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Abstract 

 

A promoter is defined as a DNA sequence that helps to initiate transcription by binding to RNA polymerase. It has a key role in 

various biological processes, such as gene expression, adaptation and disease development. Promoter identification methods 

used to be conventional wet-lab approaches, but these can be laborious and costly, so computational methods are now being used 

instead. In this study, DNA sequences were converted into RGB images using the Frequency Chaos Game Representation method 

for k-mer values of 5 and 6, and various CNN models were employed to classify promoters and non-promoters. Pretrained 

models such as ResNet-50, VGG16, and GoogleNet were utilized alongside a custom 17-layer CNN model with optimized 

hyperparameters. The ResNet-50 model achieved an accuracy of 82% and an AUC of 0.89, while the VGG16 model attained an 

accuracy of 80% and an AUC of 0.88. The GoogleNet model yielded an accuracy of 74% with an AUC of 0.82. However, the 

classification performance was observed to be lower compared to existing literature. The proposed 17-layer CNN model 

demonstrated improved performance, achieving an accuracy of 83% and an AUC of 0.90. The proposed CNN model 

outperformed pretraned models in promoter prediction. 
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1.  INTRODUCTION  

Sequencing projects aimed at mapping the human genome 

and determining its primary structure have significantly 

contributed to understanding genetic material. However, 

further research is needed to elucidate the mechanisms 

controlling gene expression. Promoters, which play a crucial 

role in gene transcription, are essential for understanding 

genetic regulation. As key elements that initiate gene 

transcription, promoters control the precise timing, location, 

and level of gene expression [1]. 

Promoters are specific deoxyribonucleic acid (DNA) 

sequences that facilitate ribonucleic acid (RNA) polymerase 

binding and initiate the transcription process. They are 

fundamental in regulating gene expression [2], determining 

gene activity and protein production according to cell type 

[3], responding to environmental changes and cellular 

adaptation [4], and influencing genetic mutations and 

diseases [5] [6] [7]. Therefore, understanding and 

characterizing promoters is essential for advancing genetic 

regulation and gene therapy approaches. 

Promoters are nucleotide sequences located at the 

transcription start site. Promoter regions are typically several 

hundred nucleotides long and determine the location where 

transcription begins as well as the direction in which 

transcription will proceed on the DNA. The promoter region 

of most genes contains various regulatory elements such as 

TATA, CAAT, and GC boxes. In protein-coding genes, the 

region where RNA polymerase II binds is known as the 

TATA box. Positioned approximately 25-30 base pairs 

upstream from the transcription start site, this box typically 

consists of a 7-8 base pair sequence formed by AT base pairs, 

often flanked by GC-rich sequences.  

The promoter region is comprised of three distinct regions: 

the core promoter, the proximal promoter, and the distal 

promoter. The core promoter is located 35 base pairs 

upstream from the transcription start site and represents the 

smallest region of the promoter necessary for initiating 

transcription. The proximal promoter is a region extending 

several hundred base pairs upstream from the transcription 

start site and contains regulatory elements. The distal 

promoter is a region located several thousand base pairs 

upstream from the transcription start site, containing various 

regulatory elements. The promoter regions are illustrated in 

Figure 1. 
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Figure 1. The promoter elements [8] 

The identification and classification of promoters, which 

play a crucial role in the development of genetic 

modification and gene therapy approaches, are carried out 

through wet-lab experiments [9], [10]. However, a review of 

the literature indicates that these experiments are time-

consuming and costly, presenting a significant disadvantage 

[11]. To overcome this, computational methods are 

employed. Literature studies have reported the development 

of models that predict promoters using artificial intelligence-

based techniques, such as machine learning and deep 

learning. Escherichia coli (E. coli) is a popular model 

organism in genetics and molecular biology. It's easy to 

culture, grows quickly, and its genome is well-studied. E. 

coli also illustrates basic biological processes. The utilization 

of Escherichia coli in analyses such as promoter region 

studies is justified by its numerous advantages. Notably, this 

organism is employed in studies examining genetic 

regulation and the development of machine learning–based 

prediction models [11-15].  

Xiao et al. (2019) developed a two-layer support vector 

machine (SVM) model, where the first layer determines 

whether a DNA sequence is a promoter, and the second layer 

predicts the strength of the promoter [11]. In a study by 

Oubounyt et al. (2019), a model combining convolutional 

neural networks (CNN) and long short-term memory 

(LSTM) was developed for promoter prediction, which 

contributed to improving the promoter identification 

problem [12]. In the promoter prediction and activity 

classification study by Le et al. (2022), a BERT model based 

on natural language processing (NLP) was used for 

encoding, and feature selection was performed using Shap 

analysis [13]. Subsequently, promoter classification and 

activity prediction were conducted using different machine 

learning classifiers. Li et al. (2024) fine-tuned the 

DNABERT model, based on natural language processing, 

for promoter prediction, achieving high performance in 

predicting promoters but moderate performance in 

predicting promoter strength [14]. Peng et al. (2024) 

developed a pre-trained NLP model for predicting E. coli 

promoters and successfully predicted promoters using 

various deep learning techniques [15]. 

In the studies mentioned above, models developed for 

promoter prediction utilize traditional machine learning 

methods, deep learning techniques, and natural language 

processing methods. These studies show that various 

approaches were used for constructing the feature vector of 

the DNA sequence, including physicochemical properties of 

nucleotides [11], one-hot encoding [12], and encoding 

structures from pre-trained natural language processing 

models [13]–[15]. However, there is no study in the literature 

that investigates the transformation of DNA sequences into 

images and uses deep learning methods for predicting 

promoter classes. In models developed for exon and intron 

classification [16] and protein function prediction [17], [18], 

it has been observed that image representation of sequences 

and the development of prediction models using deep 

learning positively contribute to prediction performance. 

Building on this, we aim to introduce a methodological 

innovation in the literature of promoter prediction by 

proposing a model to generate the feature vector of DNA 

sequences through an image representation. Therefore, in 

this study, we focus on developing a prediction model to 

determine whether a DNA sequence is a promoter by 

converting it into an image. 

2.  MATERIALS AND METHODS 

2.1.  Benchmark Dataset 

In this study, we aimed to classify whether a DNA sequence 

is a promoter and categorize the promoter strength as either 

strong or weak. For this purpose, the dataset used in the 

training phase consists of E. coli K-12 genome sequence data 

obtained from the RegulonDB database [19]. To compare 

with studies in the literature on promoter prediction, the 

dataset obtained from RegulonDB, which was also used in 

the study titled iPSW(2L)-PseKNC by Xiao et al. (2019), 

was included in this research [11]. The promoter DNA 

sequences in the dataset, ranging from 100 to 1000 base pairs 

(bp) in length, were divided into 81 bp core promoter 

sequences based on nucleosome and linker DNA biological 

characteristics. Non-promoter DNA sequences were created 

by selecting random regions of 81 bp in length from non-

promoter regions. Sequences with a similarity of over 85% 

were removed using CD-HIT. As a result, 3382 promoter 

sequences and 3382 non-promoter sequences were obtained 

(Table 1). 

Table 1. Dataset details and train-test set split 

 
Promoter Non-

promoter 
Total 

Strong Weak 

Dataset 1591 1791 3382 6764 

Train 1273 1433 2706 5412 

Test 318 358 676 1352 

As seen in Table 1, the dataset was randomly split with a 

ratio of 0.8 for the train set and 0.2 for the test set. 

Accordingly, the number of promoter class examples in the 

train set was determined to be 2,706, and the number of non-

promoter class examples was also set to 2,706. For the test 

set, the number of promoter class examples was 676, and the 

number of non-promoter class examples was 676. Care was 

taken to ensure that no class imbalance occurred in the 

distribution of data between the train and test sets. The 

selection of samples from the promoter and non-promoter 

classes was conducted to ensure a balanced class 

distribution, with an equal number of samples from each 

class to ensure the validity of the study. 
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2.2.  Frequency Chaos Game Representation (FCGR) 

With the emergence of fractal geometry by Mandelbrot in 

the 1970s, fractal generation algorithms began to be 

developed. One such algorithm, the chaos game algorithm, 

was designed to generate fractals from random inputs [20]. 

This algorithm is also used in encoding DNA sequences [21]. 

The chaos game representation (CGR) takes DNA sequences 

as inputs, and the outputs are numerical matrices or images 

that mathematically represent these sequences. Each 

nucleotide in a DNA sequence is represented numerically at 

a unique coordinate in a two-dimensional space. The 

representation of a DNA sequence in CGR is shown in 

Figure 2. 

 
Figure 2. The process of determining the four pixels in the 

CGR for the nucleotides in a DNA sequence [22] 

As seen in Figure 2, the nucleotides of DNA-adenine (A), 

cytosine (C), guanine (G), and thymine (T)-are placed in the 

four corners of a square. The CGR coordinates are centered 

at (0, 0), with nucleotides positioned at (-1, -1) and (1, 1) 

coordinates. As shown in Figure 3, depending on the 

orientation of the corners, different visual patterns emerge 

for genomes. Creating motifs based on nucleotide 

concentrations of a DNA sequence using CGR enables the 

visualization of the DNA. 

  
(a) (b) 

Figure 3.a. Placement of DNA nucleotides onto the 

coordinate plane using CGR and segmentation through 

iterative processes [22], b. Formation of fractal patterns from 

DNA sequences (H. sapiens) using FCGR [22] 

With the Frequency Chaos Game Representation (FCGR) 

based on CGR, DNA sequences are defined in terms of 

kmers, and a matrix is created by visualizing the frequency 

of kmers in a pre-defined order. This image representation 

method helps identify patterns and similarities in genetic 

information. The number of quadrants in an FCGR grid is 

calculated as 4𝑘, where k defines the kmer size. In this case, 

the FCGR matrix size becomes 2𝑘 × 2𝑘 (Figure 3.a). It is 

observed that random DNA sequences do not form 

meaningful patterns, whereas applying FCGR to DNA 

sequences reveals fractal patterns (Figure 3.b). Since FCGR 

allows the creation of a distinctive image of DNA, in this 

study, the FCGR-generated images of promoter and non-

promoter sequences will be used as inputs in the promoter 

classification model. 

2.3.  Pre-Trained Models 

Pre-trained models are trained on large datasets to solve a 

specific problem and consist of extensive networks. By 

utilizing the starting points of these models, they can be 

adapted and developed as prediction models for solving 

different problems. In this study, we will attempt to predict 

whether DNA sequences generated using FCGR are 

promoters using commonly used models in the literature, 

such as ResNet50, VGG-16, and GoogleNet. 

2.3.1.  Resnet50 Architecture 

Residual Network (ResNet) is a 50-layer CNN architecture. 

Each layer contains the same number of filters, independent 

of the feature map. Additionally, when the feature map size 

is halved, each layer has twice as many filters. In the three-

layer stack of the ResNet50 architecture, the training of each 

layer is accelerated. The ResNet50 architecture is illustrated 

in Figure 4. 

 
Figure 4. Resnet50 architecture [23] 

As shown in Figure 4, the curved lines indicate that the input 

from the previous layer is transferred to the next layer. The 

model begins with a 7 x 7 convolutional layer with 64 

kernels, followed by a 3 x 3 max pooling layer. The layers 

shown in different colors represent identical layers. 

ResNet50 consists of 23.521 million parameters. 

2.3.2.  VGG-16 Architecture 

VGG-16 is a CNN architecture consisting of 13 

convolutional layers and 3 fully connected layers. All 

convolutional layers have 3x3 filters, and all pooling layers 

are 2x2. After each pooling layer, the feature map is halved. 

The default input size is considered to be 224x224 with a 
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depth of 3 (RGB). The three fully connected layers are 

expanded to vectors of 25,088, 4,096, and 4,096, 

respectively. The VGG-16 architecture is illustrated in 

Figure 5. 

 
Figure 5. VGG-16 architecture [24] 

2.3.3.  GoogleNet (InceptionV3) Architecture 

GoogleNet architecture is a CNN model consisting of 4 

convolutional layers. The default input size is considered to 

be 224x224 with a depth of 3 (RGB). It includes 1x1, 3x3, 

and 5x5 convolutional sublayers, along with 3x3 max 

pooling. These starting points process the data from the 

previous layer in parallel. The use of parallel processing in 

this architecture helps address the issue of overfitting. 

GoogleNet architecture is illustrated in Figure 6. 

 
Figure 6. GoogleNet architecture [16] 

2.4.  Convolutional Neural Networks 

Convolutional neural networks (CNNs), a prominent deep 

learning approach, are widely utilized in computer vision due 

to their remarkable performance. These networks employ 

convolutional operations between layers to identify and learn 

features from input data. By integrating pooling operations, 

CNNs effectively reduce data dimensionality, enhancing 

feature extraction and accelerating the learning process. The 

CNN architecture implemented in this study is a modified 

version of the LeNet-5 model [25]. The CNNs architecture 

utilized in this study is illustrated in Figure 7.  

 
Figure 7. The CNNs architecture 

The prediction model incorporates convolutional the 17 

layers with 4, 8, and 16 filters, employing Batch 

Normalization, Leaky ReLU activation and 2x2 Avarage 

Pooling throughout. Outputs are flattened and fed into fully 

connected layers comprising 128 and 64 neurons with ReLU, 

followed by a sigmoid-activated binary classification layer. 

To mitigate the risk of overfitting, two dropout layers (2 x 

0.4) have been incorporated. Binary cross-entropy is utilized 

as the loss function, optimized through the ADAM 

algorithm. Finally, promoter sequences are transformed into 

two-dimensional vectors to enhance feature learning. 

2.5.  Performance Evaluation Metrics 

In this study, the performance evaluation metrics used for 

promoter prediction are accuracy (ACC), sensitivity (Sn), 

specificity (Sp), Matthews correlation coefficient (MCC), 

and area under the receiver operating characteristic curve 

(AUC). 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
            (1) 

𝑆𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (2) 

𝑆𝑝 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
             (3) 

𝑀𝐶𝐶 =  
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
            (4) 

In the equations above, TP refers to true positives, TN refers 

to true negatives, FN refers to false negatives, and FP refers 

to false positives. Sn indicates the proportion of correctly 
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identified positive samples, while Sp represents the 

proportion of correctly identified negative samples. ACC 

denotes the overall accuracy, reflecting the percentage of 

correctly classified samples. MCC evaluates the correlation 

between actual and predicted values, ranging from -1 to 1. 

To comprehensively assess model performance, it is also 

essential to consider the area under the receiver operating 

characteristic (ROC) curve, which illustrates the relationship 

between true positives and false positives. The AUC value 

varies from 0 to 1, with higher values signifying superior 

predictive performance. Generally, higher values across 

these five metrics indicate better model performance. 

3.  RESULTS 

In this section, the classification results for the ResNet-50, 

VGG16, GoogleNet model and the CNN model that has been 

proposed will be exposed. Initially, the promoter sequences 

were converted into images using the Frequency Chaos 

Game Representation (FCGR) method. The images used as 

input for the model in this study were resized to dimensions 

of 224 × 224 × 3. Figures 8 and 9 show the images generated 

for the training and test datasets using k-mer values of 5 and 

6. In the following figures, a label value of 0 represents the 

non-promoter class, while a label value of 1 corresponds to 

the promoter class. 

 
Figure 8. FCGR representation of the training dataset (k-mer 

5 and 6) 

 
Figure 9. FCGR representation of the test dataset (k-mer 5 

and 6) 

3.1.  Performance Outcomes of the ResNet-50 

Architecture in Classification Tasks 

The ResNet-50 architecture, a pre-trained CNN with 50 

layers initially designed for classifying images into 1,000 

categories, was adapted for binary classification in this 

study. The convolutional layers' weights were frozen to 

retain their learned feature representations. A fully 

connected layer with a single neuron and a sigmoid 

activation function was added for probabilistic output 

interpretation. The dataset was split into subsets, with 80% 

used for training and 20% for evaluation. Training was 

conducted over 30 epochs using the binary cross-entropy 

loss function and the Adam optimizer (learning rate: 0.001) 

to balance stability and convergence. The ResNet-50 model 

was trained using batch sizes of 8, 16, 32, and 64 on promoter 

sequences converted into images via FCGR with k-mer 

values of 5 and 6. This configuration minimized overfitting 

while maintaining computational efficiency. 

Hyperparameters were kept at default values unless 

otherwise specified, following standard transfer learning 

practices. 

Table 2 presents the accuracy (Acc), sensitivity (Sn), 

specificity (Sp), area under the curve (AUC), and Matthews 

correlation coefficient (MCC) values for different batch sizes 

and k-mer values classified by the ResNet-50 model. 

Table 2. Classification results of the Resnet-50 model 

k-mer 
Batch 

Size 
Acc Sn Sp AUC MCC 

5 

64 0.67 0.86 0.47 0.82 0.36 

32 0.80 0.81 0.80 0.88 0.60 

16 0.75 0.56 0.95 0.87 0.56 

8 0.82 0.80 0.84 0.89 0.64 

6 

64 0.79 0.75 0.82 0.87 0.57 

32 0.75 0.77 0.73 0.81 0.50 

16 0.67 0.51 0.83 0.79 0.37 

8 0.80 0.80 0.79 0.86 0.59 

The following results were yielded by our image 

classification using the ResNet-50 model: In the k-mer 5 

representation, the highest accuracy (Acc) of 0.82, area 

under the curve (AUC) of 0.89, and Matthews correlation 

coefficient (MCC) of 0.64 were achieved with a batch size 

of 8. The highest sensitivity (Sn) value of 0.86 was observed 

in the model trained with a batch size of 64, while the highest 

specificity (Sp) value of 0.95 was found in the model trained 

with a batch size of 16. Figure 10 presents the predicted 

values of the ResNet-50 model displayed on the confusion 

matrix. With k-mer 5 and a batch size of 8, the ResNet-50 

model was able to predict 80% of promoters and 84% of non-

promoters, achieving an accuracy (Acc) of 0.82 and an area 

under the curve (AUC) of 0.89. 

3.2.  Performance Outcomes of the VGG16 Architecture 

in Classification Tasks 

The VGG16 architecture, a pre-trained CNN with 16 layers 

initially designed for classifying images into 1,000 

categories. To adapt the VGG16 model for our binary 

classification task, the weights of the layers were frozen, and 

a fully connected layer with a single neuron and a sigmoid 

activation function was appended. The dataset was divided 

into 80% for training and 20% for testing, and the model was 

trained over 30 epochs. Training was performed with batch 

sizes of 8, 16, 32, and 64 on promoter sequences converted 

into images using the FCGR method with k-mer values of 5 

and 6. 

Table 3 presents the accuracy (Acc), sensitivity (Sn), 

specificity (Sp), area under the curve (AUC), and Matthews 

correlation coefficient (MCC) values for different batch sizes 

and k-mer values classified by the VGG16 model. 
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Table 3. Classification results of VGG16 model 

k-mer 
Batch 

Size 
Acc Sn Sp AUC MCC 

5 

64 0.80 0.78 0.83 0.88 0.61 

32 0.77 0.75 0.78 0.84 0.53 

16 0.76 0.68 0.85 0.82 0.55 

8 0.78 0.76 0.80 0.85 0.57 

6 

64 0.74 0.82 0.66 0.82 0.48 

32 0.76 0.66 0.86 0.84 0.53 

16 0.73 0.53 0.92 0.85 0.50 

8 0.78 0.77 0.80 0.85 0.57 

The following results were yielded by our image 

classification using the VGG16 model: In the k-mer 5 

representation, the highest accuracy (Acc) of 0.80, Sp of 

0.83, area under the curve (AUC) of 0.88, and Matthews 

correlation coefficient (MCC) of 0.61 were achieved with a 

batch size of 64. k-mer 6 representation, the highest 

sensitivity (Sn) value of 0.82 was observed in the model 

trained with a batch size of 64. Figure 11 presents the 

predicted values of the VGG16 model displayed on the 

confusion matrix. With k-mer 5 and a batch size of 64, the 

VGG16 model was able to predict 78% of promoters and 

83% of non-promoters, achieving an accuracy (Acc) of 0.80 

and an area under the curve (AUC) of 0.88. 

 

 

Figure 10. Confusion matrices for the Resnet-50 model 

 

Figure 11. Confusion matrices for the VGG16 model 
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Figure 12. Confusion matrices for the GoogleNet model 

 

Figure 13. Confusion matrices for our proposed model 

 

3.3.  Performance Outcomes of the GoogleNet 

Architecture in Classification Tasks 

The GoogleNet model is a pre-trained convolutional neural 

network with a depth of 22 layers, capable of classifying up 

to 1,000 object image classes. To adapt the GoogleNet model 

to our classification problem, the weights of layers were 

frozen, and a fully connected layer with a single neuron and 

a sigmoid activation function was added at the end to address 

the binary classification task. The dataset was split into 80% 

for training and 20% for testing, and the model was trained 

for 30 epochs. The GoogleNet model was trained using batch 

sizes of 8, 16, 32, and 64 on promoter sequences converted 

into images via FCGR with k-mer values of 5 and 6.  

Table 4 presents the accuracy (Acc), sensitivity (Sn), 

specificity (Sp), area under the curve (AUC), and Matthews 

correlation coefficient (MCC) values for different batch sizes 

and k-mer values classified by the GoogleNet model. 

The following results were yielded by our image 

classification using the GoogleNet model: In the k-mer 6 

representation, the highest accuracy (Acc) of 0.74, area 

under the curve (AUC) of 0.82, and Matthews correlation 

coefficient (MCC) of 0.49 were achieved with a batch size 

of 16. The highest sensitivity (Sn) value of 0.92 was 

observed in the model trained with a batch size of 8, while 

the highest specificity (Sp) value of 0.95 was found in the 

model trained with a batch size of 64. Figure 12 presents the 
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predicted values of the GoogleNet model displayed on the 

confusion matrix. With k-mer 6 and a batch size of 16, the 

GoogleNet model was able to predict 74% of promoters and 

76% of non-promoters, achieving an accuracy (Acc) of 0.74 

and an area under the curve (AUC) of 0.82. 

Table 4. Classification results of GoogleNet model 

k-mer 
Batch 

Size 
Acc Sn Sp AUC MCC 

5 

64 0.73 0.60 0.86 0.81 0.47 

32 0.73 0.64 0.81 0.79 0.45 

16 0.72 0.58 0.87 0.79 0.47 

8 0.71 0.62 0.80 0.79 0.42 

6 

64 0.66 0.36 0.95 0.80 0.38 

32 0.73 0.59 0.87 0.81 0.48 

16 0.74 0.74 0.76 0.82 0.49 

8 0.66 0.92 0.39 0.80 0.38 

3.4.  Performance Outcomes of Our Proposed CNN 

Model in Classification Tasks 

To enhance classification performance, we tested various 

CNN architectures and ultimately developed the proposed 

model. Our proposed CNN model has convolutional the 17 

layers with 4, 8, and 16 filters, employing Batch 

Normalization, Leaky ReLU activation and 2x2 Average 

Pooling throughout. Outputs are flattened and fed into fully 

connected layers comprising 128 and 64 neurons with ReLU, 

followed by a sigmoid-activated binary classification layer, 

as detailed in Figure 7. Training was conducted over 30 

epochs using the binary cross-entropy loss function and the 

Adam optimizer (learning rate: 0.001) to balance stability 

and convergence, with the dataset split into 80% for training 

and 20% for testing. Our proposed model was trained using 

batch sizes of 8, 16, 32, and 64 on promoter sequences 

converted into images via FCGR with k-mer values of 5 and 

6. 

Table 5 presents the accuracy (Acc), sensitivity (Sn), 

specificity (Sp), area under the curve (AUC), and Matthews 

correlation coefficient (MCC) values for different batch sizes 

and k-mer values classified by our proposed CNN model. 

Table 5. Classification results of our proposed CNN model 

k-mer 
Batch 

Size 
Acc Sn Sp AUC MCC 

5 

64 0.83 0.82 0.83 0.90 0.65 

32 0.82 0.77 0.87 0.89 0.65 

16 0.80 0.76 0.85 0.89 0.61 

8 0.81 0.74 0.89 0.89 0.64 

6 

64 0.83 0.80 0.86 0.88 0.67 

32 0.83 0.84 0.82 0.88 0.66 

16 0.81 0.77 0.84 0.87 0.62 

8 0.82 0.81 0.83 0.88 0.64 

The following results were yielded by our image 

classification using our proposed CNN model: In the k-mer 

5 and 6 representation, the highest accuracy (Acc) of 0.83, 

area under the curve (AUC) of 0.90, and Matthews 

correlation coefficient (MCC) of 0.67 were achieved with a 

batch size of 64. In the k-mer 6 representation, the highest 

sensitivity (Sn) value of 0.84 was observed in the model 

trained with a batch size of 32, while in the k-mer 5 

representation the highest specificity (Sp) value of 0.89 was 

found in the model trained with a batch size of 8. Figure 13 

presents the predicted values of our proposed model 

displayed on the confusion matrix. With k-mer 5 and a batch 

size of 64, our proposed CNN model was able to predict 82% 

of promoters and 83% of non-promoters, achieving an 

accuracy (Acc) of 0.83 and an area under the curve (AUC) 

of 0.90. 

4.  DISCUSSION 

In this study, a CNN model was developed by fine-tuning 

pre-trained ResNet-50, VGG16, and GoogleNet models, as 

well as the LeNet-5 model, with different hyperparameter 

values for the prediction of promoter and non-promoter 

DNA sequences. When classifying the images using the 

ResNet-50 model with a k-mer size of 5 and a batch size of 

8, the ResNet-50 model was able to predict 80% of 

promoters and 84% of non-promoters, achieving an accuracy 

(Acc) of 0.82 and an area under the curve (AUC) of 0.89. 

When classifying with the VGG16 model with a k-mer size 

of 5 and a batch size of 64, the VGG16 model was able to 

predict 78% of promoters and 83% of non-promoters, 

achieving an accuracy (Acc) of 0.80 and an area under the 

curve (AUC) of 0.88. When classifying with the GoogleNet 

model with a k-mer size of 6 and a batch size of 16, the 

GoogleNet model was able to predict 74% of promoters and 

76% of non-promoters, achieving an accuracy (Acc) of 0.74 

and an area under the curve (AUC) of 0.82. Upon examining 

the classification performance, it can be seen that the 

classification accuracy of promoter and non-promoter 

sequences is relatively low compared to existing literature. 

Table 6. Performance comparison of predictors on 

benchmark dataset 

Predictor Sn Sp Acc AUC MCC 

iPSW(2L)-PseKNC [11] 0.81 0.84 0.83 0.90 0.66 

Le et al. [26]  0.82 0.88 0.85 / 0.70 

iPSW (PseDNC-DL) 

[27] 
0.83 0.86 0.85 0.92 0.70 

BERT-Promoter [13]  0.84 0.86 0.85 0.90 / 

iProL [15] 0.84 0.86 0.85 0.92 0.71 

dPromoter-XGBoost 

[28]  
0.85 0.81 0.83 / 0.67 

iPromoter-CLA [29] 0.86 0.85 0.86 0.92 0.72 

Ours 0.82 0.83 0.83 0.90 0.67 

In this study, using the proposed 17-layer CNN model with 

a k-mer size of 5 and a batch size of 64, the model was able 

to predict 82% of promoters and 83% of non-promoters, 
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achieving an accuracy (Acc) of 0.83 and an area under the 

curve (AUC) of 0.90. When comparing this measure with 

existing studies in the literature, it can be seen that similar 

prediction results were obtained using the models proposed 

in the literature. The performance evaluation results of the 

studies in the literature are presented in a comparative 

manner in Table 6. 

When examining the performance evaluation metrics 

presented in Table 6, it can be seen that the proposed model 

is more successful than the iPSW(2L)-PseKNC [11] method 

in promoter prediction and achieves the same prediction 

performance as Le et al. [26]. In non-promoter prediction, 

the proposed model outperforms the dPromoter-XGBoost 

[28] method. When comparing accuracy values, the results 

are the same as those of iPSW(2L)-PseKNC [11] and 

dPromoter-XGBoost [28]. Regarding the AUC value, the 

model achieves the same result as iPSW(2L)-PseKNC [11] 

and BERT-Promoter [13]. In terms of MCC, the proposed 

model performs better than iPSW(2L)-PseKNC [11] and 

achieves the same result as dPromoter-XGBoost [28]. It is 

important to note that in the above prediction models, 

sequence-to-image conversion and image classification were 

not employed. In contrast, promoter classification in the 

literature is often performed using natural language 

processing methods. This study, however, is the first to 

convert sequences into images and apply image 

classification for promoter prediction, marking a 

methodological innovation. The comparability of the 

obtained results with the literature indicates that this 

approach can be used effectively for promoter classification. 

5.  CONCLUSIONS 

In this study, CNN models were utilized to classify color 

images representing promoter and non-promoter sequences 

from the E. coli K-12 genome. A total of 6764 images, 

consisting of 3382 promoter and 3382 non-promoter 

sequences, were divided into training and testing datasets 

with an 80:20 split ratio. Next, we utilized three pre-trained 

models - ResNet-50, VGG16, and GoogleNet - to classify 

the images. The ResNet-50 model achieved an AUC of 89%, 

the VGG16 model achieved 88%, and the GoogleNet model 

achieved 82%. Subsequently, we proposed our custom 17-

layer CNN model, which yielded promising results, 

achieving an AUC of 90%. In a future study, we plan to 

expand our dataset, assess prediction performance in a 

different organism, develop and evaluate new models to 

enhance prediction accuracy, and apply additional pre-

trained models for promoter sequence classification. 

 

Author contributions: G.M.Ş; Writing – review & editing, 

Writing–original draft, Visualization, Validation, 

Supervision, Software, Resources, Project administration, 

Methodology, Investigation, Funding acquisition, Formal 

analysis, Data curation, Conceptualization. 

Conflict of Interest: No conflict of interest was declared by 

the authors. 

Financial Disclosure: The authors declared that this study 

has received no financial support. 

REFERENCES 

[1]  F. Xu et al., “dbDEMC 3.0: Functional Exploration of 

Differentially Expressed miRNAs in Cancers of 

Human and Model Organisms,” Genomics. Proteomics 

Bioinformatics, vol. 20, no. 3, pp. 446–454, Jun. 2022, 

doi: 10.1016/j.gpb.2022.04.006. 

[2]  D. Castanotto and J. J. Rossi, “The promises and pitfalls 

of RNA-interference-based therapeutics,” Nature, vol. 

457, no. 7228, pp. 426–433, Jan. 2009, doi: 

10.1038/nature07758. 

[3]  A. L. Roy and D. S. Singer, “Core promoters in 

transcription: old problem, new insights,” Trends 

Biochem. Sci., vol. 40, no. 3, pp. 165–171, Mar. 2015, 

doi: 10.1016/j.tibs.2015.01.007. 

[4]  T. I. Lee and R. A. Young, “Transcriptional Regulation 

and Its Misregulation in Disease,” Cell, vol. 152, no. 6, 

pp. 1237–1251, Mar. 2013, doi: 

10.1016/j.cell.2013.02.014. 

[5]  M. De Gobbi et al., “A Regulatory SNP Causes a 

Human Genetic Disease by Creating a New 

Transcriptional Promoter,” Science (80-.)., vol. 312, 

no. 5777, pp. 1215–1217, May 2006, doi: 

10.1126/science.1126431. 

[6]  L. E. Montefiori et al., “A promoter interaction map for 

cardiovascular disease genetics,” Elife, vol. 7, Jul. 

2018, doi: 10.7554/eLife.35788. 

[7]  R. J. Leeman-Neill et al., “Noncoding mutations cause 

super-enhancer retargeting resulting in protein 

synthesis dysregulation during B cell lymphoma 

progression,” Nat. Genet., vol. 55, no. 12, pp. 2160–

2174, Dec. 2023, doi: 10.1038/s41588-023-01561-1. 

[8]  W. Suza and D. Lee, Genetics, agriculture, and 

biotechnology. Iowa State University, 2021. 

[9]  P. Gade and D. V. Kalvakolanu, “Chromatin 

Immunoprecipitation Assay as a Tool for Analyzing 

Transcription Factor Activity,” in Transcriptional 

Regulation: Methods and Protocols, 2012, pp. 85–104. 

[10]  C. B. Yildiz et al., “EphrinA5 regulates cell motility by 

modulating Snhg15/DNA triplex-dependent targeting 

of DNMT1 to the Ncam1 promoter,” Epigenetics 

Chromatin, vol. 16, no. 1, p. 42, Oct. 2023, doi: 

10.1186/s13072-023-00516-4. 

[11]  X. Xiao, Z.-C. Xu, W.-R. Qiu, P. Wang, H.-T. Ge, and 

K.-C. Chou, “iPSW(2L)-PseKNC: A two-layer 

predictor for identifying promoters and their strength 

by hybrid features via pseudo-K-tuple nucleotide 

composition,” Genomics, vol. 111, no. 6, pp. 1785–

1793, Dec. 2019, doi: 10.1016/j.ygeno.2018.12.001. 

[12]  M. Oubounyt, Z. Louadi, H. Tayara, and K. T. Chong, 

“DeePromoter: Robust Promoter Predictor Using Deep 

Learning,” Front. Genet., vol. 10, Apr. 2019, doi: 

10.3389/fgene.2019.00286. 



Gülbahar Merve ŞİLBİR 

pPromoter-FCGR: Deep Learning on Frequency Chaos Game Representation for Prediction of DNA Promoters 

 

Academic Platform Journal of Engineering and Smart Systems (APJESS) 13(2), 61–70, 2025                        70 

[13]  N. Q. K. Le, Q.-T. Ho, V.-N. Nguyen, and J.-S. Chang, 

“BERT-Promoter: An improved sequence-based 

predictor of DNA promoter using BERT pre-trained 

model and SHAP feature selection,” Comput. Biol. 

Chem., vol. 99, p. 107732, Aug. 2022, doi: 

10.1016/j.compbiolchem.2022.107732. 

[14]  Y. Li et al., “msBERT-Promoter: a multi-scale 

ensemble predictor based on BERT pre-trained model 

for the two-stage prediction of DNA promoters and 

their strengths,” BMC Biol., vol. 22, no. 1, p. 126, May 

2024, doi: 10.1186/s12915-024-01923-z. 

[15]  B. Peng, G. Sun, and Y. Fan, “iProL: identifying DNA 

promoters from sequence information based on 

Longformer pre-trained model,” BMC Bioinformatics, 

vol. 25, no. 1, p. 224, Jun. 2024, doi: 10.1186/s12859-

024-05849-9. 

[16]  F. Ben Nasr Barber and A. Elloumi Oueslati, “Human 

exons and introns classification using pre-trained 

Resnet-50 and GoogleNet models and 13-layers CNN 

model,” J. Genet. Eng. Biotechnol., vol. 22, no. 1, p. 

100359, Mar. 2024, doi: 10.1016/j.jgeb.2024.100359. 

[17]  S. T. Sara, M. M. Hasan, A. Ahmad, and S. Shatabda, 

“Convolutional neural networks with image 

representation of amino acid sequences for protein 

function prediction,” Comput. Biol. Chem., vol. 92, p. 

107494, Jun. 2021, doi: 

10.1016/j.compbiolchem.2021.107494. 

[18]  J. Shang, C. Peng, X. Tang, and Y. Sun, “PhaVIP: 

Phage VIrion Protein classification based on chaos 

game representation and Vision Transformer,” 

Bioinformatics, vol. 39, no. Supplement_1, pp. i30–

i39, Jun. 2023, doi: 10.1093/bioinformatics/btad229. 

[19]  S. Gama-Castro et al., “RegulonDB version 9.0: high-

level integration of gene regulation, coexpression, 

motif clustering and beyond,” Nucleic Acids Res., vol. 

44, no. D1, pp. D133–D143, Jan. 2016, doi: 

10.1093/nar/gkv1156. 

[20]  M. F. Barnsley, Fractals Everywhere, 2nd ed. 

Academic Press, 2014. 

[21]  H. J. Jeffrey, “Chaos game representation of gene 

structure,” Nucleic Acids Res., vol. 18, no. 8, pp. 2163–

2170, 1990, doi: 10.1093/nar/18.8.2163. 

[22]  A. Halder, Piyush, B. Mathew, and D. Sengupta, 

“Improved Python Package for DNA Sequence 

Encoding using Frequency Chaos Game 

Representation.” Apr. 18, 2024, doi: 

10.1101/2024.04.14.589394. 

[23]  A. Shabbir et al., “Satellite and Scene Image 

Classification Based on Transfer Learning and Fine 

Tuning of ResNet50,” Math. Probl. Eng., vol. 2021, pp. 

1–18, Jul. 2021, doi: 10.1155/2021/5843816. 

[24]  S. Tammina, “Transfer learning using VGG-16 with 

Deep Convolutional Neural Network for Classifying 

Images,” Int. J. Sci. Res. Publ., vol. 9, no. 10, p. p9420, 

Oct. 2019, doi: 10.29322/IJSRP.9.10.2019.p9420. 

[25]  Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” 

Nature, vol. 521, no. 7553, pp. 436–444, May 2015, 

doi: 10.1038/nature14539. 

[26]  N. Q. K. Le, E. K. Y. Yapp, N. Nagasundaram, and H.-

Y. Yeh, “Classifying Promoters by Interpreting the 

Hidden Information of DNA Sequences via Deep 

Learning and Combination of Continuous FastText N-

Grams,” Front. Bioeng. Biotechnol., vol. 7, Nov. 2019, 

doi: 10.3389/fbioe.2019.00305. 

[27]  H. Tayara, M. Tahir, and K. T. Chong, “Identification 

of prokaryotic promoters and their strength by 

integrating heterogeneous features,” Genomics, vol. 

112, no. 2, pp. 1396–1403, Mar. 2020, doi: 

10.1016/j.ygeno.2019.08.009. 

[28]  H. Li et al., “dPromoter-XGBoost: Detecting promoters 

and strength by combining multiple descriptors and 

feature selection using XGBoost,” Methods, vol. 204, 

pp. 215–222, Aug. 2022, doi: 

10.1016/j.ymeth.2022.01.001. 

[29]  Z. Zhang, J. Zhao, P.-J. Wei, and C.-H. Zheng, 

“iPromoter-CLA: Identifying promoters and their 

strength by deep capsule networks with bidirectional 

long short-term memory,” Comput. Methods Programs 

Biomed., vol. 226, p. 107087, Nov. 2022, doi: 

10.1016/j.cmpb.2022.107087. 

 


