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ABSTRACT 
Lung cancer is a highly heterogeneous disease that presents significant challenges in accurate diagnosis and 
classification due to its diverse histological and molecular characteristics. Traditional diagnostic methods, 
while valuable, are often limited by invasiveness, subjectivity, and an inability to fully capture tumor com-
plexity. Recent advancements in artificial intelligence (AI), machine learning, and radiomics have transformed 
the field, offering enhanced precision, efficiency, and objectivity in lung cancer classification. These technolo-
gies enable detailed analyses of imaging data, histopathological findings, and molecular profiles, facilitating 
improved subtype identification, outcome prediction, and personalized treatment strategies. Cytopathology re-
mains a cornerstone of lung cancer diagnostics, particularly for small biopsies and cytological samples, which 
are often the only materials available in advanced stages. The integration of AI-driven methods into cytopathol-
ogy and radiomics workflows has shown substantial potential to overcome the limitations of traditional ap-
proaches, reduce interobserver variability, and accelerate the diagnostic process. This review underscores the 
transformative role of AI and radiomics in lung cancer management, highlighting their synergy in advancing 
precision oncology. As ongoing research continues to refine these methodologies, the future of lung cancer 
care is poised for significant advancements, offering improved diagnostic accuracy, personalized therapies, 
and better patient outcomes.  
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 S tem cells implicated in the development of lung 

carcinoma are primarily derived from four key 
proliferative cell types within the airways: basal 

cells, Clara cells, Type II pneumocytes, and neuroen-
docrine cells associated with the Amine Precursor 
Uptake and Decarboxylation (APUD) system. Fur-
thermore, it has been proposed that lung tumors may 

originate not only from these proliferative cells but 
also from an undifferentiated progenitor or stem cell 
that acts as a precursor [1, 2]. These undifferentiated 
cells are thought to be distinct from basal or reserve 
cells. Evidence suggests that such cells are absent in 
the normal adult respiratory epithelium and may only 
emerge following damage to proliferative cells [1]. 
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      While hyperplastic, metaplastic, and dysplastic ep-
ithelial anomalies, including carcinoma in situ, are 
now well-characterized morphologically, the precise 
histogenetic pathways underlying lung carcinoma re-
main uncertain [3]. Tumorigenesis is an evolutionary 
process, driven by ongoing genetic mutations and se-
lective pressures in a Darwinian manner [4, 5]. As hy-
perproliferation occurs during tumor progression, 
increased genetic instability fosters the development 
of a diverse population of cancer cells, referred to as 
clonal subpopulations (Fig. 1) [5, 6]. As hyperprolif-
eration occurs during tumor progression, increased ge-
netic instability facilitates the emergence of a 
heterogeneous population of cancer cells, referred to 
as clonal subpopulations (Fig. 1) [5, 7]. The first, the 
monoclonal (linear) model, proposes that tumor evo-
lution occurs in a sequential and orderly manner. Mu-
tations in oncogenes and tumor suppressor genes drive 
successive rounds of clonal expansion, with each new 
mutation leading to the dominance of a single, more 
advanced clone [8]. This model envisions tumor pro-
gression as a straightforward linear process.  

      In contrast, the multiclonal model presents a more 
complex and dynamic framework. While all tumor 
cells originate from a single initiated cell, tumor evo-
lution involves the coexistence of genetically diverse 
clones [9, 10]. Over time, the population sizes of these 
clones may fluctuate - some expanding, others remain-
ing stable, and some becoming extinct. This ongoing 
interplay creates a “messy” evolutionary pathway, 
where tumors at advanced stages may eventually be 
dominated by a single clone. In both models, the inten-
sity of color represents the degree of tumor progression, 
while different colors symbolize distinct clones [5]. 
      The microenvironment within tumors is inherently 
heterogeneous. Variations in factors such as vascular 
density, the infiltration of normal cells, and the compo-
sition of the extracellular matrix contribute to this com-
plexity. This heterogeneity may explain the emergence 
of diverse phenotypes among tumor cells, influenced 
by their specific local environments. Importantly, this 
intra-tumor heterogeneity extends beyond individual 
cell phenotypes to encompass a range of phenotypic 
features, including gene expression (e.g., surface mark-
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Fig. 1. Tumor evolution can be modeled as either a linear or a multiclonal process. The linear (monoclonal) model (A) depicts 
tumor progression as an orderly sequence of clonal expansions driven by successive mutations, with each new mutation pro-
ducing a dominant, more advanced clone. In contrast, the multiclonal model (B) describes a more dynamic and complex 
process, where genetically diverse clones coexist, compete, and fluctuate in size, leading to a non-linear evolutionary pathway. 
While advanced tumors may eventually be dominated by a single clone, this occurs after significant periods of clonal diversity. 
Both models highlight the interplay between order and randomness in tumor progression (Adapted with modifications from: 
Marusyk A, Polyak K. Tumor heterogeneity: Causes and consequences. Biochim Biophys Acta. 2010;1805(1):105-117. doi: 
10.1016/j.bbcan.2009.11.002 [5]).



Eur Res J. 2025 Elmas et al

ers, growth factor and hormone receptors), metabolic 
activity, motility, angiogenesis, proliferation, immune 
response, and metastatic potential [5, 7, 9]. 
      The interplay between genetic alterations and 
morphological phenotypes is well-documented in lung 
carcinoma. For example, in pleomorphic carcinomas 
with heterogeneous differentiation, molecular hetero-
geneity has been linked to Kirsten Rat Sarcoma Viral 
Oncogene Homolog (KRAS) mutation status, alter-
ations in gene copy number, and differences in protein 
expression and phosphorylation levels [9, 11]. Beyond 
pleomorphic carcinomas, lung carcinomas are charac-
terized by significant histological heterogeneity. Dif-
ferent phenotypic patterns and levels of differentiation 
are often observed between microscopic fields and his-
tological sections. Approximately 50% of tumors ex-
hibit multiple major histological subtypes [11].  
      Lung carcinomas are typically classified based on 
their most differentiated component, while the degree 
of differentiation is assessed based on the least differ-
entiated regions. This dual criterion complicates the 
classification of individual tumors [9, 12]. For in-
stance, a predominantly undifferentiated tumor with 
squamous cell carcinoma (LUSC), or lung cancer sub-
types such as adenocarcinoma (LUAD) features is 
commonly classified as poorly differentiated LUSC or 
LUAD [13, 14].  
      This pronounced phenotypic variability is partic-
ularly relevant in the analysis of small biopsies and 
cytological samples, which are often the only available 
diagnostic material at advanced stages of lung cancer 
[5, 12]. These small samples provide a limited repre-
sentation of the tumor's histological and genetic diver-
sity. Their ability to reflect the clonal composition and 
the quantitative distribution of different growth pat-
terns and tumor subtypes is constrained by the sam-
ple's origin, size, and location [7].  
      Despite these limitations, cytological diagnostics 
remain a vital tool in clinical practice. For example, 
touch imprints performed by thoracic surgeons have 
been shown to achieve sensitivity and specificity com-
parable to histological methods in lung cancer diag-
nostics [15].  
 
 
PRECISION IN LUNG CARCINOMA CLASSI-
FICATION 
Histological and Molecular Insights  

      Lung carcinomas display significant histological 
and molecular heterogeneity, necessitating precise 
classification for effective clinical management. Ac-
curate diagnosis relies on histopathological analysis 
of tumor tissues, where classification is often guided 
by the most differentiated component and assessed 
using the least differentiated regions [11]. This dual 
criterion can complicate tumor categorization, partic-
ularly for adenocarcinomas and squamous cell carci-
nomas that exhibit mixed features. Research 
underscores the variability in patient outcomes and 
therapeutic responses across lung cancer subtypes, 
with each subtype exhibiting distinct genetic and phe-
notypic profiles [16]. For example, adenocarcinomas 
with micropapillary or solid growth patterns are 
strongly associated with aggressive behavior and 
poorer prognoses. Furthermore, LUAD histology 
serves as an independent predictor of lymph node 
metastasis, emphasizing the need for tailored thera-
peutic approaches [11, 17].  
      Recent advancements have introduced mathemat-
ical models that integrate immunohistochemistry and 
LUAD subtypes to predict lymph node metastasis 
more effectively [18, 19]. Molecular profiling, such as 
the evaluation of KRAS and Epidermal Growth Factor 
Receptor (EGFR) mutations, complements histologi-
cal assessments and improves the classification of lung 
adenocarcinomas. In particular, cases with solid or mi-
cropapillary patterns have shown distinct molecular 
alterations that influence prognosis and guide thera-
peutic decisions. Comprehensive histopathological 
evaluations ensure accurate tumor classification, en-
abling personalized treatment strategies and improving 
patient outcomes [16, 20].  
 
RADIOMICS AND AI INTEGRATION 
Transforming Lung Cancer Diagnosis and Care  
      Radiomics, driven by advancements in Machine 
Learning, is revolutionizing lung cancer diagnosis and 
classification through the analysis of imaging modal-
ities such as Computed Tomography (CT), Magnetic 
Resonance Imaging (MRI), and Positron Emission To-
mography (PET). By extracting and analyzing high-
dimensional imaging data, radiomics reveals critical 
connections between imaging features and tumor 
pathophysiology. Recent innovations, including the 
ProNet and iMRRN models, utilize deep learning to 
enhance the classification accuracy of LUAD, LUSC, 
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and small-cell lung cancer (SCLC), significantly im-
proving diagnostic precision [21, 22].  
      One prominent application is PET-CT radiomics, 
which links FDG uptake patterns to aggressive tumor 
behaviors, facilitating subtype differentiation and en-
abling more accurate prognosis predictions. This non-
invasive approach complements traditional 
histopathological analyses by providing detailed in-
sights into tumor biology21. Despite the promising 
progress, challenges remain [23, 24].  
      Future developments in radiomics emphasize the 
integration of AI with molecular profiling to refine 
lung cancer subtyping further and enable truly person-
alized treatment strategies. By combining radiomic in-
sights with genomic and immunologic data, 
researchers and clinicians can develop robust, patient-
specific models for prognosis and therapy selection. 
As radiomics evolves, its potential to transform lung 
cancer care becomes increasingly evident, paving the 
way for more precise and effective clinical manage-
ment [23, 24].  
 
INTEGRATION OF AI WITH DIGITAL PATHOL-
OGY IN PERSONALIZED MEDICINE  
      The integration of AI and radiomics has signifi-
cantly improved the speed and accuracy of lung cancer 
classification, enabling personalized medicine. Ra-
diomics algorithms, validated using PET/CT and MRI, 
effectively distinguish NSCLC subtypes and support 
predictive models like CT-based nomograms for clas-
sifying SCLC and NSCLC [25, 26].  
      Digital pathology's telepathology capabilities 
allow pathologists in remote locations to access high-
resolution images for second opinions or to collaborate 
with AI models trained on diverse datasets. Such im-
plementations have been critical in studies where dig-
ital slides were shared across institutions to validate 
predictive AI models for cancer classification, ensur-
ing consistency and reproducibility across clinical set-
tings [26, 27].  
      However, challenges such as the high cost of scan-
ners, technical issues with calibration, and the need for 
robust hardware infrastructure remain [6, 28]. Integra-
tion with laboratory information systems and collab-
oration between pathologists and AI developers are 
essential to overcome these barriers. For example, in 
one study, pathologists guided AI model training to 

improve tumor segmentation and subtype classifica-
tion, demonstrating the importance of interdisciplinary 
efforts [26]. With a success rate of over 90% in rapid 
remote diagnosis, diagnostic and therapeutic decisions 
can be made in a timely manner based on findings 
from rapid remote online evaluations. A quality-as-
sured rapid remote online evaluation process enables 
the assessment of both the quantitative and qualitative 
suitability of obtained cellular samples for further stan-
dard, immunocytochemical, and molecular pathologi-
cal analyses. An interdisciplinary understanding of the 
clinical problem and morphological findings mini-
mizes friction among disciplines and serves as an es-
sential prerequisite for customized diagnostics [29-32]. 
      This synergy between AI and digital pathology not 
only streamlines diagnostics but also supports person-
alized treatment strategies by linking histological and 
molecular data to therapeutic responses. As technol-
ogy evolves, this integration holds immense potential 
to transform cancer care, making it more accurate, ac-
cessible, and tailored to individual patient needs.  
 
ADVANCING PRECISION MEDICINE  
The Future of Digital Pathology and AI Integration  
      The future of digital pathology and AI integration 
lies in advancing precision medicine through en-
hanced diagnostic accuracy, efficiency, and accessibil-
ity. Emerging techniques, such as self-supervised 
learning, enable the extraction of histomorphological 
patterns from whole-slide images (WSIs) without the 
need for manual annotations, providing insights into 
tumor heterogeneity and clinical outcomes [26]. AI-
powered radiomics models, validated using PET/CT 
and MRI data, are increasingly being used to predict 
lung cancer subtypes and assess treatment responses 
[27, 33].  
      Digital pathology is also expected to expand its 
role in telemedicine, enabling real-time consultations 
and collaborative diagnostics across the globe. These 
advancements will depend on robust infrastructure, 
seamless integration with laboratory information sys-
tems, and standardization of workflows to ensure re-
producibility and reliability [6, 28]. Furthermore, 
combining AI-driven pathology insights with genomic 
and transcriptomic data will open new avenues for per-
sonalized treatment strategies, bridging the gap be-
tween molecular profiling and clinical application [26]. 
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      As these technologies evolve, their integration into 
clinical workflows will redefine diagnostic paradigms, 
offering scalable, cost-effective, and patient-centric 
solutions in oncology and beyond.  
      With ongoing research, lung cancer management 
is on the cusp of transformative advancements. The 
integration of molecular profiling with digital pathol-
ogy and AI is paving the way for unprecedented accu-
racy in therapeutic decision-making. These 
innovations bring the potential for enhanced patient 
outcomes and signify a shift toward precision oncol-
ogy, where treatment is tailored to the unique biolog-
ical characteristics of each individual's cancer [26, 33].  
 
UNDERSTANDING THE LIMITATIONS OF AI 
AND MACHINE LEARNING IN LUNG CAN-
CER DIAGNOSIS  
      Artificial intelligence and machine learning are 
often praised for their potential to revolutionise health-
care, and lung cancer diagnosis is no exception. How-
ever, the reality on the ground is more nuanced [34]. 
Many AI models are trained on limited datasets—
often from a single hospital or demographic—which 
means they might not perform reliably when faced 
with patients from different backgrounds [35]. I’ve 
seen examples where a model works impressively in 
the lab, only to fall short in a real hospital setting.  
      Another concern that comes up frequently in clin-
ical discussions is the "black box" nature of these sys-
tems. While deep learning algorithms can achieve high 
accuracy, they rarely offer explanations that make 
sense to medical professionals [35, 36]. And in medi-
cine, if you can’t explain a diagnosis, it’s hard to trust 
it—let alone act on it.  
      There’s also the question of bias. If a dataset un-
derrepresents certain groups - say, women, minorities, 
or rare cancer subtypes - the resulting model might be 
less accurate for those patients. That’s not just a tech-
nical issue; it’s a real-world risk [35, 36].  
      So what’s the way forward? First, we need larger, 
more diverse datasets, ideally pooled from different 
regions and healthcare systems. But that’s not enough. 
We also need tools that can explain their reasoning, at 
least at a level that doctors can understand. And per-
haps most importantly, clinicians must be properly 
trained—not just in how to use these systems, but in 
when not to trust them [35, 17].  

      AI can and should be a partner in cancer care—
but it has to earn that role through transparency, relia-
bility, and collaboration with the people who treat 
patients every day. 
 
 
CONCLUSION 
 
The integration of AI, Machine Learning, and ra-
diomics into lung cancer classification represents a 
paradigm shift in oncology. These technologies not 
only address the limitations of traditional methods but 
also provide a more objective, efficient, and precise 
framework for diagnosis. By leveraging the vast po-
tential of AI and radiomics, clinicians can reduce sub-
jectivity, accelerate the diagnostic process, and 
implement personalized treatment strategies tailored 
to each patient’s unique tumor profile. As ongoing re-
search continues to refine these approaches, the future 
of lung cancer management appears poised for signif-
icant advancements, offering hope for improved pa-
tient outcomes and a new era in precision oncology.  
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