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Abstract
This paper introduces results for characteristically proximal vector fields that are stable or non-stable in the polar
complex plane C. All characteristic vectors (aka eigenvectors) emanate from the same fixed point in C, namely,
0. Stable characteristic vector fields satisfy an extension of the Krantz stability condition, namely, the maximal
eigenvalue of a stable system lies within or on the boundary of the unit circle in C. An application is given for
stable vector fields detected in motion waveforms in infrared video frames. AI is used to separate the changing
from the unchanging parts of each video frame.

Keywords: Characteristic, Complex Plane, Eigenvalue, Eigenvector, Proximity, Stability
2020 AMS: 32Q26, 15A18, 54E05

1Department of Electrical & Computer Engineerig, University of Manitoba, Winnipeg, Manitoba, Canada, James.Peters3@umanitoba.ca,
cuie@myumanitoba.ca
*Corresponding author
Received: 18 March 2025, Accepted: 29 June 2025, Available online: 01 July 2025
How to cite this article: J. F. Peters, E. Cui, Characteristically near stable vector fields in the polar complex plane, Commun. Adv. Math. Sci.,
8(2) (2025), 117-124.

1. Introduction
This paper introduces proximities of characteristic vector fields that are stable in the polar complex plane. A dynamical

system is a 1-1 mapping from a set of points M to itself [1, §9.1.1], which describes the time-dependence of a point in a complex
ambient system. In its earliest incarnation by Poincaré, the focus was on the stability of the solar system [2]. More recently,
dynamical system behaviour is in the form of varying oscillations in motion waveforms [3, 4]. Typically, vector fields are used
to construct dynamical systems (see, e.g., [5, §4], [6]).

The focus here is on dynamical systems generated by stable characteristic vector fields (cVfs) in C and their corresponding
semigroups. Comparison of cVf characteristics leads to the detection of proximal cVf semigroups. In general, a characteristic
of an object X is a mapping ϕ : X → C with values ϕ(x ∈ X) that provide an object profile. Proximal objects X ,Y require
|ϕ(x ∈ X)−ϕ(y ∈ Y )|= 0. All characteristic vectors (aka eigenvectors) emanate from the same fixed point in C, namely, 0.
Stable characteristic vector fields satisfy the Krantz stability condition, namely, all eigenvalues lie inside the unit circle in C.

An application of the proposed approach is given in measuring system stability in terms of vector fields emanating from
oscillatory waveforms derived from the up-and-down movements of a walker, runner, or biker recorded in a sequence of infrared
video frames. We prove that system stability occurs when its maximum eigenvalue occurs within or on the boundary of the unit
circle in the complex plane (See Theorem 2.11). This result extends results in [7, 8]) as well as in [9–11].
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Figure 1.1. Three vector fields in polar complex plane: (leftmost,unstable) V⃗ f1, (middle,stable) V⃗ f2, (rightmost,stable) V⃗ f3

Symbol Meaning

C Complex plane
j Imaginary unit, defined by j2 =−1
0⃗ Center of the unit circle in the complex polar plane
z A complex number: z = a+ jb = e jθ , where a, jb ∈ C
2X Collection of subsets in set X
A δ̃Φ B A is characteristically near B
ϕ(a ∈ A) ∈ C Characteristic value of element a ∈ A
Φ(A) {ϕ(a1), . . . ,ϕ(an) : a1, . . . ,an ∈ A} ∈ 2C

dΦ̃(A,B) Characteristic distance between sets A and B
Table 1.1. Principal symbols used in this study

2. Preliminaries
Detected affinities between vector fields for stable systems result from determining the infimum of the distances between

pairs of system characteristics.

Definition 2.1. (Vector)
A vector v (denoted by v⃗) is a quantity that has magnitude and direction in the complex plane C.

Definition 2.2. (Vector Field in the Complex Plane)
Let U = {p ∈ C} be a bounded region in the complex plane containing points p(x, jy) ∈ U. A vector field is a mapping
F : U → 2C defined by

F(p(x, jy)) = {⃗v} ∈ 2C denoted by V⃗ f .

Remark 2.3. A complex number z in polar form (discovered by Euler [12]) is written z = re jθ .

Example 2.4. Three examples of vector fields in polar form are given in Figure 1.1.

Definition 2.5. (Vector Field in the Complex Plane)
Let U = {z ∈ C} be a bounded region in the complex plane containing points z(x, jy) ∈U ⊂ C. A vector field is a mapping
F : U → 2C defined by

F(z(x,y j)) =
{⃗

v ∈ 2C
}

denoted by V⃗ f .

Definition 2.6. (Eigenvalue λ (aka Characteristic value))

The eigenvalues (characteristic values) of a matrix A are solutions to the determinant det(A−λ I),I =
[

1 0
0 1

]
identity matrix.

Example 2.7. (Sample Eigenvalues)

A =

[
4 8
6 26

]
, I =

[
1 0
0 1

]
: det(A−λ I) =

∣∣∣∣ 4−λ 8
6 26−λ

∣∣∣∣= (4−λ )(26−λ )− (8)(6) = 0

104−30λ +λ 2 −48 = λ 2 −30λ +56 = (λ −28)(λ −2) = 0
λ1 = 28,λ2 = 2 (eigenvaluesof) A
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Definition 2.8. (Eigenvector)
Given a matrix A, then v⃗ is an eigenvector, provided A⃗v−λ v⃗ = 0 ∈ C.

1st C quadrant 1st C quadrant 3rd C quadrant

z⃗11 = 0.1500+0.0498 j z⃗12 = 0.0106+0.0035 j z⃗13 =−0.0754−0.0250 j
z⃗21 = 0.1586+0.0471 j z⃗22 = 0.0333+0.0091 j z⃗23 =−0.0418−0.0124 j

Table 2.1. Eigenvectors derived from t
11 e j2tV f

Example 2.9. (Sample eigenvectors in center t
11 e j2t V⃗ f in Figure 1.1)

A selection of eigenvectors from the first and third quadrants in the polar complex plane in the center vector field in Figure 1.1
are given in Table 2.1.

Definition 2.10. (Krantz Vector Field Stability Condition [1])
A vector field V⃗ f in the complex plane is stable, provided all of the eigenvalues of V⃗ f are either within or on the boundary of
the unit circle centered 0 in C.

Theorem 2.11. (Vector Field Stability Condition)
A vector field V⃗ f in the complex plane is stable, provided the maximal eigenvalue of V⃗ f lies within or on the boundary of the
unit circle in C.

Proof. From Definition 2.10, all eigenvalues D = {λ} for a stable vector field lie either within or on the boundary of the unit
circle in C. Hence, max(λ ) ∈ D lies either within or on the boundary of the unit circle in C.

λmax λmax−1 λmax−2 λmax−3 λmax−4

-0.7384 -0.2328 -0.0823 -0.0488 -0.0298

Table 2.2. Eigenvalues derived from t
11 e j2tV f

Example 2.12. (Largest λ values for the center t
11 e j2t vector field in Figure 1.1)

The 5 bigest eigenvalues derived from the center vector field V f in Figure 1.1 are given in Table 2.2. From Theorem 2.11, V f is
stable, since λmax=-0.7384 in Table 2.2 lies within the unit circle in the complex plane C.

Definition 2.13. A characteristic of an object (aka sets, systems) X is a mapping ϕ:

ϕ : X → C defined by ϕ(x ∈ X) ∈ C.

Definition 2.14. (Characteristic Distance)
Let X ,Y be nonempty sets and a ∈ A ∈ 2X ,b ∈ B ∈ 2Y and let ϕ(a),ϕ(b) be numerical characteristics inherent in A and B. The
nearness mapping dΦ : 2X ×2Y → R is defined by

dΦ(A,B) = inf
ϕ(a) ∈ Φ(A)
ϕ(b) ∈ Φ(B)

{|ϕ(a)−ϕ(b)|}= ε ∈ [0,1] ∈ C.

In effect, A and B are characteristically near, provided 0 ≤ dΦ(A,B)≤ 1 in the first quadrant of the unit circle in the complex
plane C.

Definition 2.15. (Characteristic Nearness of Systems [13])
Let X ,Y be a pair of systems. For nonempty subsets A ∈ 2X ,B ∈ 2Y , the characteristic nearness of A,B (denoted by A δ̃Φ B) is
defined by

A δ̃Φ B ⇔ dΦ̃(A,B) = ε ∈ [0,1].
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Theorem 2.16. (Fundamental Theorem of Near Systems)
Let X ,Y be a pair of systems with A ∈ 2X ,B ∈ 2Y .

A δ̃Φ B ⇔∃a ∈ A, b ∈ B : |ϕ(a)−ϕ(b)|= ε ∈ [0,1]

Proof. ⇒: From Definition 2.14, A δ̃Φ B implies that there is at least one pair a∈A, b∈B such that dΦ̃(A,B)= |ϕ(a)−ϕ(b)|=
ε ∈ [0,1]..
⇐: Given dΦ(A,B) = ε ∈ [0,1], we know that infa∈A

b∈B
sup |ϕ(a)−ϕ(b)|= ε ∈ [0,1] ∈ C. Hence, from Definition 2.15, A δ̃Φ B,

also. That is, sufficient nearness of at least one pair characteristics ϕ(a ∈ A),ϕ(b ∈ B) ∈ [0,1] ∈ C indicates the characteristic
nearness of the sets, i.e., we conclude A δ̃Φ B.

Theorem 2.17. (Characteristically Close Systems)
Systems X ,Y are characteristically near if and only X ,Y contain subsystems that are characteristically near.

Proof. Immediate from Theorem 2.16.

Theorem 2.18. (Stable Systems Extreme Closeness Condition)
Let V⃗ f 1,V⃗ f 2 be vector fields representing a pair of stable systems and let maxλvecV f 1,maxλvecV f 2 be the maximum λ

(eigenvalues) for the pair of systems. If
∣∣max λ⃗v f 1 −max λ⃗v f 2

∣∣ ∈ [0,0.5]., then V⃗ f 1 δ̃Φ V⃗ f 2.

Proof. From Theorem 2.11, for the vector field V⃗ f for a stable system, maxλvecV f ∈ [0,±1]. For a pair of system vector fields
V⃗ f 1,V⃗ f 2, assume that

∣∣max λ⃗v f 1 −max λ⃗v f 2
∣∣ ∈ [0,0.5] ∈ [0,1].. Hence, from Theorem 2.16, we have V⃗ f 1 δ̃Φ V⃗ f 2.

Remark 2.19. (Magiros Stable System Motions Condition)
Let the extreme closeness stability condition Theorem 2.18 corresponds to a pair of vector fields V⃗ f 1,V⃗ f 1 : V⃗ f 1 δ̃Φ V⃗ f 1
derived from motion waveforms of a pair of physical systems. In that case, the maximal λ different requirement would represent
a pair of motion waveforms that are very stable. That is, any small disturbance results in a small variation in the original
waveform [14].

Remark 2.20. (Vector Field Characteristics)
We have the followig characteristics for a vector field (V⃗ f ,+) to work with. Let V⃗ f = vector field in C. Sg = (V⃗ f ,+)
Surface group in C.

ϕ1(Sg) = (maxϕ(λ )) /∈ unit circle ⇒ unstable vector field.

ϕ2(Sg) = (maxϕ(λ )) ∈ unit circle ⇒ stable vector field.

ϕ3(Sg) =
∥∥∥ϕ(λV⃗ f1

)−ϕ(λV⃗ f2
)
∥∥∥ ∈ [0,0.5]⇒ V⃗ f1 δ̃Φ V⃗ f2.

Φ(Sg) =
{

ϕ1(Sg),ϕ2(Sg),ϕ3(Sg)
}
.

Figure 2.1. Case 1: Characteristically non-near vector fields
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Figure 2.2. Case 2: Characteristically near vector fields

Example 2.21. (Characteristically Non-Near Vector Fields)
In Figure 2.1, (not)(V f 1 δ̃Φ V f 2), since

ϕ6(SgV f 1)(max)λ =−97.47 ⇒ unstable vector field
ϕ6(SgV f 2)(max)λ = 0.74 ⇒ stable vector field.

Example 2.22. (Characteristically Near Vector Fields)
In Figure 2.2, V f 2 δ̃Φ V f 3, since

ϕ5(SgV f 2,V f 3) =
∥∥∥ϕ((max)λV⃗ f2

= 0.74)−ϕ(λV⃗ f3
=−0.035)

∥∥∥ ∈ [0,0.5]⇒ stable vector field.

ϕ6(SgV f 2)(max)λ = 0.74 ⇒ stable vector field.

ϕ6(SgV f 3)(max)λ =−0.35 ⇒ stable vector field.

Figure 2.3. Case 1: Characteristically near stable vector fields
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Theorem 2.23. (Characteristically Close Systems Are Proximally Close)
Characteristic close systems are proximal.

Proof. This is an immediate consequence of the fundamental near systems Theorem 2.16.

3. Application: Detection of Characteristically Near Stable Vector Fields
on Motion Waveforms in Infrared Video Frames

This section illustrates how to identify characteristically near motion waveforms in stable or unstable vector fields recorded
in sequences of infrared video frames. This application presents an advance over the method of evaluating motion waveforms
in video frames that was introduced in [16]. In the following example, the vector fields emanate from seqiences of runner
waveforms is recorded in frame sequences in infrared videos. Be comparing the stability characteristics of the runner vector
fields in pairs of video frames, we can then determine the overall stability of the runner. This approach carries over in assessing
the characteristic closeness of the overall stability of the vector fields emanating from any vibrating system at different times.
For simplicity, we consider only the maximum eigenvalues of the vector field in each video frame.

Example 3.1. (Case 1: Pair of Characteristically Close Stable Vector Fields)
In Figure 2.3, contains a pair of characteristically near stable vector fields V⃗ f f r77,V⃗ f f r94 in frames 77 and 94. Observe

maxλ f r77 = 0.67,

maxλ f r94 = 0.91,

∥0.67|− |−0.91∥= 0.24 ∈ [0,0.5]; Hence, from characteristic ϕ3(Sg),

V⃗ f f r77 δ̃Φ V⃗ f f r94.

Figure 3.1. Case 2: Pair of Characteristically near unstable vector fields

Example 3.2. (Case 2: Pair of Characteristically Close Unstable Vector Fields)
In Figure 3.1, contains a pair of unstable vector fields V⃗ f f r71,V⃗ f f r88 in frames 71 and 88. Observe

maxλ f r71 = 1.09,

maxλ f r88 = 1.44,

∥1.09|− |1.44∥= 0.35 ∈ [0,0.5]; Hence, from characteristic ϕ3(Sg),

V⃗ f f r71 δ̃Φ V⃗ f f r88.
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Figure 3.2. Case 3: Pair of Characteristically near stable and unstable vector fields

Example 3.3. (Case 3: Characteristically Close Stable and Unstable Vector Fields)
In Figure 3.2, contains a stable vector field V⃗ f f r51 and unstable V⃗ f f r68 in frames 51 and 68. Observe

maxλ f r51 = 0.67,

maxλ f r51 = 0.67,

maxλ f r68 = 1.36,

∥0.67|− |1.36∥= 0.69 ̸ ∈[0,0.5]; Hence, from characteristic ϕ3(Sg),

V⃗ f f r51 (not)δ̃Φ V⃗ f f r68.

Remark 3.4. (Significance of Characteristically Non-Close Stable and Unstable Vector Fields in Case 3)
Stable vector fields characteristically non-close to unstable vector fields are represented in Case 3 in Figure 3.2. The vector
fields in Example 3.3 have underlying systems that have the potential to be modulated to obtain a pair of characteristically
close stable systems, since

||0.67|− |1.36||= 0.69 ∈ [0,1] (satis f iesT heorem 2.16).

That is, even though the vector field V⃗ f f r68 is unstable in Case 3, it is characteristically close to the stable vector field
V⃗ f f r51 in Figure 3.2. That characteristic closeness suggests the possibility of modulating the waveform slightly to change the
vector field V⃗ f f r68 from unstable to unstable.

Unlike the temporal proximities of systems in the study in [8], the characteristically close systems in Figure 3.2 are
within the same video, but are separated by 10 frames and, hence, are not temporally close. The form of characteristic
closeness introduced in this paper corroborates the results in [13]. Cases 1 and 2 illustrate the result in Theorem 2.23, namely,
characteristically close systems are proximal.
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