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Abstract

This study investigates the dynamics of Land Use and Land Cover (LULC) changes along the
Land Use Land Cover (LULC) izmir-Denizli Highway corridor in western Turkey from 1984 to 2025, utilizing remote
Landscape Expansion Index sensing techniques and the Landscape Expansion Index (LEI) to analyze urban growth
(LED patterns. Employing cloud-free Landsat satellite imagery and the Random Forest classification
Google Earth Engine (GEE) algorithm within Google Earth Engine, the research identifies and quantifies built-up area
Multi-Temporal Analysis expansion over four decades. The findings reveal a significant increase in built-up areas,
particularly after 2000, with a total expansion from 45682 hectares in 1984 to 68869 hectares
in 2025. The analysis highlights a predominance of edge-expansion growth (71.3%), with
outlying growth (27.4%) and minimal infilling growth (1.3%). This trend indicates a shift
towards urban sprawl, raising concerns about the sustainability of land use practices. The
study underscores the importance of integrating spatial and temporal analyses in urban
planning to promote more sustainable development patterns and mitigate the adverse effects
of urbanization on the environment.
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1. Introduction such approaches are useful in identifying surface-level
change, they often fail to reflect the evolving structure of

Urbanization stands as one of the most urban growth. As cities develop, their spatial forms

transformative spatial processes of the 21st century,
continuously reshaping landscapes, altering ecological
balances, and redefining the relationship between
human activity and the natural environment. Rather than
remaining confined to compact cores, cities are
increasingly expanding in outward, often fragmented
patterns driven by demographic shifts, economic
imperatives, environmental pressures, and
infrastructural developments. Capturing this expansion,
not only in terms of areal extent but also in terms of
spatial form and configuration, is essential for
sustainable land management and effective urban policy-
making.

Traditional methods for analyzing urban growth have
predominantly relied on static representations of land
use, offering limited insight into the temporal and
morphological dynamics of urban transformation. While

transition from scattered to clustered, from peripheral
sprawl to inner densification. This dynamic process
necessitates the use of temporally sensitive tools capable
of depicting how urban areas interact with surrounding
landscapes, infrastructure systems, and regulatory
frameworks.

In this context, monitoring changes in land use and
land cover (LULC), evaluating their impacts, and
interpreting emerging spatial patterns have become
central to informed urban planning [1-6]. Urban areas
are inherently dynamic, and their continuous evolution
is closely tied to LULC transformations [7]. Recent
studies have emphasized the need to quantify the pace
and typology of urban expansion, as these factors
critically influence the distribution and ecological
implications of built-up areas [1, 8, 9]. Temporal analyses
that trace the evolution of land use provide important
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insights into the environmental consequences of urban
growth [10, 11].

The forces driving spatial change are multifaceted,
rooted in natural, social, economic, and technological
dimensions [12]. Increasing urban populations place
growing pressure on land resources, prompting the
conversion of land for housing, industrial, commercial,
and infrastructural uses. Additionally, the tendency to
relocate from city centers to peripheral zones often
intensifies urban sprawl—a process commonly
attributed to economic motivations, demographic
patterns, housing preferences, and improvements in
transport infrastructure [13-15].

Urban expansion typically results in the conversion of
agricultural and forested land into built-up areas. For
instance, a two-decade study in Egypt revealed a marked
increase in urban land at the expense of green areas [16].
Similarly, Chettry (2022) documented steady growth in
built-up areas across multiple cities between 1991 and
2021, alongside the gradual disappearance of vegetated
land, underscoring the urgent need for policies that
strike a balance between development and ecological
sustainability [17].

Among the most influential drivers of land conversion
is transportation infrastructure. Expanding road
networks, particularly highways, enhance accessibility to
peripheral zones, thereby accelerating urban
development and the conversion of open or agricultural
lands into built-up areas [18]. Numerous studies have
focused on buffer zones (typically within 10 km of
highways) where land use changes are found to be
especially pronounced [19-23]. Even more substantial
transformations tend to occur in close proximity to
highway exits, where accessibility and development
pressure converge [22, 24, 25].

This trend has been observed across varied
geographic contexts. For example, Miiller et al. (2010)
found that areas near highway exits in Switzerland
experienced more rapid land conversion between 1985
and 1997 than other locations [22]. Similarly, Fieden
(2019) reported that highway construction in Poland
significantly reduced forest and agricultural lands while
facilitating urban growth in adjacent areas [20]. In
Turkey, Demirel et al. (2008) identified a strong
correlation between increased road capacity in Istanbul’s
southeastern region and urban expansion [26].
Mothorpe et al. (2013) also demonstrated that the
extension of the interstate highway system contributed
substantially to suburban growth in Georgia during the
latter half of the 20th century [27].

Population = dynamics around transportation
corridors have been equally influential. Chi (2010)
observed that population growth rates were significantly
higher in Wisconsin’s highway-adjacent areas between
1970 and 2000, leading to further urban expansion [28].
In Barcelona, Garcia-Lopez (2012) concluded that
proximity to highway exits played a critical role in
driving suburban growth between 1991 and 2006 [29]. A
broader study by Duranton and Turner (2012) across
275 metropolitan areas in the U.S. affirmed that increases
in road infrastructure directly fostered built-up area
expansion [30]. Similarly, Zheng et al. (2016) showed

thatin China, the construction of a bay bridge accelerated
the development of impervious surfaces along major
transport routes between 1995 and 2009 [25].

As research interest in urban spatial dynamics
deepens, scholars have increasingly emphasized the
utility of impervious surface data and spatial metrics. Fan
and Fan (2014), for instance, illustrated how newly
urbanized districts shifted from fragmented to more
consolidated configurations over time. This reflects a
broader trend of early-stage sprawl followed by a
densification phase—often referred to as the “filling-in”
process—resulting in increased residential compactness
[31].

Understanding urban growth also requires attention
to landscape patterns and spatial heterogeneity.
Landscape structure emerges through the aggregation
and configuration of various land use types of different
sizes and functions. Quantitative analysis of these
patterns is crucial for monitoring urbanization and
developing strategies to manage growth effectively.

Landscape metrics are commonly employed to assess
spatial complexity, urban form, and land use dynamics,
offering insight into how cities evolve in structure and
intensity [2, 8, 32-34]. However, these conventional
indices are generally static, limiting their capacity to
represent long-term spatial processes.

To address this gap, the Landscape Expansion Index
(LEI) has emerged as a robust method for characterizing
urban growth trajectories. LEI allows researchers to
differentiate between infilling, edge-expansion, and
outlying growth types by analyzing the spatial context of
new development. This typological distinction is critical
for understanding the logic of urban expansion and its
implications for infrastructure efficiency, resource
management, and environmental impact. As a dynamic
tool, LEI enables decision-makers to identify
unsustainable patterns of sprawl and promote more
resilient and compact forms of urbanization.

Given the accelerating pace of urban change,
integrating spatial and temporal analyses is essential for
building sustainable urban futures [35, 36]. Traditional
models that rely solely on static land cover data fall short
in capturing the complexity of urban transitions. This
study addresses this gap by combining multi-temporal
LULC data with LEI to provide a more comprehensive
view of urban growth dynamics. By distinguishing
between key growth forms—such as leapfrog, edge-
expansion, and infill—this approach offers deeper
insights into how urban landscapes transform over time.

The izmir-Denizli Highway corridor in western
Turkey presents a compelling case study for examining
infrastructure-induced urbanization. Over the past four
decades, this corridor has undergone significant change
due to road investments, regional development
pressures, and shifting population dynamics. By utilizing
Landsat imagery and applying remote sensing and LEI-
based classification between 1975 and 2025, this
research identifies not only the spatial patterns but also
the underlying processes that shape urban expansion.
The findings aim to inform planners and policymakers by
highlighting the interconnections between
infrastructure, land use change, and sustainability—
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ultimately contributing to more informed and adaptive
urban planning frameworks.

2. Analysis Framework

The form of urban growth has been a phenomenon
continually studied from past to present. In recent years,
studies have focused on quantitatively measuring urban
growth and determining growth types. However, Harvey
and Clark (1965) were the first to define urban growth
and sprawl in three different forms [9].

a. Low-Density Sprawl

This type of development generally occurs on the
urban fringe for urban purposes, involving high land
consumption. The observed pattern in this type of sprawl
includes homogeneous, low-density construction.

b. Ribbon Development

This form of urban development extends from city
centers to the periphery, following major transportation
axes. Ribbon development is considered more costly
than low-density sprawl during development. It usually
concentrates along roads or transportation networks,
while other surrounding areas remain vacant.

c. Leap-Frog Development

This type of sprawl creates separated yet compact
urban use zones. Providing social and physical
infrastructure services to newly formed areas is quite
costly. The resulting land-use pattern is irregular.

Nas (2016) visualized the types of urban sprawl as
shown in Fig. 1.

Low-density  Ribbon Leap-frog
development development development

WHighy-density
EMedium-density
[JLow-density

Figure 1. Types of urban sprawl [37]

Another type of development that is not
synonymous with urban sprawl or considered a type of
sprawl but still significant to evaluate is exurban
development. This type of development generally
consists of non-agricultural uses, predominantly
residential areas, scattered in rural areas with
agricultural and forest lands. Shands (1991) defined this
as extended low-density development. Residents in these
areas are often individuals seeking tranquility and peace,
viewing rural areas as an escape or purchasing second
homes for investment purposes [38]. However, these
individuals' values differ from those of rural residents,
leading to conflicts over land use and causing agricultural
and forest lands to be used for unintended purposes [39].

In these developed approaches, only the physical
characteristics were evaluated to determine the type of
urban growth and sprawl, overlooking the pattern
differences between the past and present. In this context,
Liu et al. (2010) developed the Landscape Expansion
Index (LEI), which allows for the analysis of dynamic
change processes in spatial patterns using multi-
temporal remote sensing data [1].

2.1. Traditional Landscape Indices and Their
Limitations

In the context of landscape ecology and geographical
analysis, an urban patch refers to a distinct, spatially
separated, and homogeneous segment of urban land use
or land cover type. Urban patches typically consist of
areas serving specific urban functions, such as residential
zones, commercial districts, industrial facilities, parks, or
transportation corridors. Urban development areas can
also be evaluated as urban patches.

Traditional landscape indices are employed to
quantitatively analyze the spatial characteristics,
distribution, and shapes of urban patches. These indices
have been widely used to understand land use and land
cover changes and examine spatial patterns. However,
the sizes, distributions, and boundaries of urban patches
are constantly changing due to urban growth processes
and land use transitions.

Traditional landscape indices are limited in
capturing temporal changes. These indices typically
analyze spatial patterns at a specific point in time and fail
to account for dynamic processes. Furthermore, they do
not adequately consider spatial relationships and
contextual interactions between patches [40], making
them insufficient for understanding the temporal
dynamics of urban growth.

Patch-level indices evaluate attributes such as patch
area, geometric complexity (shape index), and edge-to-
area ratio. Class-level indices examine the distribution
and number of patches within a specific land cover class
and analyze the connectivity between patches.
Landscape-level indices, on the other hand, analyze the
structure of the entire landscape [33, 41-43]. However,
these traditional indices remain limited in reflecting
temporal change processes.

To overcome the limitations of traditional landscape
indices and better understand temporal dynamics,
indices are needed that not only analyze patterns at a
specific time but also provide insight into change
processes occurring between two or more time periods

[35].
2.2. Landscape Expansion Index (LEI)

Traditional landscape indices have significant
limitations in analyzing urban expansion in rapidly
growing areas. These indices generally only quantify
landscape patterns and distributions at a specific time.
To address these limitations, Liu et al. (2010) proposed
the Landscape Expansion Index (LEI) to examine how
urban patches change over time and identify expansion
types over time [1].

LEl is based on buffer analysis, a key spatial analysis
function in Geographic Information Systems (GIS). Buffer
zones are areas created around a geographic feature
based on a specified distance. This analysis determines
which patches are located inside or outside a defined
buffer zone. For accuracy, it is crucial to set the buffer
zone at a distance of 1 meter during the analysis process
[1].

LEl is calculated using the following formula:
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0
LEI =100 x A+ A,

LEI is the landscape expansion index for a newly
grown patch,

Ao is the intersection between the buffer zone and
the occupied category,

Ay is the intersection between the buffer zone and
the vacant category.

LEI values range between 0 and 100 and are used to
identify types of urban growth, each representing
specific spatial characteristics and processes.

Infilling Growth - LEI: 50-100

This growth type occurs when new development
areas fill in gaps within or around existing urban areas.
In this case, the new development area is almost entirely
surrounded by existing urban areas.

e The new development overlaps more than 50%

with existing urban areas.

e Facilitates densification and the formation of a
compact urban structure.

e Increases land use efficiency by utilizing vacant
spaces.

e Infilling growth is considered ideal for
sustainable urban development as it better
integrates with existing infrastructure and
reduces resource waste due to sprawl.

Edge-Expansion Growth - LEI: 0-50

This growth type occurs when new development
areas expand outward from the edges of existing urban
areas. In this case, the new development area touches
both existing urban areas and vacant land.

e Less than 50% of the buffer zone of the new

development overlaps with existing urban areas.

e Although it controls urban sprawl, it does not
create a fully compact structure.

Outlying Growth - LEI: 0

This growth type occurs when new development
areas emerge independently and are isolated from
existing urban areas. These new areas are entirely

27°0°0"E 28°0°0"E
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3 Study Area

izmir-Denizli Highway]|

City Boundries

27°0°0°E 280°0°E

Figure 3. Study area

surrounded by vacant land without any connection to old
urban areas. Development is often irregular and
unplanned, causing urban fragmentation.

Fig. 2 illustrates the three primary urban growth
types—infill, edge-expansion, and outlying—identified
through the Landscape Expansion Index (LEI) within a
selected portion of the study area. The visual
classification was derived from actual spatial patterns
observed in the field and reinterpreted in accordance
with the typological framework proposed by Liu et al.
(2010). Black areas represent previously developed
urban patches, while the gray tones indicate newly
developed patches categorized by their spatial
relationship to existing urban areas.

euiing xpaasion

infill

old patch

Figure 2. Urban growth types based on LEI
3. Methods And Data
3.1. Study Area and Image Classification

This study examines the changes in Land Use and
Land Cover (LULC) within a 10 km buffer zone
surrounding the izmir-Denizli (0-31) Highway (Fig. 3) in
western Turkey, covering the period from 1984 to 2025.
The 10 km buffer zone was selected based on its
widespread use in the literature for analyzing the spatial
impacts of transportation infrastructure on land use
dynamics [19-23, 44]. This radius provides a sufficient
spatial extent to capture both direct and indirect effects
of highway development on urban expansion, ensuring a
comprehensive assessment of LULC changes over time.

2g°g'0"E
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This study employed a temporal aggregation
method to generate annual composite images, utilizing
median metrics derived from time-series data [45].

Cloud-free Landsat satellite imagery was used to
produce composite images for the years 1984, 1990,
2000, 2010, 2020, and 2025, all at a spatial resolution of
30 meters (Table 1) [46-48]. To ensure consistency in
visual interpretation and the selection of training
samples, RGB bands were used based on the sensor
specifications: Bands 1, 2, 3 and 7 were utilized for
Landsat 5 and 7, while Bands 2, 3, and 4 were employed

for Landsat 8 imagery. However, during the classification
process, a broader set of spectral bands was used to
improve classification accuracy. Specifically, Bands 1-7
were used for Landsat 5, Bands 1-5, 7, and 8 for Landsat
7, and Bands 2-10 for Landsat 8. This approach ensured
the inclusion of both visible and non-visible spectral
information to enhance the detection of different land
cover types and support more accurate LULC
classification.

Table 1. General characteristics of satellite images and accuracy values for given years

Year Satellite Spatial Cloud Acquisition Period  # Overall Kappa
Resolution  Cover images  Accuracy Coefficient

1984 Landsat 5 TM 30m <1 03/06/1984 - 20 0.81 0.79
31/12/184

1990 Landsat 5 TM 30m <1 01/01/1990 - 30 0.84 0.81
31/12/1990

2000 Landsat 7 ETM+ 30m <1 01/01/2000 - 32 0.82 0.80
31/12/2000

2010 Landsat 7 ETM+ 30m <1 01/01/2010 - 12 0.88 0.85
31/12/2010

2020 Landsat 8 OLI/TIRS 30m <1 01/01/2020 - 25 0.89 0.85
31/12/2020

2025 Landsat 8 OLI/TIRS 30m <1 01/01/2024 - 39 0.90 0.88
10/03/2025

Land use classification was conducted using the
Random Forest (RF) algorithm implemented within the
Google Earth Engine (GEE) platform, which is widely
acknowledged for its high performance in remote
sensing applications [45, 49-63]. The RF algorithm
enabled the categorization of land use and land cover
(LULC) into distinct classes and the extraction of urban
areas for the selected years: 1984, 1990, 2000, 2010,
2020, and 2025. This methodological framework
provided a robust basis for analyzing long-term LULC
changes and understanding the spatial dynamics of
urbanization over a nearly 40-year period.

3.2.Spatial and Temporal Analysis

The spatial and temporal analysis of LULC changes
was conducted using the classified images to examine the
transformation of built-up areas over time [64, 65]. To
ensure a comprehensive assessment, built-up areas were
extracted using both ArcMap 10.7 and GEE, integrating
the strengths of both platforms for spatial analysis. While
GEE was utilized for image classification, all subsequent
calculations were performed within ArcMap 10.7 to
quantify the extent and distribution of urban expansion.
The classification results were analyzed to derive
insights into urban growth patterns and their broader
implications for land use dynamics in the study area.

3.3.Calculation of the Landscape Expansion Index
(LEI)

The Landscape Expansion Index (LEI) and its
variants were calculated using ArcMap 10.7 through
custom programming. Initially, the land use data were
converted into vector format to facilitate further analysis.
Buffer zones for all new urban patches were generated
by executing the program, allowing for the definition of

these buffers with either constant or variable distances
based on feature attributes. In this study, a constant
distance of 1 meter was applied [1].

After obtaining the buffer zones for all growth
patches, these zones were overlaid with the previous
urban patches to calculate the area of old urban patches
within the buffer zones. The LEI was then computed for
each new urban patch using the established formula
(Equation 1). The program automatically generated the
buffer zones for new urban patches (Fig. 6), enabling the
identification of different growth types, including
infilling, edge-expansion, and outlying growth.

4. RESULTS

The temporal dynamics of built-up area expansion
within the 10 km buffer zone surrounding the izmir-
Denizli Highway between 1984 and 2025 are illustrated
through both the tabular data and spatial maps in Fig. 4
and Fig. 5. These representations collectively highlight
the progressive urbanization trends influenced by
transportation infrastructure and regional development
dynamics.

The tabular data reveal a steady increase in built-up
areas over the examined period. In 1984, the total built-
up area was 45682 ha, which experienced a modest rise
to 47585 ha in 1990. However, after 2000, a more
pronounced acceleration in urban expansion is observed,
with built-up areas reaching 53410 ha in 2000, 58923 ha
in 2010, and 65204 ha in 2020. The most recent data
from 2025 indicate a further increase to 68869 ha,
demonstrating the continuing trend of urban sprawl in
the region [16, 17, 19-23] .

The series of maps visually depict the
spatiotemporal expansion of built-up areas along the
highway corridor. The early periods (1984-1990)
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exhibit limited urban growth, with built-up areas mainly
concentrated around existing urban centers. However,
from 2000 onwards, significant expansion occurs,
particularly near highway exits and along the corridor,
indicating that improved accessibility has facilitated
urban sprawl [20, 22, 23, 27-29, 66]. Unlike Fan and Fan,

N LEGEND

5 g — 031 [zmir-Denizli Highway
Built-up Area

S - Non-built-up Area

Figure 4. Built-up change between the years 1984-2025
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Figure 5. The temporal dynamics of built-up areas
within the 10 km buffer zone of izmir-Denizli Highway

Fig. 6 presents the newly developed patches and
their growth types within the 10 km buffer zone
surrounding the izmir-Denizli highway after 1984. The
studies conducted in the izmir-Denizli corridor reveals a
significant prevalence of edge-expansion growth,
accounting for 71.3% of the newly developed patches
identified in the area. Similarly Liu et al. (2010) observed

by 2020 and 2025, built-up areas have become
increasingly widespread and interconnected, forming a
more continuous urban fabric within the buffer zone

[31].

similar patterns in Dongguan, China, where urban
growth was primarily characterized by edge-expansion,
indicating a common trend in rapidly urbanizing regions
[1].

In addition, 27.4% of the patches are characterized
by outlying growth, which promotes leapfrog
development and reduces physical connectivity between
patches. This scattered growth increases infrastructure
costs and hinders the sustainable and planned
development of cities.

Unlike Fan and Fan (2014), our findings highlight
the low representation of infilling growth at just 1.3%.
While Fan and Fan illustrate a significant transition in the
built-up environment from sparse and irregular
distributions to a denser, less fragmented configuration
in newly developed districts—indicating a trend of urban
sprawl followed by a "filling-in" process our findings
raise concerns about the insufficient utilization of
existing urban areas [31].

This analysis provides a framework for better
understanding the spatial characteristics of growth types
in the study area. The proportions of growth types
underscore the need to reassess urban and rural
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planning strategies to promote more sustainable
development patterns [1].
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Figure 6. Spatial distribution of growth patterns along the izmir-Denizli highway corridor

Table 2 illustrates the growth patterns along 0-31
Higway. The analysis of built-up area expansion along the
[zmir-Denizli Highway Corridor reveals significant
urbanization trends across different buffer zones (1 km,
2 km, 5 km, and 10 km). The total new built-up area is
highest within the 10 km buffer zone (32,534 ha),
indicating that urban expansion is not confined to the
immediate highway surroundings but extends into the

peri-urban landscape. This result differs from the
existing literature, which often emphasizes more
concentrated urban growth in proximity to major
transportation corridors [16, 18, 19].

Table 2. Growth patterns of built-up areas across different buffer zones (ha)

1km 2 km 5km 10 km
(ha) Izmir Aydin Denizli Izmir Aydin Denizli Izmir Aydin Denizli [zmir Aydin Denizli
Edge-
expansion 2382 4400 1020 2068 3291 1211 8605 5685 4230 17705 6881 7366
Outlying 72 96 28 65 80 8 193 144 52 228 217 79
Infill 18 10 8 2 4 3 4 15 9 5 30 23
Total 2472 4506 1056 2135 3375 1223 8802 5845 4291 17938 7127 7468
Total in
buffers 8034 6733 18937 32534

5. Discussion

This study provides a comprehensive analysis of land
use and land cover (LULC) changes along the izmir-
Denizli Highway corridor from 1984 to 2025, utilizing
remote sensing techniques and the Landscape Expansion
Index (LEI) to assess urban growth patterns. The findings
reveal a significant increase in built-up areas, with a total
expansion of 32,534 ha within the 10 km buffer zone,
indicating that urbanization is extending beyond

immediate highway surroundings into the peri-urban
landscape. This trend contrasts with existing literature
that often emphasizes concentrated growth near
transportation corridors [22, 24, 25]. The results suggest
that urban expansion is not merely a localized
phenomenon but rather a broader transformation
affecting the entire region.

The analysis highlights a predominance of edge-
expansion growth, which accounts for 71.3% of newly
developed patches. This finding aligns with observations
made by Liu et al. (2010) in rapidly urbanizing regions,
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where edge-expansion is often the primary mode of
urban growth. The transition from sparse and irregular
distributions to a denser, less fragmented configuration
in newly developed districts reflects a trend of urban
sprawl, followed by a "filling-in" process that leads to
increased residential density [31]. However, the low
representation of infilling growth at just 1.3% raises
concerns about the inefficient utilization of existing
urban areas. This indicates a missed opportunity for
sustainable development, as infilling is widely regarded
as a more environmentally friendly approach that
optimizes land use and reduces the need for new
infrastructure.

The implications of these findings are significant for
urban planning and policy-making. The predominance of
edge-expansion growth suggests that current
development practices may be contributing to urban
sprawl, which can lead to increased infrastructure costs,
environmental degradation, and social fragmentation. As
highlighted by Chettry (2022), the continuous
transformation of land use due to urban expansion
necessitates policies that balance growth with
environmental sustainability [17]. Policymakers must
prioritize strategies that encourage infilling and the
efficient use of existing urban spaces to mitigate the
adverse effects of sprawl and promote more sustainable
urban forms.

Moreover, the study underscores the critical role of
transportation infrastructure in shaping urban growth
patterns. Improved accessibility along the izmir-Denizli
Highway has facilitated urban sprawl, particularly near
highway exits, where built-up areas have expanded at a
much higher rate. This finding is consistent with previous
research that emphasizes the influence of transportation
networks on land use transformations [18, 28]. As urban
areas continue to grow, it is essential to consider the
long-term impacts of transportation infrastructure on
land use dynamics and to implement planning measures
that promote connectivity and accessibility while
minimizing environmental impacts.

This study not only identifies the spatial patterns of
urbanization but also provides insights into the driving
forces behind these changes. Understanding these long-
term urbanization trends is essential for urban planners
and policymakers, as it enables them to anticipate future
development trajectories, mitigate uncontrolled sprawl,
and promote more sustainable land use strategies.

6. Conlusion

Understanding the spatial and temporal dynamics of
urban growth is crucial for effective urban planning and
management. By employing advanced remote sensing
techniques and quantitative analysis, this study
contributes valuable insights into the complex
interactions between urbanization and landscape
change, guiding efforts toward sustainable urban
development in the Izmir-Denizli corridor and similar
contexts.

Future research should continue to explore the
implications of different growth types on infrastructure,
resource allocation, and environmental sustainability,
ensuring that urban expansion aligns with broader

sustainability goals. Additionally, integrating community
input and stakeholder engagement in the planning
process will be vital for creating resilient urban
environments that meet the needs of current and future
populations while preserving ecological integrity. By
fostering a deeper understanding of urban growth
dynamics, this research aims to inform policies that
promote sustainable, equitable, and resilient urban
futures.

Future research can expand on this methodology by
applying the LEI process across different time series and
urban contexts. Incorporating high-resolution LULC data
and advanced geospatial techniques, such as machine
learning and remote sensing, can enhance the precision
and applicability of such analyses. Policymakers and
urban planners should use LULC and LEI insights to
prioritize strategies that balance urban growth with
ecological sustainability. Specifically, promoting infill
growth and mitigating outlying expansion can help
optimize infrastructure usage while minimizing the
ecological and social costs of urban sprawl.

Ultimately, this research contributes to the broader
discourse on urban sustainability by demonstrating how
advanced spatial analysis techniques can enhance our
ability to monitor, interpret, and manage urban growth
in rapidly developing regions
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