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ABSTRACT: The intricacy of decision variables, multiple objectives, and nonlinear restrictions 

make it difficult to find suitable solutions for mechanical design problems. An alternative approach 

to these difficult challenges, the Grey Wolf Optimizer (GWO) is recognized for its ease of use, 

flexibility, scalability, and unique balance between exploration and exploitation. Like every 

stochastic approach, GWO has drawbacks, though, and numerous enhanced variants have been put 

up to overcome them.  The GWO algorithm and its variants are examined in this investigation. It 

conducts an experimental comparison of the original approach and its two variations. It examines 

how the approaches behave with various combinations of parameters. Five mechanical design 

problems are used to test the algorithms' effectiveness utilizing statistical analysis and search 

performance. In the literature, the performance of alternative approaches is also contrasted with the 

ideal outcomes. 

Keywords: Grey wolf optimizer, Engineering problem, Mechanical design, Meta-heuristic 

algorithm, Optimization 
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1. INTRODUCTION 

Engineering design across disciplines such as machinery, mechatronics, and construction is a 

crucial research domain focused on attaining a precise equilibrium between technical specifications 

and cost efficiency. Issues in this domain encompass diverse complexities, including linear and 

nonlinear constraints stemming from geometric, kinematic, and material considerations, alongside 

challenges related to high dimensionality (Gupta et al., 2021). Traditional optimization techniques 

encounter challenges such as premature convergence, entrapment in local minima, and sluggish 

convergence rates (Ezugwu et al., 2022). The nonlinearity of the issues or constraints restricts the 

application of linear methods (Lee et al., 2025). These challenges hinder traditional methods from 

achieving optimal solutions, resulting in inadequacies in addressing real-world problems due to their 

restricted applicability. The growing integration of disciplines like operations research, drug 

discovery, and engineering design with machine learning and technological advancements heightens 

the significance of optimization methods and necessitates the development of more advanced 

techniques to address complex challenges (Özcan and Kuntalp, 2017; Çetinkaya and Taşkıran, 2022; 

Ayğahoğlu et al., 2023; Kababulut et al., 2023; Gürkan Kuntalp et al., 2024). 

In view of the escalating intricacy of real-world optimization problems in engineering, 

researchers are increasingly adopting meta-heuristic algorithms sas a viable solution (Li et al., 2024). 

While these stochastically structured algorithms do not consistently ensure optimal solutions, they 

provide a resilient alternative to conventional methods for addressing complex problems marked by 

nonlinearity and high dimensionality (Debnath et al., 2024). Over the past thirty years, numerous 

meta-heuristic algorithms have been devised and utilized for optimization challenges in engineering 

disciplines such as mechanical precision engineering (Ransegnola et al., 2019; Cui et al., 2020), 

automotive sector (Millo et al., 2018; Sun et al., 2018; Xu et al., 2025), structural design optimization 

(Hamza et al., 2018; Jahangiri et al., 2020), and power system issues (Eke et al., 2021; Coban and 

Saka, 2024). Nonetheless, it is prevalent that even these sophisticated algorithms often succumb to 

local minima and fail to address every problem with robustness. 

Traditional meta-heuristics, including genetic algorithms (GA) (Holland, 1992), particle swarm 

optimization (PSO) (Eberhart and Kennedy, 1995), differential evolution (DE) (Storn and Price, 

2009), and ant colony optimization (ACO) (Socha and Dorigo, 2008), have been extensively utilized 

in the past. The NFL theorem (Wolpert and Macready, 1997) and the difficulty of addressing complex 

optimization problems have compelled researchers to develop novel methods, resulting in an increase 

of meta-heuristic algorithms to over 500 (Li et al., 2024). Recent methodologies established, 

including the grasshopper optimization algorithm (Saremi, Mirjalili and Lewis, 2017), salp swarm 

optimization (Mirjalili et al., 2017), whale optimization algorithm (Mirjalili and Lewis, 2016), 

pathfinder algorithm (Yapici and Cetinkaya, 2019), equilibrium optimization (Faramarzi et al., 2020), 

harris hawks optimization (Heidari et al., 2019), and student psychology-based optimization (Das et 

al., 2020), have been employed by numerous researchers and have attained contemporary popularity. 

Furthermore, recently proposed methodologies, including artificial circulatory system algorithm 

(Özcan et al., 2025), african vulture optimization algorithm (Abdollahzadeh et al., 2021), animated 

oat optimization algorithm (Wang et al., 2025) and enzyme action optimizer (Rodan et al., 2025), 

have garnered attention due to their competitive efficacy.  

Exploration and exploitation constitute the two primary phases in the optimization process of 

meta-heuristic algorithms, and these phases directly influence the algorithm's efficacy in addressing 

optimization challenges (Gezici, 2023). The intricacy of the issue restricts algorithms' capacity to 

explore and exploit. Exploration is linked to the capacity to transcend local minima, allowing the 
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algorithm to conduct a global search of the search space. Exploitation denotes the capacity to conduct 

localized searches, enhancing the quality of solutions within particular areas. Performance is linked 

to a judicious equilibrium between these two phases. Proposing novel meta-heuristic algorithms and 

refining established algorithms is a prevalent strategy to enhance exploration and exploitation 

capabilities. 

Grey Wolf Optimization (GWO) is a metaheuristic algorithm inspired from the hunting 

behavior and social structure of grey wolves (Mirjalili et al., 2014). Since its introduction, GWO has 

garnered considerable attention owing to its simplicity, efficiency, and capacity to address complex 

optimization challenges. The algorithm's capacity to equilibrate exploration and exploitation enables 

it to adeptly traverse the search space, rendering it an invaluable asset for practitioners in pursuit of 

optimal solutions. Nonetheless, akin to numerous metaheuristics, GWO exhibits limitations including 

sluggish convergence rate, susceptibility to local optima, and an imbalance between exploration and 

exploitation. Numerous adaptations of GWO have been suggested, each presenting distinct strategies 

to tackle these challenges and enhance the algorithm's efficacy (Faris et al., 2018). 

This paper examines GWO methodologies. The primary justifications for selecting this method 

are: (1) its popularity, ease of implementation, and algorithmic stability, and (2) its efficacy in 

addressing unconstrained and discrete optimization problems in preliminary assessments. The 

investigation offers an extensive summary of the algorithm and its modifications. It analyzes the 

enhancements, contributions, and applications of the GWO method. It also undertakes an 

experimental procedure to execute optimization tasks in the manufacturing processes of mechanical 

design issues. It seeks to achieve optimal solutions to problems through parameter optimization. It 

contrasts the outcomes derived from the GWO algorithm with its two modifications and the optimal 

solutions reported in the literature. 

Section II provides a thorough literature review on the implementations, evolution, and current 

variations of the popular optimization algorithm, which serves as the theoretical foundation of the 

study. Section III presents the biological motivation and mathematical modeling of the GWO 

algorithm, as well as technical details of R-Walk and Improved GWO modifications. Section IV 

provides technical details on mathematical formulations of mechanical design problems, boundary 

conditions, and problem specifications. Section V details experimental methods, parameter 

optimization strategies, and findings, including quantitative and qualitative analyses, comparative 

algorithm performances, and statistical significance levels. Section VI critically discusses results, 

presents theoretical and practical implications, and presents limitations and suggestions for future 

research, integrating recent literature and academic rigor. 

 

2. RELEATED WORKS 

The GWO is a swarm intelligence algorithm created by Mirjalili et al. in 2014 and is widely 

regarded as one of the most prominent meta-heuristic algorithms among researchers (Mirjalili et al., 

2014). The algorithm's efficacy has inspired other researchers to employ this method for addressing 

various optimization challenges. GWO has been utilized in machine learning for diverse applications, 

including feature selection (Emary et al., 2016), neural network training (Altay and Varol, 2023), and 

clustering tasks (Zhang and Zhou, 2015). It has also been utilized in image processing (Khairuzzaman 

and Chaudhury, 2017), bioinformatics applications (Jayapriya and Arock, 2015), and environmental 

prediction models (Song et al., 2015). 
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Other possible uses of GWO encompass a diverse array of engineering challenges. In control 

engineering, it has emerged as a commonly employed algorithm for tuning the parameters of 

controllers, including integral (I), proportional-integral (PI), and proportional-integral-derivative 

(PID) controllers, as well as addressing power distribution challenges related to optimal load 

distribution for resource operation and planning, robotics technologies, road planning, and wireless 

sensor network issues (Li and Wang, 2015; Sulaiman et al., 2015; Zhang et al., 2016; Saka, 2024). 

Research indicates that GWO markedly enhances the efficacy of the optimized components. 

Furthermore, GWO surpasses other optimization methods, including GA, PSO, and DE, regarding 

accuracy and efficiency. Nonetheless, certain researchers have identified limitations in the 

implementation of GWO owing to the intricate nature of real-world optimization challenges. The 

GWO algorithm has been redesigned to align with the search space of intricate domains. 

Researchers seeking to enhance the efficacy of the GWO can be classified into four categories 

based on the nature of modifications they suggest for the GWO: (1) Research endeavors aimed at 

enhancing the equilibrium between exploration and exploitation processes concentrated on refining 

GWO mechanisms. Mittal et al. investigated the potential enhancement of the exploration process in 

GWO by reducing the value of a through an exponential decay function rather than employing a linear 

modification (Mittal et al., 2016). Malik et al. employed an alternative methodology for updating 

individual positions. Rather than employing a simple average of the best individuals, they utilized a 

weighted average of the positions of alpha, beta, and gamma wolves (Malik et al., 2015). Rodríguez 

et al. devised a methodology utilizing weighted averages and fuzzy logic to update the positions of 

omega wolves (Rodríguez et al., 2017). (2) Some researchers have concentrated on examining the 

enhancement of GWO performance through the incorporation of novel operators, such as crossover, 

or by employing a local search algorithm. Kishor et al. proposed a modified version of GWO to 

enhance population diversity by incorporating a straightforward crossover operator between two 

randomly selected distinct individuals. The transition operator's function is to enhance information 

exchange among individuals within the swarm (Kishor and Singh, 2016). Zhou et al. proposed the 

optimization of the parameters of the equivalent model for the small hydro generator swarm by 

integrating GWO with chaotic local search (Zhou et al., 2016). 

(3) In a study (Luo et al., 2016), a variant of GWO was introduced wherein individuals possess 

distinct coding schemes. The authors employed a complex-valued coding approach rather than the 

conventional real-valued coding method. In this coding, the individual's genes consist of two primary 

components: an imaginary component and a real component. The authors contended that this 

technique can augment the information capacity of the individual and enhance the diversity of the 

population. (4) Another study employed a modified population structure and hierarchy (Yang et al., 

2017). In contrast to the four distinct wolf types in the traditional GWO, the population is segmented 

into two autonomous subpopulations: the first is designated as the cooperative hunting group, and the 

second as the random scout group. The objective of the scout group is to conduct extensive 

exploration, whereas the objective of the cooperative hunting group is to perform intensive 

exploitation. The alterations were not confined to this. Given that the GWO algorithm addresses 

single-objective problems, multi-objective variants of GWO have been introduced in the literature to 

tackle multi-objective challenges (Mirjalili et al., 2016). Moreover, certain researchers have 

suggested various hybrid approaches by integrating GWO to leverage the strengths and capabilities 

of alternative optimizers (Kamboj, 2016). 

Despite a great deal of investigation on GWO and its many variations, certain gaps persist in 

the literature. The optimization of GWO parameters is inadequately explored in the literature. 
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Parameter tuning is essential for all optimization algorithms when addressing real-world problems. 

Moreover, GWO and its subsequent versions can be evaluated under equal experimental conditions 

on actual problems featuring intricate and varied constraints. This should be addressed to enhance 

comprehension of the current version of GWO and to evaluate its merits and drawbacks in relation to 

other variants of GWO. Consequently, our study has thoroughly examined the GWO algorithm and 

its two enhanced variants across five distinct mechanistic challenges. The experimental process 

encompasses the examination of mean performance, statistical evaluation, and the capacity to attain 

the optimal solution, as well as the influence of algorithmic parameters, including population structure 

and iteration count, on fitness landscapes. The number of GWO modifications was limited to two in 

order to be able to be analyzed in detail and to avoid complexity. Popular variants defined in the same 

library were preferred to avoid any superiority in the coding of the algorithms. 

 

3. GREY WOLF OPTIMIZERS 

3.1 Overview of the GWO 

The primary inspiration for the GWO algorithm is the leadership structure and hunting tactics 

of grey wolves. The following sections elaborate on these essential components: 

Leadership Hierarchy: The GWO follows to a rigid hierarchical framework, governed by 

wolves with distinct divisions of labor. Leaders, referred to as alphas, make critical decisions for the 

pack regarding activities such as hunting, selecting sleeping locations, and determining waking hours. 

Beta wolves are subordinate members of the pack who aid the alpha in decision-making and various 

activities. Delta wolves oversee territorial boundaries and alert the pack to potential threats. They 

safeguard and ensure the security of the pack, assisting the alphas and betas in hunting and procuring 

sustenance for the group. The omega wolves, the lowest-ranking members of the grey wolf hierarchy, 

monitor the other wolves and execute their directives. In the GWO algorithm, roles identified 

throughout the search process are assigned to solutions. 

Hunting Mechanism: The algorithm emulates the encircling, hunting, and attacking behaviors 

of grey wolves during a hunt. This is accomplished via mathematical models that revise the locations 

of the search agents (wolves) within the solution space. 

(1) Encircling prey - Wolves encircle prey by modifying their positions in relation to the 

optimal solution identified thus far. It employs the subsequent equations to mathematically 

represent the encircling behavior: 

 

𝑿(𝑡 + 1) = 𝑿(𝑡) − 𝑨. 𝑫 (1) 

 

where X(t+1) represents the subsequent position of the wolf, X(t) denotes the current position, 

A is a coefficient matrix, and D is a vector contingent upon the prey's location (by Xp), computed as 

follows: 

 

𝑫 = |𝑪. 𝑿𝑝(𝑡) − 𝑿(𝑡)| (2) 

 

 

where, 

 

𝑪 = 2. 𝒓2 (3) 
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The random components of the aforementioned equations replicate varying step lengths and 

velocities of grey wolves. The equations that delineate their values are as follows: 

 

𝑨 = 2𝒂. 𝒓1 − 𝒂 (4) 

 

where 𝒂 is a vector whose values diminish linearly from 2 to 0 throughout the execution. r1 is 

a vector generated randomly from the interval [0,1]. 

(2) Hunting - Grey wolves possess the capability to detect and encircle their prey. The alpha 

typically directs the prey. In the mathematical simulation of grey wolf hunting behavior, the 

alpha is regarded as possessing superior knowledge regarding the probable locations of 

prey. Consequently, it retains the initial three optimal solutions acquired and adjusts the 

positions of the remaining wolves based on this data. In this context, the subsequent 

formulas are employed. 

 

𝑿(𝑡 + 1) =
1

3
𝑿𝟏 +

1

3
𝑿𝟐 +

1

3
𝑿𝟑 (5) 

 

where X1 and X2 and X3 are calculated with Eq. 6. 

 

𝑿𝟏 = 𝑿α(𝑡) + 𝑨𝟏. 𝑫α 

(6) 𝑿𝟐 = 𝑿β(𝑡) + 𝑨𝟐. 𝑫β 

𝑿𝟑 = 𝑿δ(𝑡) + 𝑨𝟑. 𝑫δ 

 

where Dα and Dβ and Dδ are calculated using Eq. 7. 

 

𝑫α = |𝑪𝟏. 𝑿α − 𝑿| 

(7) 𝑫β = |𝑪𝟐. 𝑿β − 𝑿| 

𝑫δ = |𝑪𝟑. 𝑿δ − 𝑿| 

 

(3) Attacking the prey - As the search advances, the algorithm transitions from exploration to 

exploitation, and the wolves near their target. To mathematically model the prey's approach, 

we reduce a. The variable vector A within the interval [-2a, 2a] diminishes a from 2 to 0 

across successive iterations. 

The algorithm continues to iterate until a termination condition is satisfied, enhancing its 

solutions with each iteration and achieving the optimal solution. 

3.2 Random Walk GWO 

The Random Walk GWO algorithm is derived from the conventional GWO method, which is 

based on the hunting behavior and social hierarchy of grey wolves (Gupta and Deep, 2019). The 

primary distinction between this method and classical GWO lies in the incorporation of a random 

walk in the algorithm's exploration strategy, with the step size derived from the Cauchy distribution. 

The rationale for contemplating a random step size is the infinite variance of the Cauchy distribution. 

This concept posits that during periods of inactivity in the exploration of the search space, the 

dominant wolves are inclined to investigate potential optimal solutions by making significant leaps.  
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The algorithm is founded on the fundamental mathematical formulations of the original GWO. 

Nevertheless, it offers enhancement of the random walk through Eq. 8 for the modification of the 

random walk. 

 

𝒃 = 2 − 2 (
𝑡

max 𝑛𝑜 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
) 

(8) 

ϻ = 2𝐛. 𝒓1 − 𝐛 

 

The wolves' expression around the prey is updated with Eq. 9. 

 

𝑿(𝑡 + 1) = 𝑿(𝑡) − ϻ . 𝑫 (9) 

 

3.3 Improved GWO 

The Improved GWO is a modification of the traditional GWO algorithm designed to refine the 

optimization process (Kaveh and Zakian, 2018). It refines the optimization process by calibrating the 

parameter settings and seeks to enhance the outcomes through the implementation of novel 

techniques. Moreover, Enhanced GWO incorporates supplementary internal parameters that enhance 

flexibility and adaptability in complex problems, accelerating the optimization process and elevating 

solution quality relative to classical GWO.  

In the Original GWO (as per Eq. 4), 𝒂 uniform linear decreasing function is established for 

alpha, beta, and delta wolves. In Improved GWO, distinct functions are established for each scenario 

based on dominance principles to augment the exploration and application of the algorithm. In Eq. 

10, alpha, beta, and delta exhibit the following exponentially decreasing functions for a single 

parameter: 

 

𝒂α(𝑖) = 𝒂maxexp ((
𝑖

𝒊max
)ŋα  ln (

𝒂min

𝒂max
) 

(10) 𝒂δ (𝑖) = 𝒂maxexp ((
𝑖

𝒊max
)ŋδ  ln (

𝒂min

𝒂max
) 

𝒂β =  (𝒂α(𝑖) +  𝒂δ (𝑖))/2 

 

where 𝒂max, 𝒂min, 𝑖, 𝒊max, ŋα and ŋδ are the upper bound of 𝒂, lower bound of 𝒂, current 

iteration, maximum number of iteration, growth factor of alpha and growth factor of delta, 

respectively. 

 

4. MECHANICAL DESIGN PROBLEMS 

Mechanical design optimization problems encompass numerous nonlinear constraints and 

intricate variables associated with kinematics, geometric conditions, and material strength. Over the 

past three decades, optimization methods have been utilized to tackle numerous engineering problems 

and real-world challenges. This paper analyzes five prevalent problems to perform a comparative 

assessment of GWO variants and Table 1 delineates the critical informations regarding these 

problems. 
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Table 1. Summary of five mechanical optimization problems. 

Problem Name Abbr Dimension Constraints 

Cantilever Beam Problem CBP 5 1 

Tubular Column Design TCD 2 6 

Piston Lever Design PLD 4 4 

Corrugated Bulkhead Problem CBHD 4 6 

Reinforced Concrete Beam RCB 3 2 

 

Figure 1 illustrates these problems graphically, with their definitions detailed in the 

subheadings. Various versions of the issues exist in the literature, and scholars have tailored the 

fitness function and limitations to align with their research objectives. In our research, we utilized the 

Enoppy library, which encompasses a standardized problem repository to facilitate comparisons and 

ensure the reproducibility of the study (Van Thieu, 2023). Mathematical expressions of the problems, 

including the fitness function, constraints and variable range, can be accessed from the Supplementary 

File. 

 

 
Figure 1. The demonstration of the mechanical design problems. (A) CBP, (B) TCD, (C) PLD, (D) CBHD, (E) RCB 

 

4.1 The Cantilever Beam Design (CBP) 

The cantilever is a design depicted in Figure 1.A comprises five hollow square blocks of 

uniform thickness. The dimensions of the blocks are represented by X1, X2, X3, X4, and X5 for height 
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and width. The objective of the problem is to minimize the weight of the cantilever beam while 

adhering to structural requirements and to ascertain the optimal block dimensions. 

4.2 The Tubular Column Design (TCD) 

The tubular column depicted in Figure 1.B is a structural component comprising a hollow 

cylinder constructed from metal, concrete, or alternative materials. It is frequently utilized in 

construction to reinforce beams and other structural components, as well as in bridges and various 

other edifices. Tubular columns are typically more robust and efficient than solid columns due to their 

ability to withstand torsional, bending, and shear forces. The goal of the problem is to optimize the 

construction cost of the column by utilizing the variables d, representing the average diameter of the 

column, and t, denoting the thickness of the column. 

4.3 The Piston Lever Design (PLD) 

The piston lever problem holds significant relevance in engineering applications, including the 

automotive industry, aerospace, and mechanical engineering. The primary aim of this problem is to 

optimally position the piston lever components H, B, D, and X by minimizing the oil volume as α in 

the piston lever is increased from 0° to 45° in the design illustrated in Figure 1.C. 

4.4 The Corrugated Bulkhead Design (CBHD) 

The corrugated bulkheads are commonly utilized on vessels owing to their benefits, including 

ease of maintenance and adaptability to thermal expansion and contraction. Reducing the weight of 

these mechanical designs is crucial due to the current high cost of materials and constitutes the 

primary objective of this problem. The structural component depicted in Figure 1.D possesses four 

design variables: width (b), depth (h), length (L), and thickness (t) of the plate. 

4.5 The Reinforced Concrete Beam Design (RCB) 

The design of reinforced concrete beams is a challenge faced in civil engineering. The issue 

pertains to a structure depicted in Figure 1.E. Concrete beams are fortified with steel bars to enhance 

their resistance to internal stresses. The process is a complex optimization involving three design 

variables: reinforcement area (A), beam width (b), and beam depth (h). 

 

5. EXPERIMENTAL PROCEDURE, RESULTS AND DISCUSSION 

This section presents an experimental comparison of the GWO, Improved GWO, and Random 

Walk GWO algorithms. To assess the efficacy of each algorithm, they were implemented on five 

distinct mechanical design challenges: CBD, TCD, PLD, CBHD, and RCB. All experiments were 

performed on a PC with an Intel Core(TM) i5-12400 (2.50 GHz) processor, 512 GB SSD, 16 GB 

RAM, and the Windows 11 Operating System. Furthermore, the Python programming language was 

employed for all computations, and the Mealpy (Van Thieu and Mirjalili, 2023) and Enoppy (Van 

Thieu, 2023) libraries were utilized alongside the fundamental libraries. In the optimization of the 

fundamental parameters of the algorithms, the iteration counts were established at 100, 500, 1000, 

and 5000, while the population sizes were designated as 20, 50, 100, 200, and 500, respectively. All 

case studies were executed under equal experimental conditions. Each algorithm was executed 25 

times to assess the robustness of the comparative methods in solving the problem. The experimental 

methodologies and the resultant findings are elaborated upon in the subsequent subsections. 
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5.1 Average Efficacy 

Figure 2 illustrates average values derived from the application of the three optimization models 

to five problems. The averages are computed based on the fitness results derived from 25 iterations 

across all iteration and population size parameters of the problems. 

 

 
Figure 2. Average performance of optimization models in mechanical problems 

 

Given that all optimization tasks are minimization problems, Improved GWO achieved the 

lowest average fitness value in addressing CBP, TCD, and CBHD problems. It demonstrates superior 

optimization efficacy relative to the Original method and Random Walk GWO. Conversely, in PLD 

and RCB issues, Random Walk GWO emerges as the most effective model. The enhanced GWO 

outperformed the original method in the PLD problem. 

5.2 Statistical Assessments 

The average performance graph offers a qualitative comparison of the methods, yet this is 

inadequate on its own. Statistical tests were conducted in the study to assess the superiority of the 

methods relative to one another and to determine if a statistically significant difference was achieved. 

The results acquired for each parameter combination of the algorithms employed in the study 

were regarded as a single data. To ascertain the appropriate statistical test, the normality of the data 

distribution was initially assessed. The Shapiro-Wilk test was utilized for normality assessments 

owing to the limited sample size (n<50). The Shapiro-Wilk test results indicated that approximately 

68.5% of the total data group satisfied the p<0.05 criterion and exhibited a non-normal distribution. 

The optimization method exhibiting the highest incidence of anomalies was R-walk GWO, while 

TCD was the most prevalent by problem type. The propensity for normal distribution heightened with 

an increase in population size. 

In the second stage, a multiple comparison test was conducted to assess the statistical 

significance among the methods. ANOVA was conducted when p >= 0.05, while the Kruskal-Wallis 

test was utilized in other instances, as determined by the normality test. Analysis of the multiple 

comparison test results revealed that the methods satisfied the p<0.05 acceptance criterion in the 

majority of parameter combinations (77.7%), yielding statistically significant differences. 

Furthermore, 44.7% of the findings exhibited substantial significance (p<0.001). Systematic 

superiority was particularly evident in CBP and CBHD problems. 

The results indicated systematic and quantifiable differences among the three methods. 

Nevertheless, comprehensive pairwise comparisons were conducted in the final stage to assess the 

nature of these differences among the methods. At this juncture, Dunn's test was employed due to the 

failure of the majority of normal distribution assumptions in data integrity. The average results 

derived from the data (across all problems) were Improved vs Original: 0.0092 ± 0.021, Improved vs 
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R-walk: 0.0004 ± 0.0021, and Original vs R-walk: 0.6821 ± 0.2974. The Improved GWO 

demonstrated considerable superiority (p<0.01) compared to the other two methods. No systematic 

difference exists between Original GWO and the R-walk variant (p>0.05). The statistical results align 

with the findings of Section 5.1. 

5.3 Evaluation of Parameters 

In optimization problems, the objective is to identify the optimal solutions with consistent 

stability. The average efficacy of an algorithm across a broad spectrum of problems appears to be a 

viable strategy; however, it is not invariably adequate. Achieving optimal solutions through efficient 

parameterization is essential. This section compares the results obtained from the GWO algorithm 

and its two variants with parameter modifications. Figure 3-7 displays the results for the CBP, TCD, 

PLD, CBHD, and RCB problems. Fitness results are normalised in graphical representations to ensure 

numerical traceability and to facilitate the observation of differences in comparisons. 

 

 
Figure 3. Fitness outcomes for all parameter combinations of GWOs on CBP 

 

Figure 3 indicates that the improved GWO method on the CBP problem consistently yields 

consistent results across high iterations and population size combinations, despite minor fluctuations 

in performance with decreasing parameters. Stability is evident at medium to high population 

densities. The original model demonstrates highly stable behavior at an epoch value of 5000, 

sustaining competitive levels despite population size decreases. However, the R-walk variant 

experiences substantial performance declines when parameters drop below critical thresholds, leading 

to unregulated variations and discrepancies, especially at minimal population sizes. 

 

 
Figure 4. Fitness outcomes for all parameter combinations of GWOs on TCD 
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According to Figure 4, the TCD problem shows that the impact of epoch parameter is less 

pronounced than in the CBP problem. GWO and the R-walk variant show similar performance at 

elevated iteration and population sizes. The Original GWO yields the most consistent results with a 

population size of 500 and 5000 epochs. At 5000 iterations, they exhibit generally tolerant behavior, 

but minor performance declines occur as the population size diminishes. In situations with low 

populations, considerable fluctuations emerge, albeit in a more regulated manner than in the Improve 

model. The R-walk model demonstrates satisfactory performance only at elevated population and 

epoch values. 

 

 
Figure 5. Fitness outcomes for all parameter combinations of GWOs on PLD 

 

Figure 5 indicates that, generally, the performance of all models improves with population size 

and epochs, with the Original and R-walk models showing optimality. The R-walk model achieved 

lower minimum values, while the Original model had a limited spectrum of solutions, indicating 

greater stability reliability. The Improved model showed competitive performance at 100 and 500 

epochs, but lagged behind other methods when epochs increased. The Original model's outcomes 

were concentrated on a limited spectrum, suggesting greater reliability.  

Figure 6 illustrates that the Improved model offers optimal results for general applications, with 

minimal error and consistent outcomes at high epoch and population sizes. The Original model is 

particularly reliable in industrial-scale contexts, especially when maximum resources are used. R-

walk, despite its theoretical ability to achieve minimal fitness values, is only suitable for resource-

rich and regulated settings due to erratic deviations under low parameters. Prioritizing Improved or 

Original in resource-unrestricted contexts and incorporating additional validation measures in 

experimental or risk-tolerant situations is recommended. 

 

 
Figure 6. Fitness outcomes for all parameter combinations of GWOs on CBHD 
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Figure 7 demonstrates the performance of Improved, Original, and R-walk models in relation 

to epoch and pop_size parameters. All models yield low fitness and consistent results in high source 

scenarios. The Original model excels in industrial applications due to minimal variation, while the 

Improved model provides stability across parameters. R-walk achieves competitive measures in 

medium-scale configurations but poses a risk of inconsistency in low-source scenarios. 

 

 
Figure 7. Fitness outcomes for all parameter combinations of GWOs on RCB 

 

5.4 Optimal Performances and Literature Comparison 

This section assesses the optimal fitness values attained by the algorithms. Table 2 presents the 

experimental outcomes for five engineering optimization challenges among GWOs. Furthermore, the 

outcomes of the top-performing models are juxtaposed with the advanced algorithms suggested in 

the literature to address the same issues. The results are presented in Tables 3 to 7. 

 

Table 2. The minimum outcomes of algorithms on five mechanical problems 

Problem Improved Original R-walk 

CBP 1.339958 1.339956 1.339957 

TCD 30.149763 30.149755 30.149759 

PLD 1.057401 1.057406 1.057400 

CBHD 6.843375 6.843013 6.843038 

RCB 159.360007 159.360037 159.360041 

 

Table 2 illustrates notable disparities among the Improved, Original, and R-walk 

methodologies. The Original algorithm demonstrated better results in CBP, TCD, and CBHD 

problems, whereas the R-walk model scored in PLD. The enhanced algorithm demonstrated 

superiority in RCB. These findings indicate that the selection of algorithms tailored to specific 

problems is essential, with Improved being favored in particular contexts such as RCB. 

 

Table 3. The optimal comparison of optimizers in CBP 

Model Parameters Fitness 

SRIME (Zhong et al., 2024) Epoch:20000, Psize:100 1.3419 

LLMOA (Zhong, Hussien, et al., 2025) E:50000, Psize:100 1.3399 

SHBA (Xu et al., 2024) E:50000, Psize:100 1.3400 

SNS (Bayzidi et al., 2021) E:12000, Psize: Unknown 1.3399 

L-SHACSO (Zhong, Wang, et al., 2025) E:10000, Psize:100 1.3400 

Original GWO (This Study) E:5000, Psize:500 1.3399 
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Analysis of the comparisons reveals that the GWO methodologies employed in your study 

(Original GWO, R-walk, and Improved GWO) exhibit a notable performance. In the CBP problem, 

Original GWO proved its computational efficiency by achieving the same fitness value (1.3399) as 

LLMOA and SNS with 5 times fewer epochs (E:5000) and larger population. 

 

Table 4. The optimal comparison of optimizers in TCD 

Model Parameters Fitness 

CCOA (Zhong, Zhang and Yu, 2024b) E:20000, Psize:100 30.1670 

SRIME (Zhong et al., 2024) E:20000, Psize:100 30.1500 

LLMOA (Zhong, Hussien, et al., 2025) E:20000, Psize:100 30.1497 

SHBA (Xu et al., 2024) E:20000, Psize:100 30.1500 

L-SHACSO (Zhong, Wang, et al., 2025) E:10000, Psize:100 30.1488 

Original GWO (This Study) E:5000, Psize:500 30.1497 

 

In TCD, although L-SHACSO achieves a superior result of 30.1488, Original GWO surpasses 

most methods in the literature (CCOA, SRIME) with a score of 30.1497, demonstrating a balanced 

performance. 

 

Table 5. The optimal comparison of optimizers in PLD 

Model Parameters Fitness 

SRIME (Zhong et al., 2024) E:40000, Psize:100 1.0574 

SHBA (Xu et al., 2024) E:40000, Psize:100 1.0570 

L-SHACSO (Zhong, Wang, et al., 2025) E:10000, Psize:100 1.0743 

R-walk (This Study) E:5000, Psize:500 1.0574 

 

In PLD, R-walk yields an equivalent value to SRIME (1.0574) at one-eighth of the epoch cost, 

thereby demonstrating its adaptive search efficiency. 

 

Table 6. The optimal comparison of optimizers in CBHD 

Model Parameters Fitness 

CVEGE (Zhong, Zhang and Yu, 2024a) E:10000, Psize:100 6.8430 

CCOA  (Zhong, Zhang and Yu, 2024b) E:20000, Psize:100 6.8485 

SRIME (Zhong et al., 2024) E:20000, Psize:100 6.8436 

LLMOA (Zhong, Hussien, et al., 2025) E:40000, Psize:100 6.8429 

SNS  (Bayzidi et al., 2021) E:3125, Psize: Unknown 6.8429 

L-SHACSO  (Zhong, Wang, et al., 2025) E:10000, Psize:100 6.8429 

Original GWO (This Study) E:5000, Psize:500 6.8430 

 

Despite Original GWO in CBHD trailing LLMOA and SNS by a mere 0.0001, the fact that 

these methods utilize 4-8 times more epochs underscores GWO results are remarkable.  

In RCB, the Improved GWO attains an equivalent fitness level as CCOA (159.3600) within 

one-quarter of an epoch, underscoring the algorithm's efficacy. 

 

Table 7. The optimal comparison of optimizers in RCB 

Model Parameters Fitness 

CCOA (Zhong, Zhang and Yu, 2024b) E:20000, Psize:100 159.3600 

SRIME (Zhong et al., 2024) E:20000, Psize:100 159.3700 
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Table 7. The optimal comparison of optimizers in RCB (continued) 

Model Parameters Fitness 

LLMOA (Zhong, Hussien, et al., 2025) E:30000, Psize:100 159.4122 

SHBA (Xu et al., 2024) E:30000, Psize:100 160.3000 

Improved GWO (This Study) E:5000, Psize:100 159.3600 

 

Overall, the parameter optimization in this study has yielded results that are competitive with 

existing methods in the literature, particularly regarding computational resource optimization using 

the low epoch-large population strategy. The slight advantage of certain methods, such as LLMOA 

and SNS in CBHD, necessitates a thorough examination of parameter adaptation mechanisms. 

 

6. CONCLUSIONS 

GWO is regarded as an effective algorithm for identifying the optimal solution to 

mechanical design problems. The intricacy of the issues, encompassing complexity, mixed variables 

with continuous and discrete elements, multiple objectives, and diverse nonlinear constraints 

associated with performance operations, manufacturing prerequisites, and kinematic conditions, 

prompted researchers to devise this efficient algorithm. 

This article thoroughly examines the GWO algorithm and introduces various modifications of 

this widely-used algorithm. The present investigation not only reviews the GWO literature but also 

compares the original algorithm with its two variants under identical experimental conditions. The 

experiments encompass three models, twenty distinct combinations of fundamental parameters (four 

epochs, five population sizes) and five mechanical design challenges. The methods' performance is 

assessed based on their average efficacy, the statistically significant differences attained, stability 

under parameter variations, and the minimum fitness values achieved. The subsequent conclusions 

can be derived from the experimental analyses: 

(1) The GWO modifications yielded distinct outcomes compared to the original algorithm, 

despite being based on the same methodology. This is statistically significant in the majority 

of instances. 

(2) The original GWO exhibits strengths including consistency across various problem types 

and minimal parameter sensitivity. The substantial resource demand (5000 iterations/500 

populations) constitutes a limitation of the Original GWO. 

(3) In situations involving abundant resources and uncomplicated issues (e.g., RCB), the 

Enhanced model demonstrates effective performance. The absence of diversification in low 

populations increases the risk of local minima, representing a limitation of this method.  

(4) The R-walk model demonstrates robust performance when employed by specialists in 

environments where parameters are meticulously regulated and substantial populations are 

feasible. Nonetheless, it may present risks when extensive and elevated parameter 

requirements are unmet.  

These conclusions indicate that problem type, resource limitations, and performance 

consistency are interdependent factors in the selection of optimization algorithms. Given that energy 

efficiency and stability are paramount in industrial systems, even minor performance variances hold 

significant long-term implications. The Original model is evidently the more dependable choice 

regarding resource efficiency and robustness in comparison to alternative methods. The five problems 

examined in the investigations pertain solely to single-objective optimization. They have not 

undergone testing in real-time dynamic environments. These are the limitations of the study. 

Nonetheless, the comparative examination of the algorithms elucidates the merits and demerits of 
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GWO and its variations. The study can function as a reference for researchers to tackle issues across 

multiple engineering domains, including materials, machinery, automotive, and construction. 
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