7 matrix, followed by max pooling 
over a 3×3 region. Batch normalization [31] is applied between each convolutional layer, followed by the nonlinear 
ReLU activation function [32]. The convolution process in the encoder begins with 64 feature maps, and through 
downsampling, the number of feature maps doubles at each stage, reaching 512 in the final encoder block. In the 
decoder part, the 512 feature maps undergo upsampling to restore the resolution, and at each stage, the number of 
feature maps is reduced by half. By the time the process reaches the first block, the segmentation is completed with 
64 feature maps, matching the initial configuration. 
 

VGG16 is a deep learning model consisting of five convolutional blocks, each containing a max pooling layer. The first 
two convolutional blocks include two convolutional layers followed by a max pooling layer, while the remaining three 
convolutional blocks contain three convolutional layers and a max pooling layer [33]. The first convolutional block 
utilizes 64 filters, and the number of filters doubles at each subsequent block until the fifth block, where 512 filters are 
maintained, as in the previous block. Finally, the model is completed with three fully connected layers, followed by the 
softmax activation function [34]. 
 

The performance of the proposed model was evaluated using the Dice Coefficient Score (DCS), F1-score, Intersection 
over Union (IoU), and Aggregated Jaccard Index (AJI) metrics. These metrics are widely utilized in segmentation studies 
to assess the effectiveness of the segmentation process by quantifying the similarity between predicted and ground 
truth masks. 
The mathematical formulations of the DCS, F1-score, IoU, and AJI metrics are presented in Equations 1–4, respectively. 

DCS =  
2∗|t∩t̂|

|t+t̂|
                                 (1) 

In Equation 1, t represents the ground truth segmented nucleus, while t  ̂denotes the nucleus obtained as a result of 
the prediction. 

𝐹1 Score = 2 ∗
Recall∗Precision

Recall+Precision
                   (2) 

IoU =  
TP

TP+FP+FN
                                (3) 

In Equation 3, TP refers to True Positive, FP represents False Positive, and FN denotes False Negative values. 

𝐴JI =  
∑ |Gi∩S(Gi)|

nϱ
i=1

∑ |Gi∪S(Gi)|+∑ |Sk|k∈K
nϱ
i=1

                    (4) 
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In Equation 4, 𝑛𝜚 represents the number of segmented nuclei, 𝐺𝑖  denotes the set of segmented nuclei, 𝐺𝑖  refers to the 
set of matched fragmented nuclei, and 𝑆𝑘  corresponds to the set of fragmented nuclei that do not match any 
segmented nuclei [35,8]. The AJI metric is a crucial measure for evaluating segmentation performance, as it is more 
robust in penalizing incorrect segmentation predictions compared to other metrics, making it a reliable indicator of 
segmentation accuracy [8]. 
 

In the proposed LinkNet model supported by a VGG16 backbone for nuclear segmentation, the convolutional blocks in 
the encoder part of the LinkNet segmentation model have been replaced with the blocks from the VGG16 model. 
Figure 2 presents the architecture of the developed model in this study. 

 
Fig 2. LinkNet Model Architecture Supported by a VGG16 Backbone (a) Original LinkNet Model, (b) LinkNet Model 

Supported by a VGG16 Backbone. 
 
The proposed segmentation model is an enhanced version of the original LinkNet architecture, incorporating a VGG16 
backbone in place of the standard LinkNet encoder. The original LinkNet model consists of four encoder blocks and 
four decoder blocks, where the encoder progressively extracts hierarchical features from the input image through 
convolutional operations, batch normalization, and activation functions. In this process, the spatial resolution of the 
feature maps is reduced while the number of feature channels increases. The decoder section, in turn, restores the 
resolution through upsampling, utilizing skip connections that retain fine-grained spatial details to improve 
segmentation accuracy. 
 
In the modified model, the encoder component of LinkNet is replaced with the convolutional blocks of VGG16 to 
enhance feature extraction capabilities. Specifically, the first encoder block of LinkNet is substituted with VGG16 Block 
1, while VGG16 Block 2 replaces the second encoder block. The third and fourth encoder blocks of LinkNet are replaced 
with the combined structure of VGG16 Blocks 3 and 4, and the final encoder block is substituted with VGG16 Block 5. 
The integration of VGG16 as the feature extractor allows for deeper and more refined hierarchical feature 
representation, enabling the model to better capture both low-level textures and high-level semantic structures within 
an image. The decoder section of the model retains the original LinkNet structure, where each decoder block 
progressively upsamples the extracted features and refines the segmentation mask, leveraging skip connections for 
improved spatial detail retention. 
 
The main advantage of using a VGG16-backed LinkNet model is its improved capacity to capture complex structural 
features, which is particularly beneficial for nuclear segmentation tasks. The deep convolutional layers of VGG16 
facilitate robust feature representation, contributing to improved segmentation accuracy. Additionally, the model 
benefits from pre-trained VGG16 weights, which improve generalization when applied to diverse datasets. The 
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presence of skip connections ensures that the detailed features extracted in the earlier layers of VGG16 are effectively 
incorporated during the upsampling process, leading to more precise boundary delineation in segmented images. 
By integrating VGG16 into the LinkNet framework, the proposed model achieves a balance between computational 
efficiency and segmentation accuracy. The hierarchical structure of VGG16 provides strong feature extraction 
capabilities, while the efficient upsampling mechanism of LinkNet maintains the model’s ability to generate high-
resolution segmentation masks. This combination renders the proposed approach well-suited to complex 
segmentation tasks, such as nuclei segmentation in histopathological images, where fine structural details play a crucial 
role in analysis and interpretation. 
 

Experimental studies were performed with NVIDIA RTX 4070 8GB GPU resource. Tensorflow version 2.15.0 was 
preferred in the study and was run using 0.0001 learning rate and Adam optimizer for 100 epochs on Jupyter Notebook. 
 

Table 3 presents the literature results obtained using the CryoNuSeg dataset, along with the results achieved by the 
proposed model in this study. The best-performing results for each performance metric are highlighted in bold. 
Additionally, Figure 3 provides a visual representation of test images processed using the proposed model, 
demonstrating its segmentation performance. 
 
Upon examining the comparative results in Table 3, it is evident that studies conducted using the CryoNuSeg dataset 
have employed state-of-the-art deep learning models in the encoder components of segmentation architectures [36-
37]. 
 
The key distinction of the proposed method from similar and previous studies lies in its focus on the encoder model 
rather than the segmentation model itself it focuses on the encoder model instead of focusing on the segmentation 
model. This is because the results in Table 3 show that studies using the U-Net model developed for medical image 
segmentation are predominant. In this study, after a simple data augmentation preprocessing, the LinkNet model 
supported by the Vgg16 backbone achieved the highest AJI score in the literature. Achieving the highest score with the 
AJI metric, which is quite ruthless in penalizing incorrectly matched or incorrectly predicted kernels in segmentation 
tasks, demonstrates the effectiveness of the proposed model in nuclei segmentation. 
 

Table 3. Results of Studies with CryoNuSeg Dataset 

Model DS F1 
Score 

IoU AJI 

Two-Stage U-Net [36] 0.803 - - 0.525 
Nested U-Net backed by EfficientNet backbone [35] 0.929 - - 0.604 

CNN encoder-based U-Net [38] 0.815 - - 0.541 
EfficientNetv2 and the Attention Module [37] 0.941 - - 0.605 

U-Net based on Recurrent Neural Networks [39] 0.820 - 0.697 - 
DONSeg [40] 0.672 - - 0.441 
UN-SAM [41] 0.804 0.807 0.652 - 

MDLA-Unet [42] 0.807 - - - 
Light-weight multi-scale attention [43] 0.810 - 0.685 - 
LinkNet supported by Vgg16 backbone 0.840 0.845 0.731 0.731 

 
The LinkNet model supported by the proposed VGG16 backbone for nuclei segmentation demonstrated remarkable 
performance, surpassing the results of multiple previous studies, including those conducted by the creators of the 
CryoNuSeg dataset [29, 38]. This superior performance can be attributed to several critical factors that merit further 
discussion. 
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First and foremost, the integration of a robust, multi-parameter deep learning architecture like VGG16 in the encoder 
component of the LinkNet model proved to be highly effective. VGG16’s hierarchical structure, with its ability to capture 
both low-level features in initial blocks and high-level semantic information in deeper layers, enabled comprehensive 
feature extraction from histopathological images. This dual capability is particularly crucial for nuclei segmentation, 
where both textural details and structural context significantly influence segmentation accuracy. The experimental 
results, as evidenced by the highest AJI score (0.731) among comparable studies, validate the efficacy of this 
architectural decision. 
 
A key methodological contribution of this work was the emphasis on enhancing the encoder component rather than 
focusing exclusively on modifying the segmentation architecture itself. Most previous studies utilizing the CryoNuSeg 
dataset have primarily concentrated on adapting the U-Net architecture, which has been the de facto standard for 
medical image segmentation. Our approach diverged from this trend by implementing LinkNet with a VGG16 backbone, 
demonstrating that alternative segmentation architectures can achieve superior results when paired with appropriate 
feature extractors. This finding suggests that the choice of encoder may have a more substantial impact on 
segmentation performance than the underlying segmentation framework, especially for complex tasks like nuclei 
segmentation in histopathological images. 
 

 
Fig 3. Running the CryoNuSeg dataset with the proposed model (a) Original histopathological input images, b) 
Ground truth segmentation masks annotated by experts, c) Predicted segmentation masks generated by the 

proposed LinkNet model supported by VGG16 backbone 
 
The data preprocessing stage, particularly the application of data augmentation techniques, played a vital role in the 
model’s success. Despite the relatively small size of the CryoNuSeg dataset (only 30 original images), our augmentation 
strategy expanded the training set to 1,000 images, significantly enhancing data diversity. This approach mitigated 
potential overfitting issues that often plague deep learning models trained on limited datasets. The combination of 
flipping and cropping techniques introduced variations in orientation and scale, enabling the model to learn more 
robust and generalizable features. This comprehensive preprocessing approach contrasts with some previous studies 
that utilized more limited augmentation techniques or none at all. 
 
It is particularly noteworthy that our model achieved the highest score on the AJI, a metric known for its stringent 
evaluation of segmentation accuracy by severely penalizing incorrectly matched or predicted nuclei. AJI provides a 
more rigorous assessment of instance-level segmentation performance compared to pixel-level metrics like Dice Score 
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or IoU. Our model’s superior performance on this challenging metric underscores its effectiveness in correctly 
identifying individual nuclei boundaries, a critical requirement for practical applications in histopathological analysis 
and clinical decision support. 
 
The symmetric two-stage architecture of segmentation models, comprising encoder and decoder components, allows 
for an interesting analysis of feature learning dynamics. In our approach, the VGG16 backbone in the encoder fulfilled 
a dual function: extracting low-level textural features in the initial blocks and high-level contextual features in the 
deeper blocks. This hierarchical feature extraction, when coupled with LinkNet’s efficient decoder pathway, facilitated 
precise boundary delineation of nuclei in histopathological images. The skip connections between encoder and 
decoder blocks further enhanced the model’s ability to preserve fine spatial details while incorporating contextual 
information, resulting in more accurate segmentation masks. 
 
Despite these achievements, there remain several limitations and opportunities for future research. First, although our 
model showed superior performance on the CryoNuSeg dataset, its generalizability to other histopathological datasets 
with different staining protocols or tissue types requires further investigation. Second, the computational complexity 
of the VGG16 backbone, while justified by its performance benefits, may pose challenges for deployment in resource-
constrained environments. 
 
Future research directions could explore several promising avenues. The evaluation of alternative combinations of 
segmentation frameworks and backbone architectures could yield further improvements or identify optimal pairings 
for specific histopathological applications. More recent architectures such as EfficientNet, Vision Transformers, or 
hybrid models could potentially enhance feature extraction while reducing computational demands. Additionally, 
hyperparameter optimization of the backbone models, particularly learning rates and regularization strategies, could 
further refine segmentation performance. Advanced data augmentation techniques, such as style transfer or 
adversarial training, might further improve model robustness to variations in staining and imaging conditions 
commonly encountered in clinical settings. 
 
Another promising direction involves the incorporation of attention mechanisms specifically designed for 
histopathological image analysis, which could enhance the model’s focus on relevant nuclear structures while 
suppressing background noise. Additionally, exploring multi-task learning approaches that simultaneously perform 
nuclei segmentation and classification could provide more comprehensive analytical capabilities for pathological 
assessment. 
 
Table 4 shows the evaluation results of the proposed method on the CPM-17 dataset. In order to fully evaluate the 
model success, the results of recent works conducted with the CPM-17 dataset are also included. 

 
Table 4. Comparision recent works with CPM-17 dataset 

Model DCS F1 
Score 

IoU AJI 

Mask2Former [44] - 0.782 - 0.602 
Rtmdet [45] - 0.775 - 0.607 

CACS [46] 0.751 - - 0.546 
Micro-Net [47] 0.857 - - 0.661 
HistoNeXt [48] 0.826 - - 0.625 

LinkNet supported by Vgg16 backbone 0.809 0.813 0.687 0.681 

 
The evaluation of the proposed LinkNet supported by Vgg16 backbone model on the CPM-17 dataset offers critical 
insights into its generalizability across different histopathological domains. Although the model was exclusively trained 
on the CryoNuSeg dataset, it achieved highly competitive results on the CPM-17 test set, with an F1 Score of 0.813 and 
an AJI score of 0.681. These findings are particularly significant given the inherent differences between the two 
datasets in terms of tissue types, staining variability, and nuclei morphology. The consistency of performance across 
distinct datasets without additional fine-tuning indicates that the feature representations learned by the model are 
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robust and transferable, underscoring its potential applicability in real-world clinical settings where training data may 
be limited or heterogeneous. 
 
This generalization capability highlights a major strength of the proposed approach, namely its architectural design 
that emphasizes rich and hierarchical feature extraction through the VGG16 backbone. While many existing models 
exhibit high accuracy within the scope of the training domain, they often fail to maintain performance when exposed 
to unseen data distributions. In contrast, our model demonstrates resilience against domain shift, suggesting that its 
encoder effectively captures nucleus-invariant characteristics that are preserved across datasets. This level of 
adaptability not only validates the architectural decisions made but also reinforces the relevance of encoder-focused 
design for histopathological segmentation tasks requiring strong cross-dataset generalization. 
 

This study demonstrates that the LinkNet model supported by a VGG16 backbone provides an effective solution for 
nuclei segmentation in histopathological images. By prioritizing enhancements to the encoder component and 
implementing comprehensive data preprocessing, our approach achieved state-of-the-art performance on the 
CryoNuSeg dataset. 
 
The success of this methodology highlights the importance of feature extraction capabilities in segmentation tasks and 
suggests that judicious selection of backbone architectures may be as critical as the choice of segmentation framework 
itself. These findings contribute valuable insights to the ongoing development of automated tools for histopathological 
image analysis, with potential applications in cancer diagnosis, prognosis, and personalized treatment planning. 
 

The author gratefully acknowledges that a preliminary version of this paper appeared as an abstract in the IMISC2024 
Conference Abstract Book. 
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