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 This study investigates the dynamics of Land Use and Land Cover (LULC) changes along the 
İzmir-Denizli Highway corridor in western Turkey from 1984 to 2025, utilizing remote 
sensing techniques and the Landscape Expansion Index (LEI) to analyze urban growth 
patterns. Employing cloud-free Landsat satellite imagery and the Random Forest classification 
algorithm within Google Earth Engine, the research identifies and quantifies built-up area 
expansion over four decades. The findings reveal a significant increase in built-up areas, 
particularly after 2000, with a total expansion from 45682 hectares in 1984 to 68869 hectares 
in 2025. The analysis highlights a predominance of edge-expansion growth (71.3%), with 
outlying growth (27.4%) and minimal infilling growth (1.3%). This trend indicates a shift 
towards urban sprawl, raising concerns about the sustainability of land use practices. The 
study underscores the importance of integrating spatial and temporal analyses in urban 
planning to promote more sustainable development patterns and mitigate the adverse effects 
of urbanization on the environment. 
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1. Introduction 
 

Urbanization stands as one of the most 
transformative spatial processes of the 21st century, 
continuously reshaping landscapes, altering ecological 
balances, and redefining the relationship between 
human activity and the natural environment. Rather than 
remaining confined to compact cores, cities are 
increasingly expanding in outward, often fragmented 
patterns driven by demographic shifts, economic 
imperatives, environmental pressures, and 
infrastructural developments. Capturing this expansion, 
not only in terms of areal extent but also in terms of 
spatial form and configuration, is essential for 
sustainable land management and effective urban policy-
making. 

Traditional methods for analyzing urban growth have 
predominantly relied on static representations of land 
use, offering limited insight into the temporal and 
morphological dynamics of urban transformation. While 

such approaches are useful in identifying surface-level 
change, they often fail to reflect the evolving structure of 
urban growth. As cities develop, their spatial forms 
transition from scattered to clustered, from peripheral 
sprawl to inner densification. This dynamic process 
necessitates the use of temporally sensitive tools capable 
of depicting how urban areas interact with surrounding 
landscapes, infrastructure systems, and regulatory 
frameworks. 

In this context, monitoring changes in land use and 
land cover (LULC), evaluating their impacts, and 
interpreting emerging spatial patterns have become 
central to informed urban planning [1–6]. Urban areas 
are inherently dynamic, and their continuous evolution 
is closely tied to LULC transformations [7]. Recent 
studies have emphasized the need to quantify the pace 
and typology of urban expansion, as these factors 
critically influence the distribution and ecological 
implications of built-up areas [1, 8, 9]. Temporal analyses 
that trace the evolution of land use provide important 
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insights into the environmental consequences of urban 
growth [10, 11]. 

The forces driving spatial change are multifaceted, 
rooted in natural, social, economic, and technological 
dimensions [12]. Increasing urban populations place 
growing pressure on land resources, prompting the 
conversion of land for housing, industrial, commercial, 
and infrastructural uses. Additionally, the tendency to 
relocate from city centers to peripheral zones often 
intensifies urban sprawl—a process commonly 
attributed to economic motivations, demographic 
patterns, housing preferences, and improvements in 
transport infrastructure [13–15]. 

Urban expansion typically results in the conversion of 
agricultural and forested land into built-up areas. For 
instance, a two-decade study in Egypt revealed a marked 
increase in urban land at the expense of green areas [16]. 
Similarly, Chettry (2022) documented steady growth in 
built-up areas across multiple cities between 1991 and 
2021, alongside the gradual disappearance of vegetated 
land, underscoring the urgent need for policies that 
strike a balance between development and ecological 
sustainability [17]. 

Among the most influential drivers of land conversion 
is transportation infrastructure. Expanding road 
networks, particularly highways, enhance accessibility to 
peripheral zones, thereby accelerating urban 
development and the conversion of open or agricultural 
lands into built-up areas [18]. Numerous studies have 
focused on buffer zones (typically within 10 km of 
highways) where land use changes are found to be 
especially pronounced [19–23]. Even more substantial 
transformations tend to occur in close proximity to 
highway exits, where accessibility and development 
pressure converge [22, 24, 25]. 

This trend has been observed across varied 
geographic contexts. For example, Müller et al. (2010) 
found that areas near highway exits in Switzerland 
experienced more rapid land conversion between 1985 
and 1997 than other locations [22]. Similarly, Fiedeń 
(2019) reported that highway construction in Poland 
significantly reduced forest and agricultural lands while 
facilitating urban growth in adjacent areas [20]. In 
Turkey, Demirel et al. (2008) identified a strong 
correlation between increased road capacity in Istanbul’s 
southeastern region and urban expansion [26]. 
Mothorpe et al. (2013) also demonstrated that the 
extension of the interstate highway system contributed 
substantially to suburban growth in Georgia during the 
latter half of the 20th century [27]. 

Population dynamics around transportation 
corridors have been equally influential. Chi (2010) 
observed that population growth rates were significantly 
higher in Wisconsin’s highway-adjacent areas between 
1970 and 2000, leading to further urban expansion [28]. 
In Barcelona, Garcia-López (2012) concluded that 
proximity to highway exits played a critical role in 
driving suburban growth between 1991 and 2006 [29]. A 
broader study by Duranton and Turner (2012) across 
275 metropolitan areas in the U.S. affirmed that increases 
in road infrastructure directly fostered built-up area 
expansion [30]. Similarly, Zheng et al. (2016) showed 

that in China, the construction of a bay bridge accelerated 
the development of impervious surfaces along major 
transport routes between 1995 and 2009 [25]. 

As research interest in urban spatial dynamics 
deepens, scholars have increasingly emphasized the 
utility of impervious surface data and spatial metrics. Fan 
and Fan (2014), for instance, illustrated how newly 
urbanized districts shifted from fragmented to more 
consolidated configurations over time. This reflects a 
broader trend of early-stage sprawl followed by a 
densification phase—often referred to as the “filling-in” 
process—resulting in increased residential compactness 
[31]. 

Understanding urban growth also requires attention 
to landscape patterns and spatial heterogeneity. 
Landscape structure emerges through the aggregation 
and configuration of various land use types of different 
sizes and functions. Quantitative analysis of these 
patterns is crucial for monitoring urbanization and 
developing strategies to manage growth effectively.  

Landscape metrics are commonly employed to assess 
spatial complexity, urban form, and land use dynamics, 
offering insight into how cities evolve in structure and 
intensity [2, 8, 32–34]. However, these conventional 
indices are generally static, limiting their capacity to 
represent long-term spatial processes. 

To address this gap, the Landscape Expansion Index 
(LEI) has emerged as a robust method for characterizing 
urban growth trajectories. LEI allows researchers to 
differentiate between infilling, edge-expansion, and 
outlying growth types by analyzing the spatial context of 
new development. This typological distinction is critical 
for understanding the logic of urban expansion and its 
implications for infrastructure efficiency, resource 
management, and environmental impact. As a dynamic 
tool, LEI enables decision-makers to identify 
unsustainable patterns of sprawl and promote more 
resilient and compact forms of urbanization. 

Given the accelerating pace of urban change, 
integrating spatial and temporal analyses is essential for 
building sustainable urban futures [35, 36]. Traditional 
models that rely solely on static land cover data fall short 
in capturing the complexity of urban transitions. This 
study addresses this gap by combining multi-temporal 
LULC data with LEI to provide a more comprehensive 
view of urban growth dynamics. By distinguishing 
between key growth forms—such as leapfrog, edge-
expansion, and infill—this approach offers deeper 
insights into how urban landscapes transform over time. 

The İzmir–Denizli Highway corridor in western 
Turkey presents a compelling case study for examining 
infrastructure-induced urbanization. Over the past four 
decades, this corridor has undergone significant change 
due to road investments, regional development 
pressures, and shifting population dynamics. By utilizing 
Landsat imagery and applying remote sensing and LEI-
based classification between 1975 and 2025, this 
research identifies not only the spatial patterns but also 
the underlying processes that shape urban expansion. 
The findings aim to inform planners and policymakers by 
highlighting the interconnections between 
infrastructure, land use change, and sustainability—
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ultimately contributing to more informed and adaptive 
urban planning frameworks. 

 

2. Analysis Framework 
 

The form of urban growth has been a phenomenon 
continually studied from past to present. In recent years, 
studies have focused on quantitatively measuring urban 
growth and determining growth types. However, Harvey 
and Clark (1965) were the first to define urban growth 
and sprawl in three different forms [9].  

a. Low-Density Sprawl 
This type of development generally occurs on the 

urban fringe for urban purposes, involving high land 
consumption. The observed pattern in this type of sprawl 
includes homogeneous, low-density construction. 

b. Ribbon Development 
This form of urban development extends from city 

centers to the periphery, following major transportation 
axes. Ribbon development is considered more costly 
than low-density sprawl during development. It usually 
concentrates along roads or transportation networks, 
while other surrounding areas remain vacant. 

c. Leap-Frog Development 
This type of sprawl creates separated yet compact 

urban use zones. Providing social and physical 
infrastructure services to newly formed areas is quite 
costly. The resulting land-use pattern is irregular. 

Nas (2016) visualized the types of urban sprawl as 
shown in Fig. 1. 

 

 
Figure 1. Types of urban sprawl [37] 

 

Another type of development that is not 
synonymous with urban sprawl or considered a type of 
sprawl but still significant to evaluate is exurban 
development. This type of development generally 
consists of non-agricultural uses, predominantly 
residential areas, scattered in rural areas with 
agricultural and forest lands. Shands (1991) defined this 
as extended low-density development. Residents in these 
areas are often individuals seeking tranquility and peace, 
viewing rural areas as an escape or purchasing second 
homes for investment purposes [38]. However, these 
individuals' values differ from those of rural residents, 
leading to conflicts over land use and causing agricultural 
and forest lands to be used for unintended purposes [39]. 

In these developed approaches, only the physical 
characteristics were evaluated to determine the type of 
urban growth and sprawl, overlooking the pattern 
differences between the past and present. In this context, 
Liu et al. (2010) developed the Landscape Expansion 
Index (LEI), which allows for the analysis of dynamic 
change processes in spatial patterns using multi-
temporal remote sensing data [1]. 

2.1. Traditional Landscape Indices and Their 
Limitations 
 

In the context of landscape ecology and geographical 
analysis, an urban patch refers to a distinct, spatially 
separated, and homogeneous segment of urban land use 
or land cover type. Urban patches typically consist of 
areas serving specific urban functions, such as residential 
zones, commercial districts, industrial facilities, parks, or 
transportation corridors. Urban development areas can 
also be evaluated as urban patches. 

Traditional landscape indices are employed to 
quantitatively analyze the spatial characteristics, 
distribution, and shapes of urban patches. These indices 
have been widely used to understand land use and land 
cover changes and examine spatial patterns. However, 
the sizes, distributions, and boundaries of urban patches 
are constantly changing due to urban growth processes 
and land use transitions. 

Traditional landscape indices are limited in 
capturing temporal changes. These indices typically 
analyze spatial patterns at a specific point in time and fail 
to account for dynamic processes. Furthermore, they do 
not adequately consider spatial relationships and 
contextual interactions between patches [40],  making 
them insufficient for understanding the temporal 
dynamics of urban growth. 

Patch-level indices evaluate attributes such as patch 
area, geometric complexity (shape index), and edge-to-
area ratio. Class-level indices examine the distribution 
and number of patches within a specific land cover class 
and analyze the connectivity between patches. 
Landscape-level indices, on the other hand, analyze the 
structure of the entire landscape [33, 41–43]. However, 
these traditional indices remain limited in reflecting 
temporal change processes. 

To overcome the limitations of traditional landscape 
indices and better understand temporal dynamics, 
indices are needed that not only analyze patterns at a 
specific time but also provide insight into change 
processes occurring between two or more time periods 
[35].  

 

2.2. Landscape Expansion Index (LEI) 
 

Traditional landscape indices have significant 
limitations in analyzing urban expansion in rapidly 
growing areas. These indices generally only quantify 
landscape patterns and distributions at a specific time. 
To address these limitations, Liu et al. (2010) proposed 
the Landscape Expansion Index (LEI) to examine how 
urban patches change over time and identify expansion 
types over time [1]. 

LEI is based on buffer analysis, a key spatial analysis 
function in Geographic Information Systems (GIS). Buffer 
zones are areas created around a geographic feature 
based on a specified distance. This analysis determines 
which patches are located inside or outside a defined 
buffer zone. For accuracy, it is crucial to set the buffer 
zone at a distance of 1 meter during the analysis process 
[1]. 

LEI is calculated using the following formula: 
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𝐿𝐸𝐼 = 100 𝑥 
𝐴0

𝐴0 + 𝐴𝑣

 

LEI is the landscape expansion index for a newly 
grown patch,  

Ao is the intersection between the buffer zone and 
the occupied category,  

Av is the intersection between the buffer zone and 
the vacant category. 

LEI values range between 0 and 100 and are used to 
identify types of urban growth, each representing 
specific spatial characteristics and processes. 

Infilling Growth – LEI: 50–100 
This growth type occurs when new development 

areas fill in gaps within or around existing urban areas. 
In this case, the new development area is almost entirely 
surrounded by existing urban areas. 

 The new development overlaps more than 50% 
with existing urban areas. 

 Facilitates densification and the formation of a 
compact urban structure. 

 Increases land use efficiency by utilizing vacant 
spaces. 

 Infilling growth is considered ideal for 
sustainable urban development as it better 
integrates with existing infrastructure and 
reduces resource waste due to sprawl. 

Edge-Expansion Growth – LEI: 0–50 
This growth type occurs when new development 

areas expand outward from the edges of existing urban 
areas. In this case, the new development area touches 
both existing urban areas and vacant land. 

 Less than 50% of the buffer zone of the new 
development overlaps with existing urban areas. 

 Although it controls urban sprawl, it does not 
create a fully compact structure. 

Outlying Growth – LEI: 0 
This growth type occurs when new development 

areas emerge independently and are isolated from 
existing urban areas. These new areas are entirely 

surrounded by vacant land without any connection to old 
urban areas. Development is often irregular and 
unplanned, causing urban fragmentation. 

Fig. 2 illustrates the three primary urban growth 
types—infill, edge-expansion, and outlying—identified 
through the Landscape Expansion Index (LEI) within a 
selected portion of the study area. The visual 
classification was derived from actual spatial patterns 
observed in the field and reinterpreted in accordance 
with the typological framework proposed by Liu et al. 
(2010). Black areas represent previously developed 
urban patches, while the gray tones indicate newly 
developed patches categorized by their spatial 
relationship to existing urban areas. 

 
Figure 2. Urban growth types based on LEI 
 

3. Methods And Data 
 

3.1.  Study Area and Image Classification 
 

This study examines the changes in Land Use and 
Land Cover (LULC) within a 10 km buffer zone 
surrounding the İzmir-Denizli (O-31) Highway (Fig. 3) in 
western Turkey, covering the period from 1984 to 2025. 
The 10 km buffer zone was selected based on its 
widespread use in the literature for analyzing the spatial 
impacts of transportation infrastructure on land use 
dynamics [19–23, 44]. This radius provides a sufficient 
spatial extent to capture both direct and indirect effects 
of highway development on urban expansion, ensuring a 
comprehensive assessment of LULC changes over time. 

Figure 3. Study area 
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This study employed a temporal aggregation 
method to generate annual composite images, utilizing 
median metrics derived from time-series data [45].  

Cloud-free Landsat satellite imagery was used to 
produce composite images for the years 1984, 1990, 
2000, 2010, 2020, and 2025, all at a spatial resolution of 
30 meters (Table 1) [46–48]. To ensure consistency in 
visual interpretation and the selection of training 
samples, RGB bands were used based on the sensor 
specifications: Bands 1, 2, 3 and 7 were utilized for 
Landsat 5 and 7, while Bands 2, 3, and 4 were employed 

for Landsat 8 imagery. However, during the classification 
process, a broader set of spectral bands was used to 
improve classification accuracy. Specifically, Bands 1–7 
were used for Landsat 5, Bands 1–5, 7, and 8 for Landsat 
7, and Bands 2–10 for Landsat 8. This approach ensured 
the inclusion of both visible and non-visible spectral 
information to enhance the detection of different land 
cover types and support more accurate LULC 
classification. 

 

 
Table 1. General characteristics of satellite images and accuracy values for given years 

Year Satellite Spatial 
Resolution 

Cloud 
Cover 

Acquisition Period # 
images 

Overall 
Accuracy 

Kappa 
Coefficient 

1984 Landsat 5 TM 30m <1 03/06/1984 – 
31/12/184 

20 0.81 0.79 

1990 Landsat 5 TM 30m <1 01/01/1990 – 
31/12/1990 

30 0.84 0.81 

2000 Landsat 7 ETM+ 30m <1 01/01/2000 – 
31/12/2000 

32 0.82 0.80 

2010 Landsat 7 ETM+ 30m <1 01/01/2010 – 
31/12/2010 

12 0.88 0.85 

2020 Landsat 8 OLI/TIRS 30m <1 01/01/2020 – 
31/12/2020 

25 0.89 0.85 

2025 Landsat 8 OLI/TIRS 30m <1 01/01/2024 – 
10/03/2025 

39 0.90 0.88 

 

Land use classification was conducted using the 
Random Forest (RF) algorithm implemented within the 
Google Earth Engine (GEE) platform, which is widely 
acknowledged for its high performance in remote 
sensing applications [45, 49–63]. The RF algorithm 
enabled the categorization of land use and land cover 
(LULC) into distinct classes and the extraction of urban 
areas for the selected years: 1984, 1990, 2000, 2010, 
2020, and 2025. This methodological framework 
provided a robust basis for analyzing long-term LULC 
changes and understanding the spatial dynamics of 
urbanization over a nearly 40-year period. 

 

3.2. Spatial and Temporal Analysis 
 

The spatial and temporal analysis of LULC changes 
was conducted using the classified images to examine the 
transformation of built-up areas over time [64, 65]. To 
ensure a comprehensive assessment, built-up areas were 
extracted using both ArcMap 10.7 and GEE, integrating 
the strengths of both platforms for spatial analysis. While 
GEE was utilized for image classification, all subsequent 
calculations were performed within ArcMap 10.7 to 
quantify the extent and distribution of urban expansion. 
The classification results were analyzed to derive 
insights into urban growth patterns and their broader 
implications for land use dynamics in the study area. 

 

3.3. Calculation of the Landscape Expansion Index 
(LEI) 
 

The Landscape Expansion Index (LEI) and its 
variants were calculated using ArcMap 10.7 through 
custom programming. Initially, the land use data were 
converted into vector format to facilitate further analysis. 
Buffer zones for all new urban patches were generated 
by executing the program, allowing for the definition of 

these buffers with either constant or variable distances 
based on feature attributes. In this study, a constant 
distance of 1 meter was applied  [1]. 

After obtaining the buffer zones for all growth 
patches, these zones were overlaid with the previous 
urban patches to calculate the area of old urban patches 
within the buffer zones. The LEI was then computed for 
each new urban patch using the established formula 
(Equation 1). The program automatically generated the 
buffer zones for new urban patches (Fig. 6), enabling the 
identification of different growth types, including 
infilling, edge-expansion, and outlying growth. 
 

4. RESULTS 
 

The temporal dynamics of built-up area expansion 
within the 10 km buffer zone surrounding the İzmir-
Denizli Highway between 1984 and 2025 are illustrated 
through both the tabular data and spatial maps in Fig. 4 
and Fig. 5. These representations collectively highlight 
the progressive urbanization trends influenced by 
transportation infrastructure and regional development 
dynamics. 

The tabular data reveal a steady increase in built-up 
areas over the examined period. In 1984, the total built-
up area was 45682 ha, which experienced a modest rise 
to 47585 ha in 1990. However, after 2000, a more 
pronounced acceleration in urban expansion is observed, 
with built-up areas reaching 53410 ha in 2000, 58923 ha 
in 2010, and 65204 ha in 2020. The most recent data 
from 2025 indicate a further increase to 68869 ha, 
demonstrating the continuing trend of urban sprawl in 
the region [16, 17, 19–23] . 

The series of maps visually depict the 
spatiotemporal expansion of built-up areas along the 
highway corridor. The early periods (1984–1990) 
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exhibit limited urban growth, with built-up areas mainly 
concentrated around existing urban centers. However, 
from 2000 onwards, significant expansion occurs, 
particularly near highway exits and along the corridor, 
indicating that improved accessibility has facilitated 
urban sprawl [20, 22, 23, 27–29, 66]. Unlike Fan and Fan, 

by 2020 and 2025, built-up areas have become 
increasingly widespread and interconnected, forming a 
more continuous urban fabric within the buffer zone 
[31]. 
 
 

Figure 4. Built-up change between the years 1984-2025 
 

 
Figure 5. The temporal dynamics of built-up areas 
within the 10 km buffer zone of İzmir-Denizli Highway 

 

Fig. 6 presents the newly developed patches and 
their growth types within the 10 km buffer zone 
surrounding the İzmir-Denizli highway after 1984. The 
studies conducted in the İzmir-Denizli corridor reveals a 
significant prevalence of edge-expansion growth, 
accounting for 71.3% of the newly developed patches 
identified in the area. Similarly Liu et al. (2010) observed 

similar patterns in Dongguan, China, where urban 
growth was primarily characterized by edge-expansion, 
indicating a common trend in rapidly urbanizing regions 
[1].  

In addition, 27.4% of the patches are characterized 
by outlying growth, which promotes leapfrog 
development and reduces physical connectivity between 
patches. This scattered growth increases infrastructure 
costs and hinders the sustainable and planned 
development of cities. 

Unlike Fan and Fan (2014), our findings highlight 
the low representation of infilling growth at just 1.3%. 
While Fan and Fan illustrate a significant transition in the 
built-up environment from sparse and irregular 
distributions to a denser, less fragmented configuration 
in newly developed districts—indicating a trend of urban 
sprawl followed by a "filling-in" process our findings 
raise concerns about the insufficient utilization of 
existing urban areas [31]. 

This analysis provides a framework for better 
understanding the spatial characteristics of growth types 
in the study area. The proportions of growth types 
underscore the need to reassess urban and rural 

1984 1990 2000 2010 2020 2025

Built-up
Area(ha)

45682 47586 53410 58924 65205 68869

0
10000
20000
30000
40000
50000
60000
70000
80000

Built-up Change (ha)
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planning strategies to promote more sustainable 
development patterns [1]. 

 

 
Figure 6. Spatial distribution of growth patterns along the İzmir-Denizli highway corridor 

Table 2 illustrates the growth patterns along O-31 
Higway. The analysis of built-up area expansion along the 
İzmir-Denizli Highway Corridor reveals significant 
urbanization trends across different buffer zones (1 km, 
2 km, 5 km, and 10 km). The total new built-up area is 
highest within the 10 km buffer zone (32,534 ha), 
indicating that urban expansion is not confined to the 
immediate highway surroundings but extends into the  

peri-urban landscape. This result differs from the 
existing literature, which often emphasizes more 
concentrated urban growth in proximity to major 
transportation corridors [16, 18, 19]. 
 
 
 

 
 

Table 2. Growth patterns of built-up areas across different buffer zones (ha) 

 

5. Discussion 
 

This study provides a comprehensive analysis of land 
use and land cover (LULC) changes along the İzmir-
Denizli Highway corridor from 1984 to 2025, utilizing 
remote sensing techniques and the Landscape Expansion 
Index (LEI) to assess urban growth patterns. The findings 
reveal a significant increase in built-up areas, with a total 
expansion of 32,534 ha within the 10 km buffer zone, 
indicating that urbanization is extending beyond 

immediate highway surroundings into the peri-urban 
landscape. This trend contrasts with existing literature 
that often emphasizes concentrated growth near 
transportation corridors [22, 24, 25]. The results suggest 
that urban expansion is not merely a localized 
phenomenon but rather a broader transformation 
affecting the entire region. 

The analysis highlights a predominance of edge-
expansion growth, which accounts for 71.3% of newly 
developed patches. This finding aligns with observations 
made by Liu et al. (2010) in rapidly urbanizing regions, 

         1 km         2 km         5 km          10 km 

(ha) Izmir Aydın Denizli Izmir Aydın Denizli Izmir Aydın Denizli Izmir Aydın Denizli 
Edge-
expansion 2382 4400 1020 2068 3291 1211 8605 5685 4230 17705 6881 7366 

Outlying 72 96 28 65 80 8 193 144 52 228 217 79 

Infill 18 10 8 2 4 3 4 15 9 5 30 23 

Total 2472 4506 1056 2135 3375 1223 8802 5845 4291 17938 7127 7468 
Total in 
buffers          8034  6733   18937   32534  
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where edge-expansion is often the primary mode of 
urban growth. The transition from sparse and irregular 
distributions to a denser, less fragmented configuration 
in newly developed districts reflects a trend of urban 
sprawl, followed by a "filling-in" process that leads to 
increased residential density [31]. However, the low 
representation of infilling growth at just 1.3% raises 
concerns about the inefficient utilization of existing 
urban areas. This indicates a missed opportunity for 
sustainable development, as infilling is widely regarded 
as a more environmentally friendly approach that 
optimizes land use and reduces the need for new 
infrastructure. 

The implications of these findings are significant for 
urban planning and policy-making. The predominance of 
edge-expansion growth suggests that current 
development practices may be contributing to urban 
sprawl, which can lead to increased infrastructure costs, 
environmental degradation, and social fragmentation. As 
highlighted by Chettry (2022), the continuous 
transformation of land use due to urban expansion 
necessitates policies that balance growth with 
environmental sustainability [17]. Policymakers must 
prioritize strategies that encourage infilling and the 
efficient use of existing urban spaces to mitigate the 
adverse effects of sprawl and promote more sustainable 
urban forms. 

Moreover, the study underscores the critical role of 
transportation infrastructure in shaping urban growth 
patterns. Improved accessibility along the İzmir-Denizli 
Highway has facilitated urban sprawl, particularly near 
highway exits, where built-up areas have expanded at a 
much higher rate. This finding is consistent with previous 
research that emphasizes the influence of transportation 
networks on land use transformations [18, 28]. As urban 
areas continue to grow, it is essential to consider the 
long-term impacts of transportation infrastructure on 
land use dynamics and to implement planning measures 
that promote connectivity and accessibility while 
minimizing environmental impacts. 

This study not only identifies the spatial patterns of 
urbanization but also provides insights into the driving 
forces behind these changes. Understanding these long-
term urbanization trends is essential for urban planners 
and policymakers, as it enables them to anticipate future 
development trajectories, mitigate uncontrolled sprawl, 
and promote more sustainable land use strategies. 

 

6. Conlusion 
 

Understanding the spatial and temporal dynamics of 
urban growth is crucial for effective urban planning and 
management. By employing advanced remote sensing 
techniques and quantitative analysis, this study 
contributes valuable insights into the complex 
interactions between urbanization and landscape 
change, guiding efforts toward sustainable urban 
development in the İzmir-Denizli corridor and similar 
contexts. 

Future research should continue to explore the 
implications of different growth types on infrastructure, 
resource allocation, and environmental sustainability, 
ensuring that urban expansion aligns with broader 

sustainability goals. Additionally, integrating community 
input and stakeholder engagement in the planning 
process will be vital for creating resilient urban 
environments that meet the needs of current and future 
populations while preserving ecological integrity. By 
fostering a deeper understanding of urban growth 
dynamics, this research aims to inform policies that 
promote sustainable, equitable, and resilient urban 
futures. 

Future research can expand on this methodology by 
applying the LEI process across different time series and 
urban contexts. Incorporating high-resolution LULC data 
and advanced geospatial techniques, such as machine 
learning and remote sensing, can enhance the precision 
and applicability of such analyses. Policymakers and 
urban planners should use LULC and LEI insights to 
prioritize strategies that balance urban growth with 
ecological sustainability. Specifically, promoting infill 
growth and mitigating outlying expansion can help 
optimize infrastructure usage while minimizing the 
ecological and social costs of urban sprawl. 

Ultimately, this research contributes to the broader 
discourse on urban sustainability by demonstrating how 
advanced spatial analysis techniques can enhance our 
ability to monitor, interpret, and manage urban growth 
in rapidly developing regions 
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