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ABSTRACT: This paper introduces a dynamic model of a novel flywheel that provides a pivoting 

motion for a cubic module in reconfigurable systems. The challenges associated with pivoting motion for 

lattice-type self-reconfigurable modular robots are investigated, particularly the momentum-driven 

ones, where the existing models use two separated systems for actuation and braking. The proposed 

system allows a combined actuation and braking system, to manage the pivoting action. The 

mathematical model of the dynamical flywheel is developed according to Newton’s Law. The flywheel 

has a variable diameter depending on the angular speed, where the sudden brake is applied by the 

collision between the flywheel end and the braking notch. The angular momentum transfer from the 

flywheel to the module body provides pivoting torque, which is the fundamental principle in 

momentum-driven systems. The dynamic model is verified by experimental studies. The experimental 

findings indicate that the success rates of the proposed system are 90% and 80% for traverse and 

horizontal traverse pivoting motion respectively. The average time duration for traverse and horizontal 

traverse pivoting motion are 0.906 and 0.763 seconds respectively. Based on the findings, the study 

indicates that the developed flywheel is a potential candidate for a pivoting actuator in the self-

reconfigurable modular robotic field.   

 

Keywords: Flywheel, Modular Robots, Pivoting Motion, Self-Reconfiguration, Variable Diameter 

1. INTRODUCTION 

A self-reconfigurable modular robot (SRMR) is defined as a robotic system consisting of a group of 

robotic modules that are interchangeable, autonomous, and communicative [1].  The main distinction of 

the SRMRs from the conventional robots is the shape changing capability [2]. Moreover, the 

interdependence of the module blocks can be regarded as the main difference from the multi-robot 

systems [3]. Modularity provides an adaptation capability to the robotic system in changing 

environmental conditions. Specialized modules, each with a distinctive connection mechanism, can be 

controlled together to perform a task based on a predefined configuration. The research on the field has 

emerged in the last decades with promising outcomes at challenging robotic missions in micro gravity 

[4], rough [5] and flat [6] terrains, aquatic [7], and aerial [8] environments. Versatility, reliability, and 

low-cost are the three main promises that the researchers have been following in the field [9]. Versatility, 

which can be defined as providing a wide range of tasks by using a single robotic system, is validated in 

the literature [1]. However, studies on reliability and low-cost promises are still conducted by the 

researchers to validate them [10]. 

Self-repair and fault-tolerance behaviors of SRMRs make them preferable in complex tasks such as 

space missions or hazardous environmental tasks where direct intervention is not possible. Reliability is 

not an easy goal to achieve when the number of the modules is high. High number of modules bring 

hardware and computational complexity. Therefore, the control system of a SRMR needs to be simple to 

reach the low-cost target. On the basis of the promises and advantages, a wide range of application areas 

for SRMRs have been studied in the literature such as water surveillance [11], space missions [4] [12], in-
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pipe inspection [13], cleaning of liquid tanks [14], and nuclear decommissioning and inspection [15]. 

SRMR studies form a collective foundation for advancing robotic systems, with several 

comprehensive reviews laying the groundwork for future research. Early works, such as [16], provided a 

fundamental classification of SRMRs based on module structural geometries and identified key 

emerging technological aspects, including automatic docking, configuration recognition, and distributed 

control. While offering a valuable broad overview of the field's technological landscape, this work 

primarily focused on general classification rather than detailed challenges or specific performance 

metrics. Subsequently, the review in [17] delved into a more specialized area, reviewing docking 

systems crucial for SRMR reconfiguration and providing a forward-looking vision for research 

specifically in module interconnection mechanisms. However, this review focused predominantly on the 

mechanical aspects of docking, without extensive discussion on the integrated control strategies or the 

generation of dynamic reconfigurable motions. Similarly, the review in [18] highlighted the significant 

advantages of bio-inspired SRMRs, emphasizing their adaptability and resilience. This review tended to 

concentrate on high-level conceptual benefits and potential applications rather than providing a detailed 

analysis of novel internal actuation mechanisms or specific design methodologies for achieving complex 

reconfigurations. Collectively, these foundational and specialized reviews mention the progress in 

SRMRs but also reveal a continued need for research that explores innovative internal mechanisms for 

precise and controlled reconfigurable movements. Addressing this critical gap, this study introduces a 

novel variable-diameter flywheel system, which, upon reaching a specific angular velocity, engages a 

notch to efficiently transfer angular momentum to the module body, thereby enabling controlled 

pivoting action for self-reconfiguration. 

The main distinction between SRMRs and conventional robotic systems is that SRMRs have 

changeable shape formation. Modularity and motion capabilities of the modules provide this shape 

changing ability. Docking mechanisms enable the modules to stick on the main configuration, as well as 

to detach when needed. If all of the modules of an SRMR are identical, the system is called 

homogeneous [2], otherwise it is called heterogeneous [19]. 

The mechanical structure of an SRMR system is related to the relative positions of the modules, 

where biological inspirations have a leading role in defining the structural formation. The chain type, 

lattice type, and mobile structure of structural formations are frequently selected in the field [2]. 

Moreover, hybrid type, truss structure, and the free form are the other types of structures. The lattice 

type tries to mimic the water molecules whose flow pattern is an important inspiring factor in the field. 

The lattice is created by combining the modules in a multi directional order, as well as adding branches 

if necessary. The most important advantage of a lattice-type SRMR is flexible locomotion. When the 

modules encounter a confined space, they can easily separate from each other and perform critical tasks 

in inaccessible areas. One platform might offer benefits of water flow motion on rough terrains, flat 

terrains with obstacles, passing through narrow corridors or pipes, climbing stairs, and complex 

environments. Metamorphic [20], Atron [21], 3D M-Blocks [22], ModQuad [23], Catom 3D [24], and 

Electrovoxel [25] are among the leading validated examples of lattice-type SRMRs. Aerial working 

environment of ModQuad, momentum-driven actuation of 3D M-Blocks, and magnetic actuation of 

Electrovoxel have introduced novel aspects to the field.  

The Pivoting Cube Model (PCM), Sliding Cube Model (SCM), Compressible Cube Model (CCM), 

and Module Carrier Model (MCM) have been proposed as motion models for lattice-type SRMRs in the 

field. PCM has emerged as a consistent module motion model [22], [25], [26], [27]. When compared to 

models such as the SCM [28], the CCM [29], and the MCM [30], PCM can be considered a more 

applicable model for real-world problems. The SCM is mostly applicable to two-dimensional problems 

due to the invalidated applicability of concave rotational motion [31]. Since achieving the sliding motion 

of a cubic module through an internal actuator requires a complex structure [32], these systems are 

generally actuated by external actuators, which significantly restricts the operational area to a very 

limited space [28], [31].  In the CCM, an efficient operation cannot be achieved due to the excessive time 

required for the expansion and compression steps of the cube surfaces [33]. In the MCM, the 
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inhomogeneous structure formed by the connection arms and cubic modules needs a double-layered 

process for the execution of commands sent by the controllers which increases the computational burden 

[30]. On the other hand, PCM is not restricted to two dimensions, can easily adapt to both internal and 

external actuators, and can be controlled with simple controller commands. One of the significant 

advantages provided by PCM is that modules do not always need to remain connected during 

movement. Therefore, in case of an external impact causing module separation, the modules can move 

independently and reconstruct the robotic configuration [22]. 

A novel approach utilizing momentum-driven systems as actuators for strong pivoting motion and 

using simple permanent magnets as docking mechanism has been introduced in [22]. In a module-

embedded flywheel system, accelerating the flywheel generates significant torque. When abruptly 

halted by a braking mechanism, this torque transfers to the module body, enabling pivoting around a 

desired axis. However, in 3D M-Blocks robots, the actuation system driving the flywheel and the braking 

mechanism operate as separate components. This separation introduces spatial constraints and increases 

control complexity, presenting a limitation that remains open for further optimization. 

This study proposes a dynamic model for a lattice-type self-reconfigurable modular robot (SRMR) 

that utilizes a novel actuation method based on momentum conservation, similar to existing approaches 

in the literature [22]. However, unlike previous designs, the proposed method introduces a variable-

radius dynamic flywheel that stops abruptly by colliding with a barrier once it reaches a predetermined 

angular velocity. This design integrates both the drive and braking systems into a single structure, 

reducing complexity and spatial constraints. To the best of our knowledge, this is the first 

implementation of such an actuation mechanism in the literature.  

This specific approach to generating dynamic reconfigurable motion also fundamentally 

distinguishes the proposed system from other prominent actuation mechanisms in modular robotics. For 

instance, while 3D M-Blocks [22] are highly versatile in achieving various articulated motions and 

complex reconfigurations through direct motor-driven joints and inter-module magnetic connections, 

their computation burden raises from controlling the pivoting and braking separately. Another example, 

Torque Capsules [34] employ an internal reaction wheel to generate continuous torque for precise 

attitude control or relatively slow angular repositioning of modules; the proposed system, in contrast, is 

purpose-built for a single, powerful burst of angular momentum to achieve a distinct pivoting motion. 

Furthermore, sophisticated systems like Cubli [35] uses multiple internal reaction wheels for dynamic 

balancing, jumping, and multi-axis control; however, its mechanism relies on continuous reaction torque 

against external surfaces or internal balancing, differing significantly from the proposed method's 

targeted internal momentum transfer through direct impact to achieve a module's pivoting on a surface. 

The proposed variable-diameter flywheel approach therefore offers a unique solution specifically 

designed for efficient and powerful pivoting actions, providing a distinct mode of self-reconfiguration 

within the modular robotics field. 

The rest of this study is structured as follows: Section 2 details the proposed dynamic model for the 

modules. Section 3 presents the numerical and experimental results, along with a comparison to existing 

studies in the literature. Finally, Section 4 concludes the study and outlines directions for future 

research. 

2. MATERIAL AND METHODS 

This section, presents the development of a dynamic model for the pivoting motion of a cubic 

module. In Section 2.1, the coordinate systems that describe the direction of rotation of the flywheel and 

the pivoting motion of the module body are given. Then, in Section 2.2, the dynamic formulation 

representing the pivoting motion and its interaction with the flywheel is presented.   

2.1. The Problem Setup and the Coordinate System Definition 

Based on the design requirements of the SRMRs, the actuation system must be compact and capable 
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of fitting within a limited volume. A novel actuation system has been developed regarding the principle 

of conservation of angular momentum. The system generates angular momentum through the rotation 

of a flywheel, and when the flywheel is abruptly stopped, its angular momentum transfers to the 

module body, producing the torque required for pivoting motion. A three-dimensional representation of 

the actuation system's operating principle is shown in Figure 1. 

 

 

Figure 1. Visualization of the actuation system in 3D  

 

In Figure 1, the flywheel consists of two equal masses, denoted as 𝑚𝑏 , connected by two springs. 

Two identical shafts pass through the center of the flywheel components. As the flywheel accelerates to a 

certain angular velocity, the gap between its components increases, causing them to collide with a notch 

on the module body. In the figure, two coordinate systems are included: the global coordinate system 

(𝑋𝑌𝑍) and the local coordinate system (𝑋′𝑌′𝑍′). The local coordinate system is attached to the flywheel, 

with the 𝑍 and 𝑍′ axes aligned. The flywheel is connected to the module body via a DC motor and has a 

single rotational degree of freedom about the 𝑌′-axis, as indicated by the arrow in Figure 1. The 

actuation system ensures that the module pivots in either the clockwise (CW) or counterclockwise 

(CCW) directions, depending on the flywheel's angular velocity (𝜔). A positive (𝜔) induces CCW 

pivoting, whereas a negative (𝜔) results in CW pivoting. The angle 𝜑, shown in Figure 1, represents the 

pivoting motion direction within the global coordinate system. 

The actuation system operates on the principle that the radius of the flywheel changes due to the 

centrifugal force acting on its rotating identical components. This variation in radius causes the flywheel 

to collide with the notches on the module body, generating the pivoting motion. Let the mass of each 

rotating flywheel component be denoted as 𝑚𝑏, and the spring constant as 𝑘. The initial radius of the 

stationary flywheel is 𝑟0, while the rotating flywheel’s radius is defined as 𝑟(𝑡). The relationship between 

angular velocity and the dynamic flywheel radius has been analyzed in detail. 

The rotational motion of the flywheel can be analyzed as a periodic motion, with intermittent 

collisions between the flywheel and the notch. These collisions continue until the desired pivoting 

motion is achieved. As a result, each collision transfers momentum from the flywheel to the module 

body. Figure 2 illustrates the sequence of collision cycles leading to the complete pivoting motion. 
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Figure 2. Conversion of angular rotational motion into pivot motion through two consecutive cycles 

 

When the flywheel is stationary, it does not contact the notch. However, once the flywheel reaches a 

critical angular velocity (𝜔𝑐𝑟), its radius increases, causing a collision between the flywheel and the 

notch. As a result of this collision, the angular position of the module body 𝜑1 changes. If this change is 

enough to complete the pivot motion, the flywheel is not reactivated. Otherwise, the collision cycles 

continue until the module body achieves full pivoting motion. 

2.2. Dynamic Representation and Mathematical Model of the System  

The full equation of motion for this system is obtained using Newton’s Second Law of Motion. The 

flywheel is considered as a point mass. The mathematical model contains three movement types:  

1-Translational motion of the flywheel parts (due to centrifugal force, spring tension, damping, and 

friction). 

2- Rotational motion of the flywheel (angular acceleration due to torque from the motor). 

3- Rotational motion of the outer cube (pivoting due to flywheel impact). 

The free-body diagram (FBD) of the module is presented in Figure 3.  The flywheel consists of two 

identical flywheel pairs. These pairs are connected by two helical springs. Additionally, two pins 

passing through the center enable movement.  
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Figure 3. The free body diagram of the module 

 

In Figure 3, total mass of the module and mass of a flywheel pair are denoted by 𝑀 and 𝑚𝑏 

respectively. Normal and friction forces are denoted by 𝑁 and 𝐹′𝑓 respectively. Spring constant is 

denoted by 𝑘, whereas friction coefficient is denoted by 𝜇. Finally, 𝑔 denotes the gravity. 

 

The spring constants are calculated as follows. 

 

𝑘 =
𝐺𝑑4

8𝐷3𝑇
 

(1) 

 

In Equation 1, 𝐺, 𝑑, 𝐷, and 𝑇 represent the modulus of rigidity, diameter of the spring wire, spring 

diameter, and number of coils respectively. 

1- Each flywheel pair moves outward under centrifugal force and is resisted by the spring, damping, 

and friction. During the translational motion of the flywheel, its pairs experience centrifugal force (𝐹𝑢), 

spring force (𝐹𝑠), and friction force (𝐹𝑓) exerted by the guide pins. As the flywheel accelerates, its parts 

move outward, while negative acceleration causes the motion to move inward. Figure 4 illustrates the 

free-body diagram of a single flywheel part, along with the mass-spring-damper model for both 

flywheel pairs. 

 

The equation of motion due to Newton’s Second Law of Motion for a single flywheel pair is given in 

Equation 2, 

 

 

𝑚𝑏𝑟̈ + 𝑐𝑟̇ + 𝑘(𝑟 − 𝑟0) = 𝑚𝑏𝑟𝜔2 − 𝜇𝑁 (2) 
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Figure 4. Free-body diagram of a single flywheel pair (A-B), mass-spring-damper model of both 

flywheel pairs (C) 

 

When the flywheel collides with the notch, the voltage source turns the power off. As the flywheel 

stops rotating, flywheel parts return to the center due to the tensile forces of the springs. Upon re-

energizing and the flywheel resumes rotation, and its pairs experience an outward centrifugal force. 

Once the angular velocity reaches a critical level, the centrifugal force overcomes the spring tension and 

friction forces, causing the flywheel components to move outward. During this movement, the spring 

tension increases, and at a critical point, a balance of forces is achieved. Figure 5 illustrates the flywheel 

states during the stationary and equilibrium velocity phases. 𝑟0  is the initial radius of the flywheel, 𝑟 is 

the dynamic radius of the flywheel, 𝑟 − 𝑟0 is the displacement due to motion. 

 
Figure 5. States of the flywheel components: stationary (left) and at equilibrium velocity (right) 

 

On the right hand side of Equation 2, the centrifugal force acting on a flywheel pair during the 

accelerated rotational motion is defined as: 
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𝐹𝑢 = 𝑚𝑏𝑟𝜔2 (3) 

 

On the left hand side of Equation 2, tension of the spring is expressed as: 

 

𝐹𝑠 = 𝑘(𝑟 − 𝑟0) (4) 

 

The effect of gravity on the centrifugal force varies depending on the position of the flywheel pair. 

The centrifugal force decreases for the upper flywheel pair. This effect is expressed in the following 

term: 

 

𝑇 = 𝑚𝑏𝑔𝑐𝑜𝑠(𝜔𝑡) (5) 

 

The friction force includes Coulomb friction and viscous damping terms. 

 

𝐹𝑓 = 𝑠𝑖𝑔𝑛(𝑟̇) × 𝜇𝑁 + 𝑐𝑟̇ (6) 

 

The normal force (𝑁) includes both the weight of the flywheel component and the rotational inertial 

force. Since the friction surface experiences a 360° displacement during rotation, the pattern of normal 

force due to gravity is a cosine function. The rotational inertial force, on the other hand, depends on the 

angular acceleration. Therefore, the friction force has been formulated as below: 

 

𝐹𝑓 = (𝑚𝑏𝑟𝜔̇ + 𝑚𝑏𝑔𝑐𝑜𝑠(𝜔𝑡))𝜇 + 𝑐𝑟̇ (7) 

 

The effect of gravity is considered negligible compared to the centrifugal force. The displacement 

term in Equation (7) can be replaced with the following expression. 

 

𝑟 =
𝑚𝑏𝑟0𝜔2

(𝑘 − 𝑚𝑏𝜔2)
 

(8) 

 

The final form of the equation of motion of the flywheel can be described in Equation 9 based on the 

Newton’s Second Law of Motion. 

 

𝑚𝑏𝑟̈ = 𝑚𝑏𝑟𝜔2 − 𝑘(𝑟 − 𝑟0) − 𝑚𝑏𝜇 (
𝑚𝑏𝑟0𝜔2

(𝑘 − 𝑚𝑏𝜔2)
) 𝜔̇ − 𝑐𝑟̇ 

(9) 

 

In right side of Equation 9, the first term represents the centrifugal force, the second term denotes 

the spring tension, the third term corresponds to the friction force, and the fourth term represents the 

viscous damping.  

The linearization of the derived equation of motion has been performed by using a Taylor series 

expansion. The linearization is applied to Equation 2 as below: 

 

 

In Equation 10, the expansion point of the Taylor series is given as (𝜔0, 𝑟1). The following expression 

can also be added to Equation 10. 

𝜕(𝑚𝑏𝑟̈)

𝜕𝑟̈
∆𝑟̈ + 𝑚𝑏𝑟̈1

=
𝜕𝐹𝑢

𝜕𝜔
∆𝜔 +

𝜕𝐹𝑢

𝜕𝑟
∆𝑟 + 𝐹𝑢(𝜔0, 𝑟1) −

𝜕𝐹𝑢

𝜕𝑟
∆𝑟 − 𝐹𝑠(𝑟1) −

𝜕𝐹𝑓

𝜕𝑟̇
∆𝑟̇ −

𝜕𝐹𝑓

𝜕𝜔̇
∆𝜔̇

− 𝐹𝑓(𝜔̇0, 𝑟̇1) 

(10) 
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𝑚𝑏𝑟̈1 = 𝐹𝑢(𝜔0, 𝑟1) − 𝐹𝑠(𝑟1) − 𝐹𝑓(𝜔̇0, 𝑟̇1) (11) 

 

The Equations 10 and 11 can be combined as below: 

 

𝜕(𝑚𝑏𝑟̈)

𝜕𝑟̈
∆𝑟̈ =

𝜕𝐹𝑢

𝜕𝜔
∆𝜔 +

𝜕𝐹𝑢

𝜕𝑟
∆𝑟 −

𝜕𝐹𝑢

𝜕𝑟
∆𝑟 −

𝜕𝐹𝑓

𝜕𝑟̇
∆𝑟̇ −

𝜕𝐹𝑓

𝜕𝜔̇
∆𝜔̇ 

(12) 

 

Equation 12 can be defined as the linearization equation. General equation of motion and the 

linearization equation are combined as below: 

 

𝑚𝑏∆𝑟̈ + 𝐶∆𝑟̇ + (𝑘 − 𝑚𝑏𝜔0
2)∆𝑟 = 𝑟 × (2𝑚𝑏𝜔0∆𝜔 − 𝑚𝑏𝜇∆𝜔̇) (13) 

 

The transfer function of the system is gained by using Equation 13 to control the displacement of the 

flywheel part. 

 

𝑅(𝑠)

𝛺(𝑠)
=

𝑟(2𝜔0 − 𝜇𝑠)

𝑠2 +
𝑐

𝑚𝑏
𝑠 + (

2𝑘
𝑚𝑏

− 𝜔0
2)

 
(14) 

 

The transfer function will be used to investigate the dynamic motion performance of the flywheel 

part considering the balance point of (𝜔0, 𝑟1). The state space representation of the system is given 

below: 

 

[
𝑧̇1

𝑧̇2
] = [

0 1

𝜔0
2 −

2𝑘

𝑚𝑏
−

𝑐

𝑚𝑏

] [
𝑧1

𝑧2
] + [

0
1

] 𝜔 

(15) 

𝑟 = 𝑟[2𝜔0 −𝜇] [
𝑧1

𝑧2
] (16) 

In Equation 16, the state variables are denoted as 𝑧1 and 𝑧2. The system input, angular velocity, and 

output, the displacement of the flywheel part, are denoted as 𝜔 and 𝑟 respectively.  

Once the mass of the flywheel part, which is related to the part dimensions, is determined, there are 

two adjustable parameters, viscous damping coefficient (𝑐) and spring constant (𝑘), in the system.  

The natural frequency and damping coefficient of the system are given below: 

 

𝜔𝑛 = √
2𝑘

𝑚𝑏
− 𝜔0

2 

(17) 

ξ =
𝑐

2𝑚𝑏√
2𝑘
𝑚𝑏

− 𝜔0
2

 (18) 

 

Equations 17 and 18 can be rewritten as below, considering the displacement constraint: 
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𝜔𝑛 = √
𝜔0

2𝑟

𝑟1
− 𝜔0

2 

(19) 

ξ =
𝑐

2𝑚𝑏√
𝜔0

2𝑟
𝑟1

− 𝜔0
2

 (20) 

 

As it is observed in Equation 19, the natural frequency of the system is directly related to 𝑟1, 𝑥0, 𝑥1. 
Damping coefficient (ξ) is inversely proportional to the mass of the flywheel part and directly 

proportional to the viscous damping coefficient (𝑐). To achieve the optimal damping coefficient (ξ =
0.707), the system must adhere to the following rule. 

 

𝑐 = 𝑚𝑏√
2𝜔0

2𝑟

𝑟1
− 2𝜔0

2 

(21) 

 

The system gain is dependent on the flywheel dimensions, and shown in Equation 22. Once the 

flywheel dimensions are determined, the system gain becomes constant. 

𝐾1 =
2𝑟𝜔0

2𝑘

𝑚𝑏
−𝜔0

2
          (22) 

Viscous damping is directly related to the air friction applied to the flywheel pairs. The step 

response and the Bode diagram of the system with different viscous damping coefficients are shown in 

Figure 6. As the viscous damping between the flywheel part and the pin it moves on increases, the 

system's oscillation amplitude and overshoot decrease. In this case, the peak value of the frequency 

response also decreases. Therefore, it is observed that viscous damping is significant for the system. On 

the other hand, low viscous damping will increase vibrations in the system. 

The steady-state condition for the flywheel motion is also investigated. At equilibrium (𝑟̈ = 0, 𝑟̇ = 0): 

 

𝑘(𝑟𝑒𝑞 − 𝑟0) = 𝑚𝑏𝑟𝑒𝑞𝜔2 − 𝜇𝑁 (23) 

 

Solving for 𝑟𝑒𝑞 : 

 

𝑟𝑒𝑞 =
𝑚𝑏𝜔2𝑟0 + 𝜇𝑁

𝑘 − 𝑚𝑏𝜔2
 

(24) 

 

The denominator in Equation 24 determines the system’s response: 

*  If 𝑘 > 𝑚𝑏𝜔2, the system is stable, and 𝑟𝑒𝑞  is well defined. 

* If 𝜔 > 𝜔𝑐𝑟 = √𝑘/𝑚𝑏, the denominator approaches to zero, leading to instability and rapid 

expansion of the flywheel pairs. 

When calculating the flywheel's total inertia, two flywheel pairs are considered together. Since the 

inertia values of the coupling element connecting the flywheel pairs to the motor shaft, springs, and pins 

are very low, they are neglected. The inertia of the flywheel is shown below: 

 

𝐼𝑓 = 2 × 𝑚𝑏 × 𝑟2 (25) 
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Figure 6. The step response (top) and Bode diagram (middle and bottom) of the system for different 

viscous damping coefficients 

 

2- The rotating flywheel actuates the pivoting motion of the module. Using Newton’s Second Law 

for rotational motion, the torque of the flywheel when it hits the notch (i.e. 𝜔 = 𝜔𝑐𝑟) is described as 

follows: 

 

𝐼𝑓𝜔̇ = 𝜏𝑚 − 𝜏𝑏 − 𝜏𝑓 (26) 
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In Equation 26, 𝐼𝑓, 𝜔̇, 𝜏𝑚, 𝜏𝑏, 𝜏𝑓 denote moment of inertia of the flywheel, angular acceleration, 

motor torque, braking torque, and friction torque respectively. The braking torque is zero since there is 

no extra braking mechanism in the system. When the flywheel suddenly stops due to braking, the torque 

transfer occurs as: 

 

𝜏𝑖𝑚𝑝𝑎𝑐𝑡 =
𝐼𝑓∆𝜔

∆𝑡
 

(27) 

 

3- Rotational motion of the outer cube due to flywheel impact. When the flywheel abruptly stops 

rotating due to the impact with the notch. The impact method proposed in this study provides the same 

effect of decelerating a flywheel by a braking mechanism introduced in [22]. The energy stored in the 

flywheel is released in less than 15 ms, such that an impulse of torque is created. Therefore, the torque 

generated by the flywheel is transferred to the module body as shown in the below equation. This is the 

pivoting torque of the module as depicted in Figure 7. 

 

𝜏𝑝 = 𝜏𝑖𝑚𝑝𝑎𝑐𝑡 (28) 

 

 
Figure 7. The resulting pivoting torque 

 

Based on the angular momentum transfer mechanism, the pivoting torque is created about the axis 

through the center of gravity of the module. However, the stationary position of the module enforces it 

to rotate about the pivot axis shown in Figure 7. When studying multiple module lattice configurations, 

the magnetic bonding force will help to stabilize the pivot axis. Parallel axis theorem helps to calculate 

the moment of inertia about the pivot axis. The resulting pivoting torque must overcome magnetic 

bonding force and gravity in a lattice configuration. In this study, a single module movement is 

investigated. Therefore, the bonding resistance is not in the scope. The angular motion of the module 

due to the pivoting torque is described as follows based on the Newton’s Second Law of Motion: 

 

𝐼𝑐𝜑̈ + 𝑏𝜑̇ = 𝜏𝑝 (29) 

 

In Equation 29, 𝐼𝑐, 𝜑̈, 𝑏 denote moment of inertia of the cube, angular acceleration of the cube, 

damping coefficient respectively. 

It is observed that the angular position of the module is time-dependent and nonlinear. One should 

minimize the mass and moment of inertia, while maximizing the pivoting torque to provide a powerful 

pivoting motion. These parameters should be balanced during the design phase. 

Bringing all the equations of motion for radial expansion of flywheel pair, flywheel rotation, and 

cube rotation: 
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𝑚𝑏𝑟̈ + 𝑐𝑟̇ + 𝑘(𝑟 − 𝑟0) = 𝑚𝑏𝑟𝜔2 − 𝜇𝑁 (30) 

𝐼𝑓𝜔̇ = 𝜏𝑚 − 𝜏𝑏 − 𝜏𝑓 (31) 

𝐼𝑐𝜑̈ + 𝑏𝜑̇ = 𝜏𝑝 (32) 

3. RESULTS AND DISCUSSION 

Based on the derived dynamic model, relevant experimental studies have been conducted. A 

preliminary prototype is constructed for the tests. In the experiments conducted with the actuator placed 

in the core of the constructed module, the pivoting motion was successfully achieved.  

3.1. Prototype of the Module 

In this subsection, the resulting module prototype is presented briefly. A single cubic module with 

60 mm edges were manufactured by using a 3D Printer (Prusa i3 MK3 with accuracy of ±0.015 𝑚𝑚). 

The material of the module body is selected as Polylactic Acid (PLA). The module includes thirty-six 

spherical permanent magnets (each having a diameter of 4.5 mm, nickel-coated, with a strength of 

Neodymium 35) to provide the face and hinge bonds during rest and pivoting. Three spherical magnets 

are mounted inside special cells separately on each edge, where they have enough space in the cells to 

rotate freely. The rooms are closed by using square hollow guides machined by using Plexiglas. 

Additionally, flywheel parts were produced by melting lead blocks and casting them into molds. The 

connection of these parts are maintained by using two cylindrical pins. The springs are attached from 

the outer sides of the flywheel parts. After finishing the fabrication process, a single prototype is 

produced as shown in Figure 8.  

 
Figure 8. Module body and the flywheel 

 

3.2. Pivoting Motion Experiments 

Based on the produced prototype, pivoting motion experiments are conducted. As this study is 

mainly focusing on the dynamic model, the pivoting motion experiments are performed by the core 

structure of the modules. In the future work, the core structure and the module body will be integrated 

as a single platform. The experiment results are promising for further improvements of an SRMR to be 
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developed for a specific task such as field exploration in hazardous environments. In Figure 9, three sets 

of experiments are shown. Based on different axes, pivoting motions are achieved.  

As it is seen in Figure 9, three different pivot motions are observed. When the flywheel is in the 

vertical position, during the movements between (a) and (d), the module attempts to perform a pivoting 

motion but rotates around a different axis, causing the flywheel to flip over to the horizontal position. 

When the flywheel is in the horizontal position, sudden braking successfully achieves the pivoting 

motion (e)-(h). When the flywheel is in the vertical position, the generated angular momentum proves 

sufficient, and a successful pivoting motion is achieved (i)-(l). 

Based on the produced prototype, an initial comparison to a validated example from the literature, 

3D M-Blocks [22] is shown in Table 1. In Table 2, pivoting motion performance metrics are compared to 

3D M-Blocks [22]. Success rate is determined as the performance metric. It is observed that the success 

rates for traverse and horizontal traverse pivoting motion of the proposed module are 90% and 80% 

respectively. These rates are comparable with the 3D MBlocks. The slight difference from 3D MBlocks is 

that pivoting motion experiments in this study are conducted for individual modules on a flat ground.  

The comparison values in the tables offer encouraging insights for future developments. 

Figure 10 shows the angular displacement as a function of pivoting motion duration for traverse and 

horizontal traverse pivoting motions. The average angular displacement for each pivoting motion is 

represented by a solid curve, while the surrounding shaded region depicts the results of 20 different 

trials. All pivoting actions consistently initiate from 0 and reach a final angular displacement of 90 

degrees. The average time duration for the horizontal traverse motion is 0.763 seconds, which is slightly 

shorter than the average 0.906 seconds observed for the traverse pivoting motion. This difference is due 

to lower power requirements for horizontal movement, allowing for faster completion.  

 
Figure 9. The experiments of the pivoting motion 
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Figure 10. Angular displacement versus time duration of pivoting motion 

 

Table 1. Comparison of the proposed module to 3D M-Blocks [22] 

 Proposed Module 3D M-Blocks 

Actuation Directions 1 6 

Mass  82 g 150 g 

Flywheel Moment of Inertia 7.2 E-6 kgm2 8.4 E-6 kgm2 

Estimated Cost $ 35 $ 130 

Maximum Torque 1.4 Nm 2.6 Nm 

 

Table 2. Comparison of the performance metrics of the proposed module to 3D M-Blocks [22] 

 Proposed Module 3D M-Blocks 

Illustrations ( Traverse | Horizontal 

Traverse) 
 

 

Attempted  20 | 20 20 | 20 

Success Rate 90% | 80 % 100% | 70% 

  

4. CONCLUSIONS 

SRMRs have emerged in the field of robotics over the past decades due to their promising 

advantages, particularly in confined spaces. The dynamic reconfiguration capability makes SRMRs 

superior to conventional rigid and mobile robots in inaccessible environments. Momentum-driven 

actuation mechanisms play a crucial role in the development of lattice-type SRMR modules capable of 

performing a pivoting motion individually. This individual pivoting motion provides advantages 

especially in field exploration tasks. The validated examples in the literature usually utilize separate 

mechanisms for actuation and braking systems, which increases complexity in terms of control. 

Therefore, this study presents a dynamic model for a novel flywheel design that integrates both 
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actuation and braking systems into a single platform. The mathematical model is derived using 

Newton’s Second Law of Motion and the dynamic model is tested through experiments using a 

preliminary prototype. The pivoting motion is achieved in a single pivoting axis. Success rates of 

traverse and horizontal traverse pivoting motion are performance metrics. According to the 

experimental studies, the success rates are recorded as 90% and 80% for traverse and horizontal traverse 

pivoting motion respectively. These rates show that the proposed pivoting motion mechanism is a valid 

method that needs to further enhanced by appropriate adjustments. 

While this study successfully introduces and models a novel variable-diameter flywheel mechanism 

for a pivoting motion, it is important to acknowledge some limitations of the current model and its 

conceptualization, which will serve as a basis for future improvements. 

Firstly, regarding stability, the current pivoting mechanism focuses on generating the necessary 

momentum for pivoting. However, achieving precise landing and immediate post-pivoting stability 

presents challenges that require advanced control strategies, such as active damping or steering. The 

high-velocity impulsive nature of the angular momentum transfer can lead to residual oscillations that 

need to be actively managed for a stable final state. 

Additionally, mechanical losses are an inherent factor in the angular momentum transfer process. 

Despite the success rate of the proposed pivoting mechanism, energy dissipation occurs due to inelastic 

collisions at the notch. Quantifying and minimizing these losses will be crucial for maximizing the 

energy efficiency in future iterations.  

Finally, the durability of components, specifically the internal notch and the flywheel’s surface, is a 

critical consideration for long-term operation. The repetitive, high-impact forces generated during 

angular momentum transfer induce significant stress on these parts. Future studies will include material 

testing and fatigue analysis to ensure the robust design and selection of materials that can withstand 

long-term operation. Addressing these limitations will be key to improving the core structure towards 

full module integration and practical application. 
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